
Comp Sci 704
Fall 2024 Ethan CecchettiLecture 8:

Denotational Semantics

We have now seen two operational models for programming languages: small-step and big-step. In this lecture,
we consider a different semantic model, called denotational semantics.

The idea of denotational semantics is to translate the program to a mathematical object that represents
what it computes. The objects are generally functions are relations with well-defined extensional meanings in
terms of sets. That is, we are taking the intensional representation of a computation that is a program in the
language, and we are giving it an extensional meaning as a mathematical function. The main challenge is
getting a precise understanding of the meaning of the sets over which these functions or relations operate.

1 Denotational Semantics for Imp

To define a denotational semantics for Imp, we are faced with the same situation as with an operational
semantics: there are three different categories of Imp terms (AExp, BExp, and Com), and we need a different
semantics for each. As a reminder, the BNF grammar for Imp is as follows.

AExp : 0 F = | G | 01 + 02 | 01 ∗ 02 | 01 − 02

BExp : 1 F true | false | 01 = 02 | 01 ≤ 02 | 11 ∧ 12 | 11 ∨ 12 | ¬1
Com : 2 F skip | G B 0 | 21 ; 22 | if 1 then 21 else 22 | while 1 do 2

For each category of term, we will define a separate denotational semantics that maps that term into a
mathematical function representing its meaning. Since the meaning of an Imp program is dependent on the
environment in which it is run (here the store), these functions will have the following types.

AÈ0É : Store → Z BÈ1É : Store → 2 CÈ2É : Store ⇀ Store

Note that, as with the big-step semantics, the denotational semantics for arithmetic and boolean expressions
both produce total functions, while the semantics for commands produces a partial function.

1.1 Arithmetic and Boolean Expressions

We can define the denotational semantics for arithmetic and boolean expressions by structural induction as
follows.

AÈ=Éf , = AÈGÉf , f(G) AÈ01 ⊗ 02Éf , AÈ01Éf ⊗ AÈ02Éf (where ⊗ ∈ {+, ∗,−})

BÈtrueÉf , true BÈfalseÉf , false BÈ¬1Éf ,

{
true if BÈ1Éf = false
false if BÈ1Éf = true

BÈ01 ∼ 02Éf , (AÈ01Éf) ∼ (AÈ02Éf) (where ∼ ∈ {=, ≤})

BÈ11 � 12Éf , (BÈ11Éf) � (BÈ11Éf) (where � ∈ {∧,∨})

Note that by a slight but convenient abuse, we are overloading the metasymbols in ⊗, ∼, and � for three
of the rules. The symbol on the left side represents the syntactic object in the Imp language, while the symbol
on the right side represents a semantic object, namely a mathematical operation on integers or booleans. We
could also streamline several of the boolean rules in a similar way. For instance, we could define BÈ¬1É by

BÈ¬1Éf , if (BÈ1Éf) then false else true = ¬(BÈ1Éf)

1

1.2 Commands

For a command 2, the function CÈ2É should take an initial state and produce the final state reached by applying
2. However, if the computation does not halt, there is no final state! This is why the function is partial. If
we want to make it total, we can add a special element ⊥ (called “bottom”) to the codomain that indicates
nontermination. For any set (, let (⊥ = (∪ {⊥}. This is called a pointed set.

Then we can regard CÈ2É as a total function CÈ2É : Store → Store⊥ where CÈ2Éf = f′ if 2 terminates
with final store f′ on input f, and CÈ2Éf = ⊥ if 2 diverges with initial store f.

Using that notation, we can define most of the rules recursively as follows.

CÈskipÉf , f

CÈG B 0Éf , f[G ↦→ AÈ0Éf]

CÈif 1 then 21 else 22Éf ,

{
CÈ21Éf if BÈ1Éf = true
CÈ22Éf if BÈ1Éf = false

= if BÈ1Éf then CÈ21Éf else CÈ22Éf

CÈ21 ; 22Éf ,

{
CÈ22É (CÈ21Éf) if CÈ21Éf ≠ ⊥
⊥ if CÈ21Éf = ⊥

= if CÈ21Éf = ⊥ then ⊥ else CÈ22É (CÈ21Éf)

For the last case involving sequential composition 21 ; 22, another way to achieve this effect is by defining a
lifting operator (·)† : (� → �⊥) → (�⊥ → �⊥) on functions that maps ⊥ to bot and otherwise applies the
original function. That is,

5 †(G) , if G = ⊥ then ⊥ else 5 (G).
This notation allows us to simplify the definition of CÈ21 ; 22Éf , CÈ22É† (CÈ21Éf). Or, equivalently,

