
Comp Sci 704
Fall 2024 Ethan CecchettiLectures 9 and 10:

Axiomatic Semantics

So far we have covered operational semantics, which models computation happening on an abstract machine
and talks about how state changes from one step of execution to the next.We have also talked about denotational
semantics, which models computation as mathematical functions from inputs to outputs. In both of these
there is a well-defined notion of the state of the system, and we take great pains to say exactly what that state
is and how the program changes it.

In axiomatic semantics, on the other hand, we do not particularly care about what the states actually
are, we only care about properties that we can observe about the states and how the programs impact those
properties. This approach emphasizes the relationship between the properties of the input (preconditions) and
properties of the output (postconditions). It is useful for specifying what a program is supposed to do and talk
about a program’s correctness with respect to that specification.

1 Preconditions and Postconditions
The preconditions and postconditions of a program say what is true before and after the program executes,

respectively. Often the correctness of the program is specified in these terms. Typically this is expressed
as a contract: as long as the caller guarantees that the initial state satisfies some set of preconditions, then
the program will guarantee that the final state will satisfy some desired set of postconditions. Axiomatic
semantics attempts to say exactly what preconditions are necessary for ensuring a given set of postconditions.

1.1 An Example

Consider the following Imp program designed to compute G?:

H B 1 ;
8 B 0 ;
while (8 < ?) do {

H B H ∗ G ;
8 B 8 + 1

}

The desired postcondition would be H = G?. That is, the value of H in the final state of the program is precisely
the initial value of G raised to the power of the initial value of ?. One essential precondition we need is
? ≥ 0, because otherwise the program will halt immediately with H = 1 ≠ G?. Note that ? > 0 would also be
sufficient to guarantee the program halts with the correct output, but this is a stronger condition (is satisfied
by fewer states, has more logical consequences).

? > 0︸︷︷︸
stronger

=⇒ ? ≥ 0︸︷︷︸
weaker

The weaker precondition is better. It is less restrictive about the input states—in this case starting values
of ?—on which it ensures correctness. Typically, given a postcondition expressing a desired property of the
output state, we would like to know the weakest precondition that guarantees the program halts and satisfies
that postcondition upon termination.

1

1.2 Partial vs Total Correctness

There are two different notions of correctness, partial and total, that differ based on whether they allow
nontermination.

• Partial correctness requires that a program behave correctly whenever it terminates. This is what we
will be focusing on in this discussion.

• Total correctness requires that a program behave correctly and terminate. Total correctness is a much
stronger requirement.

2 Hoare Logic
Hoare logic is a common way of specifying and reasoning about relationships between pre- and postcon-

ditions. It is named for its inventor Sir Charles Antony Richard “Tony” Hoare (b. 1934), an early pioneer of
computer science who, among other things, also invented quicksort and has referred to “inventing” the null
reference as “my billion-dollar mistake.”

Hoare logic consists of Hoare triples of a precondition i, a program 2, and a postcondition k that form a
partial correctness assertion (PCA) and are usually written

{i} 2 {k}.

Informally, this triple means “if i holds before execution of 2 and 2 terminates, then k will hold upon
termination.”

To define these assertions, we need some sort of logical language in which to write the pre- and post-
conditions. A simple option could be simple boolean expressions in the language itself (so BExp in Imp),
or a general first-order logic. Given such an underlying logic and a language of programs, we can define a
semantic meaning of a Hoare triple in terms of some existing semantics for programs, and we can define a set
of proof rules for Hoare logic.

2.1 Hoare Logic for Imp

To build a logic of Hoare triples, we need a set of inference rules that tells us how to manipulate them. We
write ` {i} 2 {i} to indicate that we can prove the Hoare triple using these proof rules.

Let us consider the proof rules for Hoare logic over Imp commands. Recall the grammar for Imp commands:

2 F skip | G B 0 | 21 ; 22 | if 1 then 21 else 22 | while 1 do 2

The proof rules are:

[H-Skip]
` {i} skip {i}

[H-Assign]
` {i[G ↦→ 0]} G B 0 {i}

[H-Seq]
` {i} 21 {j} ` {j} 22 {k}

` {i} 21 ; 22 {k}
[H-If]

` {1 ∧ i} 21 {k} ` {¬1 ∧ i} 22 {k}
` {i} if 1 then 21 else 22 {k}

[H-While]
` {1 ∧ i} 2 {i}

` {i} while 1 do 2 {i ∧ ¬1}
[H-Weaken]

i ⇒ i′ ` {i′} 2 {k′} k′ ⇒ k

` {i} 2 {k}

There are a few interesting notes in these rules. H-Assign may at first appear to have the substitution on
the wrong side, but it does not. The rule says that, given a formula i, it initially holds when you replace every

2

instance of G with 0—and therefore the result does not reference G—then it will hold, even with G present,
after setting the value of G in memory to 0.

