
Ethan Cecchetti – Research Statement
Modern applications are increasingly structured as a composition of independent modules interacting

in complex ways. �ese applications are di�cult to secure, especially when the composed modules do
not trust each other. �e most extreme examples of such architectures—smart contract systems—have
lost around $1 billion to numerous a�acks since July 2016, when an a�acker stole 25% of the funds in
the Decentralized Autonomous Organization (DAO)—an Ethereum contract holding 15% of all coins on
Ethereum at the time.1 In addition to their immense �nancial cost, these a�acks serve as warnings for
systems like web pages with interacting JavaScript libraries and large service-based cloud applications,
which lack the direct control of �nancial assets that make smart contracts an ideal target, but share the same
modular structure with complex trust relationships. My research focuses on understanding and achieving
security in such composed systems.

My work notably highlights the need for compositional analyses, which can prove guarantees about
an entire system by composing separate analyses of its constituent parts. I have shown how to prevent
the entire class of a�acks exposed by the DAO using compositional guarantees [8, 9], and how a lack of
composition can make security prohibitively expensive in real applications like public distributed storage
networks [7]. Existing analyses are, unfortunately, inadequate. Universally Composable (UC) security [4]
and similar techniques [3, 20] ensure that a composition of cryptographic protocols is as secure as the
composition of their speci�cations, but those speci�cations may subtly leak information and combine in
unexpectedly dangerous ways. Programming languages techniques can provide compositional guarantees
to speci�cations, but o�en assume unrealistically simple computational models.

My research a�acks these problems from three main angles. First, I de�ne and enforce new security no-
tions to prevent costly a�acks exploiting complex interactions between distrusting modules [5, 8, 9]. Second,
I build primitive constructs to securely enable previously-missing functionality needed by practitioners,
using new security de�nitions to clarify applications’ security requirements [6, 7, 21]. Finally, I bring my
expertise to collaborations, proving secure practical system designs [11] and grounding theoretical security
work in real problems [14]. Moving forward, I aim to continue solving real-world security problems in
decentralized systems, which will require expanding and combining techniques for compositional reasoning,
while also working with colleagues in other disciplines.

New Security Notions for Distrusting Module Systems
Applications composed of mutually distrusting modules admit novel types of a�acks requiring new notions
of security. One prominent example is reentrancy, where one module calls a second and the second
unexpectedly calls back into the �rst before returning, potentially causing the �rst to behave improperly.
Two reentrancy exploits, a�acking the DAO1 and Uniswap2, have cost Ethereum smart contracts nearly
$100 million since July 2016. Prior defenses [e.g., 10, 12, 16] a�empt to protect individual contracts, ignoring
the general problems posed by reentrancy—which can occur in any systemwith user-supplied callbacks—and
applications composed of multiple contracts. But composed applications are a major concern! �e Uniswap
a�ack used a reentrancy vulnerability created by an unexpected interaction between two otherwise-benign
contracts to steal over $25 million.2

My work [8, 9] identi�es the fundamental role of trust in reentrancy; an a�ack can occur when a trusted
module calls untrusted code that then calls trusted code again, even if the second call goes to a di�erent
module. I use information �ow control (IFC), a programming language-based technique designed to reason
compositionally about in�uence in decentralized systems, to lay out the �rst trust-based formulation of
reentrancy and reentrancy security. IFC ideas result in de�nitions that precisely capture the desired security,

1https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
2https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09

1

https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09

but prior IFC schemes fail to secure reentrancy. I thus develop a lock-based enforcement mechanism and
prove that it achieves compositional reentrancy security, even in the presence of unknown code.

Even with added reentrancy protections, existing IFC tools—which track both con�dentiality and
integrity—fall short of analyzing real applications. IFC systems traditionally enforce noninterference, the
extremely strong guarantee that a program’s public (or trusted) outputs remain completely independent of
any secret (or untrusted) inputs. Yet real systems fail this requirement. For example, a password checker
must take a guess from an untrusted user, compare it to a secret, and produce a public and trusted result
depending on both the secret and untrusted inputs. Securing practical applications requires secure ways of
endorsing untrusted inputs and declassifying secret-derived outputs.

