
Comp Sci 704
Fall 2024 Ethan CecchettiLecture 7:

Big-Step Semantics

As an alternative to small-step structural operational semantics, which specifies the operation of the program
one step at a time, we now consider big-step operational semantics (or large-step), in which we specify the
entire transition from a configuration (an 〈expression, store〉 pair) to a final value in one “big step.” As with
the small-step semantics, a big-step semantics for Imp must include rules for all three types of expressions—
arithmetic, boolean, and commands. For arithmetic expressions, the final value is an integer = ∈ Z; for boolean
expressions, it is a boolean truth value 1 ∈ 2 = {true, false}; and for commands, it is a store f : Var → Z.
We usually represent big-step semantics using a double down arrow ⇓, so

⇓0 ⊆ (AExp × Store) × Z
⇓1 ⊆ (BExp × Store) × 2

⇓2 ⊆ (Com × Store) × Store

Intuitively, these three relations have the following meanings.

• 〈0, f〉 ⇓0 = means that evaluating expression 0 in context f produces integer = ∈ Z.
• 〈1, f〉 ⇓1 C means that evaluating expression 1 in context f produces boolean C ∈ 2.
• 〈2, f〉 ⇓2 f′ means that command 2 terminates when evaluated in environment f, and f′ is the final

environment after 2 is finished executing.

Unlike in our small-step semantics, where integers, booleans, and skip were unable to step, here arithmetic
and boolean expressions will always produce a result, meaning ⇓0 and ⇓1 are actually total functions. However,
⇓2 remains partial, this time because commands may not terminate.

1 Defining Big-Step Semantics

We will use the same Imp language as in the small-step operational semantics, which, as a reminder, has the
following BNF grammar.

AExp : 0 F = | G | 01 + 02 | 01 ∗ 02 | 01 − 02

BExp : 1 F true | false | 01 = 02 | 01 ≤ 02 | 11 ∧ 12 | 11 ∨ 12 | ¬1
Com : 2 F skip | G B 0 | 21 ; 22 | if 1 then 21 else 22 | while 1 do 2

1.1 Arithmetic and Boolean Expressions

For the arithmetic expressions, the semantics take the following form.

[B-Const]
〈=, f〉 ⇓0 =

[B-Var]
〈G, f〉 ⇓0 f(G)

[B-Op]

〈01, f〉 ⇓0 =1 〈02, f〉 ⇓0 =2
⊗ ∈ {+, ∗,−} < = =1 ⊗ =2 (mathematically)

〈01 ⊗ 02, f〉 ⇓ <

The rules for boolean operators and comparisons are similar.
Note the difference here from small-step semantics. Instead of taking one step at a time and only invoking

mathematical operators when the arguments are already integers, we are now immediately evaluating both
sides of the operator to an integer and applying them immediately. These rules follow our intuition for the full
behavior of a whole program, not just for a single step in execution.

1

1.2 Commands

The big-step operational semantic rules for commands are as follows.

[B-Skip]
〈skip, f〉 ⇓2 f

[B-Assign]
〈0, f〉 ⇓0 =

〈G B 0, f〉 ⇓2 f[G ↦→ =]
[B-Seq]

〈21, f〉 ⇓2 f′ 〈22, f
′〉 ⇓2 f′′

〈21 ; 22, f〉 ⇓2 f′′

[B-IfT]
〈1, f〉 ⇓1 true 〈21, f〉 ⇓2 f′

〈if 1 then 21 else 22, f〉 ⇓2 f′ [B-IfF]
〈1, f〉 ⇓1 false 〈22, f〉 ⇓2 f′

〈if 1 then 21 else 22, f〉 ⇓2 f′

[B-WhileF]
〈1, f〉 ⇓1 false

〈while 1 do 2, f〉 ⇓2 f
[B-WhileT]

〈1, f〉 ⇓1 true 〈2, f〉 ⇓2 f′

〈while 1 do 2, f′〉 ⇓2 f′′

〈while 1 do 2, f〉 ⇓2 f′′

2 Big-Set vs Small-Step Semantics

The big-step semantics above and the small-step semantics from last time both describe the same language, so
we would expect them to agree. In particular, we would expect that if some configuration 〈2, f〉 evaluates to
〈skip, f′〉 in the small-step semantics, it should also evaluate to f′ in the big-step semantics, and vice versa.
Formally,

Theorem 1. For all commands 2 ∈ Com and stores f, f′ ∈ Store,

〈2, f〉 −→∗
2 〈skip, f′〉 ⇐⇒ 〈2, f〉 ⇓2 f′

Proof. We can express the idea that two semantics should agree on terminating executions by connecting the
−→∗ and ⇓ relations:

〈0, f〉 −→∗
0 = ⇐⇒ 〈0, f〉 ⇓0 = (1)

〈1, f〉 −→∗
1 C ⇐⇒ 〈1, f〉 ⇓1 C (2)

〈2, f〉 −→∗
2 〈skip, f′〉 ⇐⇒ 〈2, f〉 ⇓2 f′ (3)

Here C represents conversion between syntactic booleans in Imp and mathematical booleans in 2. That is,
true = true and false = false. We can prove (1) and (2) as lemmas separately and use them to prove (3).