H-While is notable, as it refers to only i and 1, and no second formula k. Because we do not know
how many times the loop will run, we are left operating with (potentially complicated and conditional)
loop invariants. In this case, i serves as a loop invariant. Lastly, H-Weaken (sometimes called the “rule
of consequence”) appeals to logical implication in the underlying logic. We are allowed to strengthen the
precondition and weaken the postcondition arbitrarily, thus producing a weaker partial correctness statement.

2.2 Semantic Correctness

To define the semantic validity of a PCA, and therefore Hoare logic, we will use the notation � {i} 2 {k}. We
also use the notation f � i to mean that assertion i is true in state f. Notice the double line on the turnstyle,
which is often used for a semantic (or dynamic) proof, compared to the single line above, used for static proof.

These notations allow us to define semantic validity of a PCA in terms of any one of the semantics we
have already defined. For simplicity, we will use the denotational semantics from the previous lecture.

� {i} 2 {k} 4⇐⇒ ∀f. f � i =⇒ (CÈ2Éf) � k.

This definition makes sense for terminating executions, but we run into a slight hitch for nonterminating
ones. Recall that CÈ2Éf = ⊥ whenever 2 diverges with input state f. We could consider only cases where
CÈ2Éf ≠ ⊥, but that would be awkward to work with. Instead, we simply define ⊥ � k to hold for all k.¹
Among other things, that means a nonterminating program satisfies all postconditions, so � {i} 2 {false} if
and only if 2 always diverges on inputs that satisfy i—that is, f � i =⇒ CÈ2Éf = ⊥.

2.3 Soundness and Completeness

A deduction system defines what it means for a formula to be provable, whereas a semantics defines what
it means for a formula to be true. Given a logic with a semantics and a deduction system, two desirable
properties are soundness and completeness.

• Soundness: The deduction system is sound if every provable statement is true.
• Completeness: The deduction system is complete if every true statement is provable.

Note that both soundness and completeness are relative terms. A logic may be sound (or complete) with
respect to one semantics and not with respect to another.

Soundness is a basic property of a useful logical system. A logic with false theorems would not be very
useful! With respect to our three existing semantics for Imp, the Hoare logic present above is sound.

Theorem 1 (Soundness of Hoare Logic). For any conditions i and k and any program 2,

` {i} 2 {k} =⇒ � {i} 2 {k}.

Proof. This proof follows by structural induction on the derivation of ` {i} 2 {k} with careful use of the
denotational semantics CÈ·É. The details are left as an exercise.

Completeness, however, is more complicated. Hoare logic, as presented, is not complete in general. For
instance, consider the PCA {true} 2 {false}. This assertion is semantically valid if and only if 2 diverges on all
input states. A proof system that were sound and complete would thus provide a computable way of checking
if 2 diverges on all inputs—one standard formulation of the halting problem.

¹Note that this approach is only appropriate for partial correctness assertions. For total correctness we would want the opposite
requirement: that ⊥ 2 k for all k.

3

Hoare logic is, however, relatively complete, relative to the truth of the underlying logic. That is, if the
underlying logic is expressive enough, then given an oracle that can check the truth of statements in the
underlying logic, one can prove any true PCA using Hoare logic. This is a famous result due to Stephen
Cook (b. 1939), who also discovered NP-completeness. Although first-order logic is not expressive enough to
provide relative completeness over arbitrary domains of computation, it is expressive enough over N or Z.
As a result, Hoare logic is relatively complete for Imp programs over integers. The notion of “expressive
enough” for the underlying logic is that it must be always be able to express something called the weakest
liberal precondition that we discuss below. The following is the formal theorem statement.

Theorem 2 (Relative Completeness). Given a logical system ! that is sufficient to express WLP(2, k) for any
command 2 and predicate k, if all true statements in ! are taken to be axioms, then

� {i} 2 {k} =⇒ ` {i} 2 {k}.

3 Weakest Liberal Preconditions
Given a postcondition k and a program 2, one may wish to know: what precondition is required such

that k will always be satisfied after executing 2? This precondition is known as the weakest precondition (if
we demand that 2 terminate) or the weakest liberal precondition (if 2 is not required to terminate). That is,
given a command 2 and postcondition k, the weakest liberal precondition i, which we will write WLP(2, k),
is the logically weakest condition such that � {i} 2 {k} holds. Here “weakest” means that any other valid
precondition implies i, formally defined as follows.

Definition 1. We say a formula i is the weakest liberal precondition of 2 and k, denoted WLP(2, k) if

∀f ∈ Store. f � i ⇐⇒ (CÈ2Éf) � k.

Notice how this relates to partial correctness assertions in general. For any valid precondition i, it must
be the case that i is at least as strong as WLP(2, k). To see why, we unfold some definitions.