CÈ21 ; 22É , CÈ22É† ◦ CÈ21É

where 5 ◦ 6 is standard function composition.
We have one command left: while 1 do 2. Recalling the small-step operational semantics from before, this

is semantically equivalent to if 1 then (2 ; while 1 do 2) else skip, so we might hope the definition would be

CÈwhile 1 do 2Éf = if BÈ1Éf then CÈ2 ; while 1 do 2Éf else f

= if BÈ1Éf then CÈwhile 1 do 2É†(CÈ2Éf) else f.
(1)

Unfortunately, this definition is circular. It isn’t merely recursive—defining the semantics of a command with
respect to its subterms—it attempts to define the semantics of CÈwhile 1 do 2É in terms of CÈwhile 1 do 2É,
which is not valid. The big-step semantics in the previous lecture did not suffer from this problem because it
was an inductively-defined relation, and we relied on the well-founded nature of the derivation trees. Here we
are trying to define a function, so we need another way to solve the circularity.

If we take (1) as an equation, rather than a definition, however, then what this says is we need to find a
function, such that, for every store f,

, f = if BÈ1Éf then ,†(CÈ2Éf) else f. (2)

To find such a function, let us define a function F : (Store → Store⊥) → (Store → Store⊥) that loosely
represents “one iteration” of the loop:

F F f , if BÈ1Éf then F†(CÈ2Éf) else f

2

Now we can simply say that we need to find a, such that F , = , . That is, we are looking for a fixed point
of F . By how do we take a fixed point of F ? The solution is to think of a while statement as the limit of a
sequence of approximations. Intuitively, by running through the loop more and more times, we get better and
better approximations.

The first, and least accurate, approximations is the totally undefined function:

,0 f , ⊥.

This function gives the right answer for nonterminating programs, but is wrong for every terminating program.
The next approximation will be to apply F and “run the loop” once. That is,

,1 , F ,0

= if BÈ1Éf then ,
†
0 (CÈ2Éf) else f

= if BÈ1Éf then ⊥ else f.

This improved approximation gives the correct answer both for nonterminating programs and for while loops
where the condition is immediately false, so the body of the loop never runs. That is, loops where the guard is
evaluated only once. We appear to be getting closer! By applying F again, we can get closer.

,2 , F ,1 = if BÈ1Éf then ,
†
1 (CÈ2Éf) else f

This approximation will also be correct for a program that evaluates the guard at most twice before terminating.
In general, we can define

,=+1 , F ,= = if BÈ1Éf then ,†
= (CÈ2Éf) else f

and know that,= will provide the correct answer for both nonterminating programs (it will return ⊥), and for
any loop that check the guard of the loop at most = times before terminating.

The denotation of the while loop is then the limit of this sequence. But how do we take limits on spaces of
functions? To do this, we need some structure on the functions. We will define an ordering v on the functions
such that,0 v ,1 v ,2 v · · · , and then find the least upper bound (or supremum) of this sequence. That
is, the smallest function,—according to our ordering—such that,8 v , for every 8 ≥ 0. That will be the
solution to equation (2).

To show that this least upper bound—and therefore a fixed point of F—exists, we need to apply something
called the Knaster–Tarski theorem, which we will not have time to cover. For the theorem to apply, we need
that the function space Store → Store⊥ has structure that makes it a chain-complete partial order (CPO) and
that F is a continuous map on that on this space—it preserves suprema.

To define the ordering v, we first define an ordering on the underlying pointed set of stores. The ordering
we use is known as the flat ordering on a pointed set (⊥. The flat ordering says ⊥ is less than everything
(∀B ∈ (.⊥ v B), but all other elements are independent (if B1 ≠ B2, then they are unrelated). We can extend
this to function point-wise. That is, for 5 , 6 : � → (⊥, we say 5 v 6 if, for all 3 ∈ �, 5 (3) v 6(3). This
ordering on the function space forms a CPO, and taking � and (to both be Store, we can see that,= v ,=+1
for all = ≥ 0. This notably requires that if,= (f) = f′ ≠ ⊥, then,<(f) = f′ for all < ≥ =. This ordering
property means the,=’s form a chain, so, =

⊔∞
==0 ,= gives the least fixed point of F .

Also note that

, (f) =
{
⊥ if ∀=.,= (f) = ⊥
f′ if ∃=.,= (f) = f′.

By the property above about the stability of,= (f), this is well-defined.

3

	Denotational Semantics for Imp
	Arithmetic and Boolean Expressions
	Commands

