
Comp Sci 704
Fall 2024 Ethan CecchettiLectures 3 and 4:

Inductive Definitions and Operational Semantics

Perhaps the single most important proof technique in the theory of programming languages is mathematical
induction. Today we’ll look at how to define the semantics of Arith, how we need induction to do that, and
how we can use induction to prove theorems about it.

1 Operational Semantics

Last time we saw a simple arithmetic language Arith. Recall the syntax for Arith.

4 F G | = | 41 + 42 | 41 ∗ 42 | G B 41 ; 42

We have an intuitive notion of what expressions mean. For example, 3 + (4 ∗ 2) evaluates to 11, and
8 B 6 + 1 ; 2 ∗ 3 ∗ 8 evaluates to 42. We will now make this intuition precise.

An operational semantics describes how a program executes as an abstract machine. A small-step
operational semantics describes how such an execution proceeds in terms of successive reductions of terms
in the language—here expressions—until we eventually reach a value that is the result of the computation.
The state of an abstract machine is often called a configuration. To handle variables, our configurations will
include two parts.

• The expression to evaluate.
• a store (also known as an environment, state, or valuation), which maps variables to integers. Note that
not all variables need to be mapped at a given them. The store is often denoted by f.

More formally,
Store , Var ⇀ Int

Config , Exp × Store

We will denote configurations using angle brackets. For instance, 〈(G +2) ∗ (H +3), f〉 is the configuration
where (G + 2) ∗ (H + 3) is the expression and f is the store. The small step operational semantics for our
language is then a binary relation −→ ⊆ Config × Config. We will use infix notation for this relation, so if
(〈41, f1〉, 〈42, f2〉) ∈ −→, we will write 〈41, f1〉 −→ 〈42, f2〉.

We define the small step operational semantics compactly using a set inference rules.

Var
f(G) = =

〈G, f〉 −→ 〈=, f〉

Add
< = =1 + =2

〈=1 + =2, f〉 −→ 〈<, f〉
LAdd

〈41, f〉 −→ 〈4′1, f
′〉

〈41 + 42, f〉 −→ 〈4′1 + 42, f
′〉

RAdd
〈42, f〉 −→ 〈4′2, f

′〉
〈= + 42, f〉 −→ 〈= + 4′2, f

′〉

Mul
< = =1 × =2

〈=1 ∗ =2, f〉 −→ 〈<, f〉
LMul

〈41, f〉 −→ 〈4′1, f
′〉

〈41 ∗ 42, f〉 −→ 〈4′1 ∗ 42, f
′〉

RMul
〈42, f〉 −→ 〈4′2, f

′〉
〈= ∗ 42, f〉 −→ 〈= ∗ 4′2, f

′〉

Asgn1
〈41, f〉 −→ 〈4′1, f

′〉
〈G B 41 ; 42, f〉 −→ 〈G B 4′1 ; 42, f

′〉
Asgn2

〈G B = ; 42, f〉 −→ 〈42, f[G ↦→ =]〉

The meaning of an inference rule is that if the facts above the line holds, then the fact below the line holds.
The fact above the line are called premises; the fact below the line is called the conclusion. The rules without
premises are axioms; and the rules with premises are inductive rules.

1

The notation f[G ↦→ =] denotes the (partial) function that behaves exactly like f except on G, where it
returns =. It doesn’t matter if f is defined on G or not. If f(G) was previously defined, it is replaced, and if it
was previously undefined, it is added. That is, 5 = f[G ↦→ =] if

5 (H) =
{
= if H = G

f(H) otherwise

2 Inductive Definitions

The semantics described above appears to reference itself. Is that allowed? The short answer is “yes,” but we
need to unpack exactly what this inductive definition means.

An inductively-defined set � is one that is described using a finite collection of axioms and inductive
(inference) rules. Axioms of the form

0 ∈ �

indicate that 0 is in the set �. Inductive rules

01 ∈ � · · · 0= ∈ �

0 ∈ �

indicate that if 01, . . . , 0= are all elements of �, then 0 is also an element of �.
Rather than providing an immediate definition, these inference rules lay out a set of requirements that �

must satisfy. Loosely speaking, we can prove that some value 0 is in the set � if we can do so using any finite
number of applications of these rules. The finite requirement means we must “bottom out” at an axiom (rather
than an inductive rule) eventually. Then � is the set of elements that we can prove are in � in this manner.