To prove the forward implication of (3), we proceed by structural induction on 2, though the while
case requires a separate induction on the number of loop iterations. The converse requires induction on the
derivation of the big-step evaluation. We will show a few cases of that proof here.

Suppose we are given 〈2, f〉 ⇓2 f′. We aim to prove 〈2, f〉 −→∗
2 〈skip, f′〉. The derivation of the big-step

relation depends on the form of 2.

Case B-Skip (2 = skip): Here f′ = f, 〈skip, f〉 −→∗
2 〈skip, f〉, and 〈skip, f〉 ⇓2 f all immediately.

Case B-Assign (2 = G B 0): By the big-step rule B-Assign, 〈0, f〉 ⇓0 = and f′ = f[G ↦→ =]. By our
assumed lemma proving (1), 〈0, f〉 −→∗

0 =.
We now need a lemma that proves if 〈0, f〉 −→∗

0 =, then 〈G B 0, f〉 −→∗
2 〈G B =, f〉, which can

prove by induction on the number of −→0 steps. From there,

〈G B 0, f〉 −→∗
2 〈G B =, f〉 −→2 〈skip, f[G ↦→ =]〉,

which completes the case.

2

Case B-WhileF (2 = while 1 do 20 where 〈1, f〉 ⇓1 false): Then f′ = f. In the small-step operational
semantics,

〈while 1 do 20, f〉 −→2 〈if 1 then (20 ; while 1 do 20) else skip, f〉.
By the lemma proving (2), 〈1, f〉 −→∗

1
false, so by a similar lemma to in the previous case,

〈if 1 then (20 ; while 1 do 20) else skip, f〉 −→∗
2 〈if false then (20 ; while 1 do 20) else skip, f〉.

Putting that together with the existing facts and one more step at the end arrives at

〈2, f〉 = 〈while 1 do 20, f〉 −→2 〈if 1 then (20 ; while 1 do 20) else skip, f〉
−→∗

2 〈if false then (20 ; while 1 do 20) else skip, f〉
−→2 〈skip, f〉.

This completes the case.

Case B-WhileT (2 = while 1 do 20 where 〈1, f〉 ⇓1 true): This is the most interesting case in the entire
proof. For the small-step semantics, we have the same initial case as in the previous proof, and again the
condition on the if statement evaluates down, but this time to true, meaning the last step of the previous
case instead produces 〈20 ; while 1 do 20, f〉.
We need another lemma for stitching together small-step executions.

Lemma 1. For any 21, 22 ∈ Com and f, f′, f′′ ∈ Store,

〈21, f〉 −→∗
2 〈skip, f′〉 and 〈22, f

′〉 −→∗
2 〈skip, f′′〉 =⇒ 〈21 ; 22, f〉 −→∗

2 〈skip, f′′〉.

Proof of Lemma 1. By induction on the number of steps needed to prove 〈21, f〉 −→∗
2 〈skip, f′〉.

The premises of the B-WhileT rule include 〈20, f〉 ⇓2 f′ and 〈while 1 do 20, f
′〉 ⇓2 f′′. Because these

are both sub-derivations of the derivation 〈while 1 do 20, f〉 ⇓2 f′′ on which we are doing induction,
the inductive hypotheses immediately prove

〈20, f〉 −→∗
2 〈skip, f′〉 and 〈while 1 do 20, f

′〉 −→∗
2 〈skip, f′′〉.

Lemma 1 is then enough to show

〈20 ; while 1 do 20, f〉 −→∗
2 〈skip, f′′〉

which, in combination with the facts stated at the top of this case, completes the case.

Note that this proof relied on structural induction on the derivation of 〈2, f〉 ⇓2 f′, not induction on 2.
This choice was critical. The last case relied on an inductive hypothesis applied to a smaller derivation, but
the same command, meaning induction on 2 would not have been well-founded.

Also note that this theorem about the agreement between big-step and small-step semantics talks only
about the behavior of terminating programs. This omission of nonterminating programs is inherently necessary
because the big-step relation ⇓2 cannot talk directly about nontermination. Indeed, if 〈2, f〉 does not terminate,
there is no f′ such that 〈2, f〉 ⇓2 f′. Small-step semantics can model more complex features such as
nonterminating programs and concurrency. However, in many cases it involves unnecessary extra work.

If we do not care about modeling nonterminating computations, it can be easier to reason in terms
of big-step semantics. Moreover, big-step semantics more closely models an actual recursive interpreter.
However, because evaluation skips over intermediate steps, all programs without final configurations are
indistinguishable.

3

	Defining Big-Step Semantics
	Arithmetic and Boolean Expressions
	Commands

	Big-Set vs Small-Step Semantics