Several de�nitions of secure declassi�cation exist [e.g., 15, 17–19], but secure endorsement was relatively
unexplored, leaving applications that endorse data without meaningful security guarantees. I address this
shortcoming with Nonmalleable Information Flow (NMIF) [5], a semantic condition that rules out a�acks
that exploit endorsement of secret data to trick a system into accepting its own secrets as if they were user-
generated input. NMIF, along with a proved-correct enforcement technique I provide, allows applications
to retain meaningful assurances even when taking the necessary action of endorsing user input.

Building Secure Protocols
Without trust between modules, decentralized applications like smart contracts cannot safely rely on many
assumptions centralized monolithic systems need for security. I leverage the security notions I develop to
construct new secure building blocks needed by practitioners.

I designed and secured the smart contract interface of Town Crier [21], a trusted bridge between
blockchain smart contracts and existing web services. Smart contracts provide highly trusted execution,
but have no means to query data outside of their blockchain. Town Crier composes a smart contract with
trusted hardware, like Intel SGX, to securely connect smart contracts to the outside world, dramatically
increasing their potential uses. Smart contract transactions are �nancially expensive to execute, leading the
security of this architecture to rely in part on recouping transaction fees. I thus de�ned gas sustainability, a
new safety property that ensures a�ackers cannot sabotage the service by running it out of money.

I introduced the Public Incompressible Encoding (PIE) [7], a new primitive designed to prove that a server
is storing a �le with no compression. It operates in the extremely-challenging se�ing where all randomness
is public, supporting the needs of distributed storage startups like Filecoin.3 Using a construction that is
nearly optimal on small �les, my results de�ne a useful primitive in the absence of adversarial data, allowing
it to compose, but raise feasibility concerns in se�ing where adversarial data is possible.

I also built Solidus [6], the �rst publicly veri�able anonymous �nancial transaction protocol for a
bank-intermediated system—a structure that conforms to the existing �nancial system where many users
have accounts at a few banks. Solidus transactions are entirely anonymous except to the users and banks
involved, while remaining publicly veri�able and auditable. �e security of Solidus relies on the Publicly
Veri�able Oblivious RAM Machine (PVORM), another new cryptographic primitive. �e PVORM is based
on Oblivious RAM (ORAM) and is designed to support proofs that data updates are valid according to the
protocol without revealing which data is modi�ed.

Cross-Discipline Collaboration
I have also helped colleagues combine security with other disciplines of computer science.

In Obladi [11], I worked with experts on transactional datastores to design, implement, and prove secure
an e�cient transactional key-value store that obscures all data and access pa�erns from an untrusted
storage layer. I leveraged my familiarity with ORAM and formal notions of privacy to analyze the security
of numerous proposed optimizations and provide a proof of security for the �nal protocol.

3https://filecoin.io/

2

https://filecoin.io/

I worked with experts in formal logic to develop the Flow-Limited Authorization First Order Logic [14].
FLAFOL combines IFC techniques with formal logic to reason about a concern originally raised by Arden,
Liu, and Myers [2]: authorization decisions may cause data leakage if based on secret data. I again focused
on security, devising and proving a security property that the combines noninterference of IFC with a
conceptually similar, but technically very di�erent, noninterference property of authorization logics [13].

Moving Forward: Practical Compositional Security
�rough my research, I have seen the importance of a�aining compositional security guarantees, especially
for large decentralized systems. A core contribution of my work on reentrancy is the �rst compositional
de�nition end enforcement technique for secure reentrancy, allowing them to apply to modular applications.
My work on PIEs demonstrates how achieving security can be prohibitively expensive in se�ings where
primitives fail to compose.