Viewing the −→ binary relation on two configurations as a subset of Config × Config, that is how the
definition above works.

Formally defining that set is beyond the scope of this lecture.
Here are some other examples of inductive sets

Example 1. The natural numbers N can be defined as an inductive set from the rules

0 ∈ N
= ∈ N

succ(=) ∈ N

Example 2. The syntax of Arith using the following set of inference rules.

G ∈ Exp = ∈ Exp

41 ∈ Exp 42 ∈ Exp
41 + 42 ∈ Exp

41 ∈ Exp 42 ∈ Exp
41 ∗ 42 ∈ Exp

41 ∈ Exp 42 ∈ Exp
G B 41 ; 42 ∈ Exp

These axioms describe the same set of expressions as the BNF grammar in Section 1.

Example 3. The multi-step relation −→∗—taking zero or more steps—can be inductively defined.

〈4, f〉 −→∗ 〈4, f〉
〈4, f〉 −→ 〈4′, f′〉 〈4′, f′〉 −→∗ 〈4′′, f′′〉

〈4, f〉 −→∗ 〈4′′, f′′〉

2

3 Inductive Proofs

We can prove facts about elements of an inductive set using an inductive reasoning that follows the structure
of the set definition.

3.1 Mathematical Induction

The principle of mathematical induction is usually described over natural numbers. In such proofs, to prove
that some proposition % holds for all natural numbers =, we prove that %(0) holds and whenever %(=) holds
then %(= + 1) also holds. The principle of induction says that those two are enough to prove that ∀= ∈ N. %(=).
More formally,

%(0) and (∀< ∈ N. %(<) =⇒ %(< + 1)) =⇒ ∀= ∈ N. %(=).

The proposition %(0) is the basis of the induction (also called the base case) while %(<) =⇒ %(< + 1) is
called induction step (or the inductive case). While proving the induction step, the assumption that %(<)
holds is called the induction hypothesis.

3.2 Structural Induction

A generalized version of mathematical induction is structural induction, which allows us to prove properties
of inductively-defined sets. If we want to prove that some predicate % holds for all ements of an inductively-
defined set �—that is, ∀0 ∈ �. %(0)—we can do it by following the structure of the inductive definition.
Specifically, for each rule, we must show that % holds for the conclusion whenever it holds for each of the
inductive premises. The axioms serve as the bases cases for this induction, as they have no inductive premises.
That is:

1. Base Case: For each axiom

0 ∈ �

show that %(0) holds.

2. Inductive Case: For each inductive rule

01 ∈ � · · · 0= ∈ �

0 ∈ �

show that, if %(01), . . . , %(0=), then %(0).

If we view the natural numbers as an inductive set, as in Example 1, we see that mathematical induction
is actually a special case of a more general property called structural induction. The only axiom is 0∈N , so we
must show %(0). The only inductive rule is =∈N

succ(=) ∈N , so we must show that %(=) =⇒ %(succ(=)) = %(= + 1)
for any = ∈ N. Those two are then sufficient to show that ∀= ∈ N. %(=). We have recovered the principle of
mathematical induction stated above.

4 Using Induction to Prove Program Properties

We can use the same structure to prove properties about programs in Arith. We may wish, for instance, to
prove that every Arith expression produces an integer. We could phrase that as the following soundness
theorem.

3

Theorem 1 (Soundness). Evaluation of expressions yields an integer.

∀4 ∈ Exp.∀f ∈ Store. ∃= ∈ Int. ∃f′ ∈ Store. 〈4, f〉 −→∗ 〈=, f′〉

Unfortunately, this theorem is false. Consider 4 = G + H and f = ∅. This program cannot step at all with
this store, but it is not an integer. The problem here is free variables. There are variables in 4 that have no
explicit assignment, nor do they have values in f.

To get a bound on what variables we have to worry about, we can compute the free variables of 4 as
follows.

