
Comp Sci 704
Fall 2024 Ethan CecchettiLecture 2:

Preliminaries and Semantics

What is the meaning of a program? When we write a program, we represent it using sequences of characters.
But these strings are just concrete syntax—they do not tell us what the program actually means. It is tempting
to define meaning by executing programs—either using an interpreter or a compiler. But interpreters and
compilers often have bugs! We could look in a specification manual. But such manuals typically only offer an
informal description of language constructs.

A better way to define meaning is to develop a formal, mathematical definition of the semantics of the
language. This approach is unambiguous, concise, and, most importantly, it makes it possible to analyze the
possible behaviors of programs, even totally bizarre ones, and develop rigorous proofs about properties of
interest.

To get from concrete syntax to a formal mathematical definition, we need to recognize that programs are
more than just lists of instructions. They are also mathematical objects. A programming language is a logical
formalism, just like first-order logic. Such formalisms typically consist of

• Syntax: a strict set of rules telling how to distinguish well-formed expressions from arbitrary sequences
of symbols; and

• Semantics: a way of interpreting the well-formed expressions. The word “semantics” is a synonym for
“meaning” or “interpretation.” Although ostensibly plural, it customarily takes a singular verb. Semantics
may include a notion of deduction or computation, which determines how the system performs work.

We talked in the last lecture about various different kinds of semantics—static vs dynamic and operational
vs denotational vs axiomatic. We will cover each and the trade-offs between them later in the course.

1 Arithmetic Expressions

To understand some of the key concepts of semantics, consider a very simple language of integer arithmetic
expressions with variable assignment. A program in this language is an expression; executing a program
means evaluating the expression to an integer. To describe the syntactic structure of this language we will use
variables that range over the following domains:

G, H, I ∈ Var
<, = ∈ Int

4 ∈ Exp

Var is a set of program variables (e.g., foo or i), Int is the set of integers, and Exp is the domain of
expressions specified using a Backus–Naur Form (BNF) grammar:

4 F G

| =

| 41 + 42
| 41 ∗ 42
| G B 41 ; 42

Informally, G B 41 ; 42 means that the program should evaluate 41, assign the value to G, then evaluate 42 and
return the result.

1

This grammar specifies the syntax for the language. An immediate problem here is that the grammar is
ambiguous. Consider the expression 1 + 2 ∗ 3. One can build two abstract syntax trees:

+

1 ∗

2 3

∗

+

1 2

3

There are several ways to deal with this problem. One is to rewrite the grammar for the same language
to make it unambiguous. But that makes the grammar more complex and harder to understand. Another
possibility is to extend the syntax to require parentheses around all addition and multiplication expressions.
That also leads to unnecessary clutter and complexity.

Instead we separate the “concrete syntax” of the language (which specifies how to parse a string into
program phrases) from the “abstract syntax” (which describes, possibly ambiguously, the structure of program
phrases). In this course we will assume that the abstract syntax tree is known. When writing expressions, we
will occasionally use parenthesis to indicate the structure of the abstract syntax tree, but the parentheses are
not part of the language itself. For instance, we may wish to write “(1 + 2) ∗ 3” to indicate the second abstract
syntax tree above.

2 Binary Relations and Functions

To define languages precisely, we will make heavy use of some foundational mathematical objects: binary
relations and functions.

2.1 Binary Relations

A binary relation ' is some way of connecting elements of two (not-necessarily-distinct) domains � and �.
The Cartesian product (or cross product) �× � is the set of all ordered pairs (0, 1) where 0 ∈ � and 1 ∈ �. A
binary relation on �× � is simply a subset ' ⊆ �× �. We sometimes say “0 is related to 1” when (0, 1) ∈ ',
sometimes denoted 0 ' 1.

For a few examples, the smallest binary relation is the empty relation ∅ consisting of no pairs, and the
largest binary relation on � × � is � × � itself. The identity relation on � is {(0, 0) | 0 ∈ �} ⊆ � × �, which
relates every element 0 to itself, and nothing else.

And important operation on binary relations is relational composition

' ; (= {(0, 2) | ∃1. (0, 1) ∈ ' and (1, 2) ∈ (}

2.2 Functions

A (total) function (or map) is a binary relation 5 ⊆ � × � in which every element of � is associated with
exactly one element of �. If 5 is such a function, we write

5 : � → �.

In other words, 5 : � → � is a binary relation 5 ⊆ � × � such that, for every element 0 ∈ �, there is exactly
one pair (0, 1) ∈ 5 with first component 0. Note that they may be any number of pairs (including zero) with
any given 1.