Existing techniques, however, do not support de�ning security speci�cations with compositional
properties and realizing them with cryptographic protocols. Cryptographic techniques like UC security say
nothing about the meaning of composed speci�cations, and language-based techniques like IFC generally
assume deterministic single-threaded execution. I believe that a combination of these ideas is necessary
to provide guarantees to large composed systems like smart contract ecosystems or web pages running
JavaScript from many sources. To achieve this combination, I plan to address several important challenges.
Understanding Cryptographic Security De�nitions. Cryptographic adversarial models are o�en de-
scribed by what an a�acker can or will do. For instance, an “honest-but-curious” adversary will follow
the protocol as-wri�en, but learn as much as possible. Ideal functionalities de�ne security by actions and
responses: “When user U sends request R, perform action A.” What happens in a large system when
some adversaries are honest-but-curious and others are malicious? Can the combination of two ideal
functionalities leak more data than the designer intended?

Recent work by myself and others [1, 8, 9] uses trust relationships to characterize certain a�acks,
defenses, and adversarial models traditionally de�ned operationally. In each case, the change of view
clari�es how defenses and adversaries may behave as components inside larger systems with more varied
trust assumptions. Similarly, ideas like IFC speci�cations could elucidate how ideal functionalities compose,
by tracking what an a�acker can in�uence and what data can leak.
Computational Model of IFC. Real microservice-based applications execute in parallel and rely on
cryptography for security, requiring probabilistic analysis that provides security against computationally
bounded a�ackers. Unfortunately, most IFC systems prove security in a much simpler model with deter-
ministic languages and sequential execution. �is discrepancy makes it di�cult to know what guarantees
existing IFC analyses can provide to real systems.

�ere is very li�le work into how to express security conditions more complicated than noninterference
in a probabilistic se�ing, and it is not clear how IFC’s critical composition guarantees transfer from the
deterministic se�ing to the probabilistic one. Bridging this gap will allow solutions like my IFC-based
reentrancy protection to prove the security of, e.g., interacting JavaScript modules relying on cryptography.

Achieving provable compositional security is crucial for securing smart contract ecosystems, large
microservice-based systems, and other applications formed by composing modules with complex trust
relationships. My work tackles this challenge from multiple angles. I combine techniques from di�erent
disciplines to provide new viewpoints on pressing security problems, and actively collaborate with colleagues
in other areas to further broaden my perspectives and understand the security implications of other work.

References
[1] C. Acay, R. Recto, J. Gancher, A. C. Myers, and E. Shi. Viaduct: An extensible, optimizing compiler for secure

distributed programs. In 42nd ACM SIGPLAN Conference on Programming Language Design and Implementation

3

(PLDI ’21), June 2021. doi: 10.1145/3453483.3454074.
[2] O. Arden, J. Liu, and A. C. Myers. Flow-limited authorization. In 28th IEEE Computer Security Foundations

Symposium (CSF ’15), July 2015. doi: 10.1109/CSF.2015.42.
[3] J. Camenisch, S. Krenn, R. Küsters, and D. Rausch. iUC: Flexible universal composability made simple. In 25th

International Conference on �e �eory and Application of Cryptology and Information Security (AsiaCrypt ’19),
Dec. 2019. doi: 10.1007/978-3-030-34618-8 7.

[4] R. Cane�i. Universally composable security: a new paradigm for cryptographic protocols. In 42nd IEEE Symposium
on Foundations of Computer Science (FOCS ’01), Oct. 2001. doi: 10.1109/SFCS.2001.959888.

[5] E. Cecchetti, A. C. Myers, and O. Arden. Nonmalleable information �ow control. In 24th ACM Conference on
Computer and Communication Security (CCS ’17), Oct. 2017. doi: 10.1145/3133956.3134054.

[6] E. Cecchetti, F. Zhang, Y. Ji, A. Kosba, A. Juels, and E. Shi. Solidus: Con�dential distributed ledger transactions
via PVORM. In 24th ACM Conference on Computer and Communication Security (CCS ’17), Oct. 2017. doi:
10.1145/3133956.3134010.