FV(=) = ∅
FV(G) = {G}

FV(41 + 42) = FV(41) ∪ FV(42)
FV(41 ∗ 42) = FV(41) ∪ FV(42)

FV(G B 41 ; 42) = FV(41) ∪ (FV(42) − {G})

Note that this definition of FV(4) is also self-referential! We can this of FV(4) as an inductive set. We could
also think of FV(4) as a recursive procedure that computes a set by recursion on Exp. These two views are
deeply linked to each other. Induction is the means we use to construct inductive data, and recursion is what
we use to examine and compute on it!

This set is sufficient to get us something useful. In particular, we can use it to formulate two properties
that are useful for proving the soundness theorem above.

Theorem 2 (Progress). For any expression 4 and store f, if the free variables of 4 are all contained in f,
then either 4 is already an integer or 〈4, f〉 can take a step.

∀4 ∈ Exp.∀f ∈ Store. FV(4) ⊆ dom(f) =⇒ 4 ∈ Int or ∃4′ ∈ Exp. ∃f′ ∈ Store. 〈4, f〉 −→ 〈4′, f′〉

Theorem 3 (Preservation). Evaluation preserves containment of free variables in the domain of the store,

∀4, 4′ ∈ Exp.∀f, f′ ∈ Store. FV(4) ⊆ dom(f) and 〈4, f〉 −→ 〈4′, f′〉 =⇒ FV(4′) ⊆ dom(f′)

As an example, we will now prove Progress (Theorem 2) by induction on 4.

Proof of Theorem 2. Let 4 be an expression. We will prove by structural induction on 4 that

∀f ∈ Store. FV(4) ⊆ dom(f) =⇒ 4 ∈ Int or ∃4′ ∈ Exp. ∃f′ ∈ Store. 〈4, f〉 −→ 〈4′, f′〉

Case 4 = =: Immediately 4 ∈ Int.

Case 4 = G: Here FV(4) = FV(G) = {G}. Therefore, by the fact that FV(4) ⊆ dom(f), G ∈ dom(f) and
thus f(G) = < for some <. Var Therefore applies to show that 〈4, f〉 −→ 〈<, f〉.

Case 4 = 41 + 42: The principle of induction allows us to assume that the result holds for both 41 and 42,
giving us two inductive hypotheses. By definition, FV(4) = FV(41) ∪ FV(42), so therefore if f, then
FV(41), FV(42) ⊆ dom(f) as well. We now know by application of the first inductive hypothesis that
either 41 ∈ Int or 41 steps. We do a sub-case analysis on these two options.
If 41 steps, that is ∃4′1, f

′ such that 〈41, f〉 −→ 〈4′1, f
′〉, then rule LAdd applies and 〈4, f〉 −→

〈4′1 + 42, f
′〉.

If 41 ∈ Int, then we apply the second inductive hypothesis to show that either 42 ∈ Int or 42 steps. If
42 ∈ Int, then rule Add applies and there is some < such that < = 41 + 42 and 〈4, f〉 −→ 〈<, f〉. If
42 steps, that is ∃4′2, f

′ such that 〈42, f〉 −→ 〈4′2, f
′〉, then rule RAdd applies.

4

Case 4 = 41 ∗ 42: This case is identical to the previous case, but using Mul, LMul, and RMul instead of
the addition rules.

Case 4 = (G B 41 ; 42): As in the previous two cases, there are two inductive hypotheses, one for 41 and one
for 42. We again know that FV(41) ⊆ dom(f) by the same argument as before and again apply the first
inductive hypothesis.
If 41 ∈ Int, then Asgn2 applies and 〈4, f〉 −→ 〈42, f[G ↦→ 41]〉. If there exist 4′1, f

′ such that
〈41, f〉 −→ 〈4′1, f

′〉, then Asgn1 applies, and 〈4, f〉 −→ 〈G B 4′1 ; 42, f
′〉.

This completes all cases for 4, so the principle of induction tells us that the theorem holds.

5

	Operational Semantics
	Inductive Definitions
	Inductive Proofs
	Mathematical Induction
	Structural Induction

	Using Induction to Prove Program Properties