2

The set � is called the domain of 5 , while � is the codomain (or range). The image of 5 is the set of
elements in � that come from at least one element of � under 5 .

5 (�) , {1 ∈ � | 5 (0) = 1 for some 0 ∈ �}
= { 5 (0) | 0 ∈ �}

The notation 5 (�) is standard, albeit somewhat of an abuse.
Function composition is the operator that means we should apply one function and then aother. If

5 : � → � and 6 : � → � are functions, then 6 ◦ 5 : � → � is the function

(6 ◦ 5) (G) , 6(5 (G)).

Viewing functions as a special case of binary relations, functional composition is the same as relational
composition, but the order is reversed in the notation: 6 ◦ 5 = 5 ; 6.

A partial function 5 : � ⇀ � (note the shape of the arrow) is a function 5 : �′ → � defined on some
subset �′ ⊆ �. The notation dom(5) refers to �′, the domain of 5 . If 5 : � → � is total, then dom(5) = �.

A function 5 : � → � is said to be injective (or one-to-one) if 0 ≠ 1 implies 5 (0) ≠ 5 (1). That is, for
any 1 ∈ �, there is at most one 0 ∈ � that 5 maps 1. The function is surjective (or onto) if for every 1 ∈ �,
there is some 0 ∈ � such that 5 (0) = 1—that is, 5 (�) = �. That is, for any 1 ∈ �, there is at least one 0 ∈ �

that 5 maps 1. A function that is both injective and surjective—there is exactly one 0 ∈ � that maps to each
1 ∈ �—is said to be bijective.

Representations of Functions. Mathematically, a function is equal to its extension, which is the set of all its
(input, output) pairs. One way to describe a function is to describe its extension directly, usually by specifying
some mathematical relationship between the inputs and outputs. This is called an extensional representation.
Another way is to give an intensional¹ representation, which is essentially a program or evaluation procedure
to compute the output corresponding to a given input. The main differences are

• there can be more than one intensional representation of the same function, but there is only one
extension;

• intensional representations typically give a method for computing the output from a given input, whereas
extensional representations need not concern themselves with computation (and seldom do).

A central issue in semantics—and a good part of this course—is concerned with how to go from an intensional
representation to a corresponding extensional representation.

3 Semantics

We will use the basic structures of relations and functions to define the semantics of a programming language.
Consider the language of arithmetic expressions in Section 1. We could define a function, lets call

it eval, that takes an expression and produces the number it evaluates to. So eval(3 + (4 ∗ 2)) = 11 and
eval(8 B 6 + 1 ; 2 ∗ 3 ∗ 8) = 42. Here eval is a form of denotational semantics for our language. But this still
leaves some questions unanswered. For instance, what is eval(G + 2)? Does it matter what came before it?
How about what comes after it?

Alternatively, we could define a relation that defines how an expression evaluates. This will define an
operational semantics. For instance, 4 ∗ 2 could “step to” 8, which we would write as

4 ∗ 2 −→ 8.
¹Note the spelling; intensional and intentional are not the same!

3

Here −→ ⊆ Exp × Exp is a binary relation. If the semantics are entirely deterministic—as they hopefully are
here—it may be a (partial) function, but that is not required.

This suggestion raises a couple of questions. First, we need to handle sub-expressions stepping. We would
probably want to allow 3 + (4 ∗ 2) −→ 3 + 8, for example. Variables are also a concern. We could easily say

(8 = 6 + 1 ; 2 ∗ 3 ∗ 8) −→ (8 = 7 ; 2 ∗ 3 ∗ 8),

but then what does this step to? There are a few options, including substituting a value in for 8 in the rest of
the expression and changing −→ to relate not only expressions, but pairs of expressions and stores that track
the values of variables.

We may also want to specify certain properties about a program. For instance, we may want to prove that
41 + 42 is even whenever both 41 and 42 are even (or when both are odd), and that 41 ∗ 42 is even whenever
either 41 or 42 is even. We could do that by stating properties about the even-ness of programs and how they
combine. This idea leads us to axiomatic semantics and will define the program as a relation between things
that are true before and after executing it.

We will see how to do all of the above later in the semester. But first, we need to understand the basic
math of how we can formally build up and manipulate those definitions. We will primarily use induction,
which we will talk about in the next couple of lectures.

4

	Arithmetic Expressions
	Binary Relations and Functions
	Binary Relations
	Functions

	Semantics