[7] E. Cecchetti, B. Fisch, I. Miers, and A. Juels. PIEs: Public incompressible encodings for decentralized storage. In
26th ACMConference on Computer and Communication Security (CCS ’19), Nov. 2019. doi: 10.1145/3319535.3354231.

[8] E. Cecchetti, S. Yao, H. Ni, and A. C. Myers. Securing smart contracts with information �ow. In 3rd International
Symposium on Foundations and Applications of Blockchain (FAB ’20), May 2020. URL https://ethan.umiacs.
io/papers/ifc-contracts-fab20.pdf.

[9] E. Cecchetti, S. Yao, H. Ni, and A. C. Myers. Compositional security for reentrant applications. In 42nd IEEE
Symposium on Security and Privacy (Oakland ’21), May 2021. doi: 10.1109/SP40001.2021.00084.

[10] M. Coblenz, R. Oei, T. Etzel, P. Koronkevich, M. Baker, Y. Bloem, B. A. Myers, J. Sunshine, and J. Aldrich. Obsidian:
Typestate and assets for safer blockchain programming. ACM Transactions on Programming Languages and
Systems (TOPLAS), 42(3), Nov. 2020. doi: 10.1145/3417516.

[11] N. Crooks, M. Burke, E. Cecchetti, S. Harel, R. Agarwal, and L. Alvisi. Obladi: Oblivious serializable transactions
in the cloud. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’18), Oct. 2018.
URL https://www.usenix.org/system/files/osdi18-crooks.pdf.

[12] A. Das, S. Balzer, J. Ho�mann, F. Pfenning, and I. Santurkar. Resource-aware session types for digital contracts.
In 34th IEEE Computer Security Foundations Symposium (CSF ’21), June 2021. doi: 10.1109/CSF51468.2021.00004.

[13] D. Garg and F. Pfenning. Non-interference in constructive authorization logic. In 19th IEEE Computer Security
Foundations Workshop (CSFW ’06), July 2006. doi: 10.1109/CSFW.2006.18.

[14] A. K. Hirsch, P. H. A. de Amorim, E. Cecchetti, R. Tate, and O. Arden. First-order logic for �ow-limited
authorization. In 33rd IEEE Computer Security Foundations Symposium (CSF ’20), June 2020. doi: 10.1109/csf49147.
2020.00017.

[15] P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In 32nd ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL ’05), Jan. 2005. doi: 10.1145/1040305.1040319.

[16] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor. Making smart contracts smarter. In 23rd ACM Conference
on Computer and Communication Security (CCS ’16), Oct. 2016. doi: 10.1145/2976749.2978309.

[17] H. Mantel and D. Sands. Controlled declassi�cation based on intransitive noninterference. In 2nd Asian
Symposium on Programming Languages and Systems (APLAS ’04), Nov. 2004. doi: 10.1007/978-3-540-30477-7 9.

[18] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassi�cation and quali�ed robustness. Journal
of Computer Security (JCS), 14(2):157–196, 2006. doi: 10.3233/JCS-2006-14203.

[19] A. Sabelfeld and A. C. Myers. A model for delimited information release. In International Symposium on So�ware
Security, Nov. 2003. doi: 10.1007/978-3-540-37621-7 9.

[20] D. Wikström. Simpli�ed universal composability framework. In 13th IACR �eory of Cryptography Conference
(TCC ’16), Jan. 2016. doi: 10.1007/978-3-662-49096-9 24.

[21] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi. Town Crier: An authenticated data feed for smart
contracts. In 23rd ACM Conference on Computer and Communication Security (CCS ’16), Oct. 2016. doi: 10.1145/
2976749.2978326.

4

https://ethan.umiacs.io/papers/ifc-contracts-fab20.pdf
https://ethan.umiacs.io/papers/ifc-contracts-fab20.pdf
https://www.usenix.org/system/files/osdi18-crooks.pdf