� {i} 2 {k} ⇐⇒ ∀f. f � i =⇒ (CÈ2Éf) � k

=⇒ ∀f. f � i =⇒ f � WLP(2, k).

This last implication corresponds precisely to i ⇒ WLP(2, k). Since WLP(2, k) is a valid precondition for 2
and k—that is, ∀2, k. � {WLP(2, k)} 2 {k}—we can combine it with modus ponens to show

∀2, i, k. � {i} 2 {k} ⇐⇒ (i ⇒ WLP(2, k)). (1)

3.1 Predicate Transformers

We may wish to compute WLP(2, k), and for Imp this is possible. The function that computes it, which we
will denote wlp(2, k), is what is known as a predicate transformer because it transforms one predicate into
another—in this case a postcondition into its weakest liberal precondition.

We can compute wlp(2, k) for most of Imp similarly to how we constructed the denotational semantics.

wlp(skip, k) , k

wlp(G B 0, k) , k [G ↦→ 0]
wlp(21 ; 22, k) , wlp(21,wlp(22, k))

wlp(if 1 then 21 else 22, k) , (1 ⇒ wlp(21, k)) ∧ (¬1 ⇒ wlp(22, k))

4

Again, while loops pose a challenge. We would like a condition that satisfies the following equation:

wlp(while 1 do 2, k) = (¬1 ⇒ k) ∧ (1 ⇒ wlp(2,wlp(while 1 do 2, k))).

As with the denotational semantics, this would not be a valid definition because it is circular. We can again
build up a condition using a sequence of approximations.

�0(k) = true
�8+1(k) = (¬1 ⇒ k) ∧ (1 ⇒ wlp(2, �8 (k)))

The limit of this sequence is the conjunction of all of the elements, so we can define

wlp(while 1 do 2, k) ,
∞∧
8=0

�8 (k).

It is possible to encode wlp(while 1 do 2, k) as an ordinary assertion. See Chapter 7 of “The Formal
Semantics of Programming Languages: An Introduction” by Glynn Winskel for details.

To check that this definition is correct, we need to prove that it yields a valid weakest liberal precondition.
That is, wlp(2, k) = WLP(2, k). The proof is left as an exercise.

3.2 Relative Completeness

This definition of the weakest liberal precondition fills out the definitions in the statement of relative com-
pleteness (Theorem 2), meaning the theorem statement is now well-defined. To prove it for Imp, we need one
more lemma.

Lemma 1. For any command 2 and predicate k,

` {wlp(2, k)} 2 {k}.

Proof. By induction on 2. Only the while case is interesting.
Let 2 = while 1 do 20 and i = wlp(while 1 do 20, k). By construction,

i = (¬1 ⇒ k) ∧ (1 ⇒ wlp(20, i)),

so therefore 1 ∧ i simplifies to wlp(20, i).
The inductive hypothesis immediately proves ` {wlp(20, i)} 2 {i}, which is, equivalently ` {1∧ i} 2 {i}.

The H-While rule then proves ` {i} 2 {i ∧ ¬1}. However, if we expand out this postcondition,

¬1 ∧ i = ¬1 ∧ (¬1 ⇒ k) ∧ (1 ⇒ wlp(20, i)) = k.

Therefore, ` {wlp(while 1 do 20, k)} while 1 do 20 {k}, completing the case.

This lemma coupled with equation (1) are sufficient to prove Theorem 2 for Imp.

Theorem 2 (Relative Completeness). Given a logical system ! that is sufficient to express wlp(2, k) for any
command 2 and predicate k, if all true statements in ! are taken to be axioms, then

� {i} 2 {k} =⇒ ` {i} 2 {k}.

Proof. Assume that � {i} 2 {k}. Given the predicate transformer above and the fact that wlp(2, k) is, in fact,
the weakest liberal precondition of 2 and k, equation (1) gives i ⇒ wlp(2, k). Applying this result and the
H-Weaken rule to the result of Lemma 1 immediately proves ` {i} 2 {k}.

5

4 Hoare Logic and Predicate Transformers as Semantics
To this point, we have defined Hoare logic and the wlp predicate transformer and proved their soundness

and relative completeness with respect to an existing denotational semantics. We could, however, take Hoare
logic or wlp to be the semantics for Imp.

If we did so, the description of how commands relate pre- and postconditions would become the definition
of the meaning of Imp. Other semantics, such as the denotational semantics we reference above or one of the
structured operational semantics discussed previously, could then be shown equivalent. Indeed, several of the
results we proved about the relationship between PCAs and stores satisfying predicates would become critical
parts of that proof.

6

	Preconditions and Postconditions
	An Example
	Partial vs Total Correctness

	Hoare Logic
	Hoare Logic for Imp
	Semantic Correctness
	Soundness and Completeness

	Weakest Liberal Preconditions
	Predicate Transformers
	Relative Completeness

	Hoare Logic and Predicate Transformers as Semantics

