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_-Calculus Encodings

Even though the pure _-calculus consists only of _-terms, we can represent and manipulate common data
objects like integers, booleans, lists, and trees. All these things can be encoded as _-terms. We will now see
how to encode several common datatypes. There are many reasonable encodings for numerous datatypes. We
will explore Church encodings, named for Alonzo Church who first proposed them.

1 Booleans

Booleans are the easiest to encode, so we start with them. We would like to define _-terms representing the
constants true and false, and standard logical operators including if-then-else, ∧ (and), ∨ (or), and ¬ (not) so
that all of the above behave in the expected way.

For true and false, we consider two-argument functions, where true returns the first argument and false
returns the second. That is,

true , _GH. G false , _GH. H.

To make use of these booleans, we need conditional statements. We would like if to take three arguments:
a condition 1 that is a boolean (true or false), and two arbitrary _-terms C and 5 . The function should return C

whenever 1 = true and 5 whenever 1 = false. In mathematical notation, that is

if = _1C5 .

{
C if 1 = true
5 if 1 = false

Now it becomes clear why we defined true and false as above. Since (true C 5 ) −→∗ C and (false C 5 ) −→∗ 5 ,
all if needs to do is apply its condition to the other two arguments:

if , _1C5 . 1 C 5

We can then define other boolean operators in terms of if.

and , _1112. if 11 12 false or , _1112. if 11 true 12 not , _1. if 1 false true

These operators work correctly when given boolean values as we have defined them, but all bets are off if
they are applied to any other _-term. There is no guarantee of any kind of reasonable behavior. Basically, with
the untyped _-calculus, it is garbage in, garbage out.

2 Natural Numbers

As with booleans, we will encode the natural numbers N as Church numerals. The Church numeral for = ∈ N,
which we denote =, is the _-term _ 5 G. 5 = G where 5 = = 5 ◦ · · · ◦ 5︸      ︷︷      ︸

=

is the =-fold composition of 5 with itself.

0 , _ 5 G. G

1 , _ 5 G. 5 G

2 , _ 5 G. 5 ( 5 G)
...

= , _ 5 G. 5 ( 5 ( · · · ( 5︸           ︷︷           ︸
=

G))) = _ 5 G. 5 = G
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Using this approach, we can define the successor function succ by

succ , _= 5 G. 5 (= 5 G).

That is, succ takes as input a Church numeral = and returns a function of two arguments, 5 and G, that uses =
to compute the =-fold composition of 5 applied to G and then applies 5 to the result. This function therefore
returns the (= + 1)-fold composition of 5 applied to G, precisely the definition of = + 1. That is,

succ = = (_= 5 G. 5 (= 5 G)) =
−→ _ 5 G. 5 (= 5 G)
−→ _ 5 G. 5 ( 5 = G)
= _ 5 G. 5 =+1 G

= = + 1.

We can also perform basic arithmetic with Chruch numerals. For addition, we might define

add , _<= 5 G. < 5 (= 5 G).

That is, apply the <-fold composition of 5 to the result of applying the =-fold composition of 5 to G, thereby
producing the (< + =)-fold composition of 5 applied to G. That is,

add < = = (_<= 5 G. < 5 (= 5 G)) < =

−→∗ _ 5 G. < 5 (= 5 G)
−→∗ _ 5 G. 5 < ( 5 = G)
= _ 5 G. 5 <+= G

= < + =.

Alternatively, Church numerals act on a function to apply that function repeatedly. Addition can be viewed
as repeated application of the successor function, so we could more succinctly define it by combining these
two facts:

add , _<=. < succ =.

We can similarly define multiplication as repeated addition and exponentiation as repeated multiplication.

mult , _<=. < (add =) 0 exp , _<=. < (mult =) 1

Other useful arithmetic operations and tests are easy to encode and are left as exercises.

3 Pairing and Projection

Logic and arithmetic are good places to start, but we still would like to encode some useful data structures for
specifying programs. One simple example is ordered pairs. It would be nice to have a pairing function pair
with projections first and second that obey the following equational specifications:

first (pair 41 42) = 41 second (pair 41 42) = 42 pair (first ?) (second ?) = ?

provided ? is a pair in the last equation.
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We can take a hint from the boolean encodings in Section 1. Recall that if selects one of its two branches
by simply applying a carefully-designed boolean argument to those branches. We can have pair do something
similar, wrapping its two arguments for later extraction by some function 5 :

pair , _015 . 5 0 1.

Thus, pair 41 42 −→∗ _ 5 . 5 41 42. To get 41 back out, we can just apply a selector that takes two arguments
and returns the first. Interestingly, we already have one: true.

(pair 41 42) true −→∗ (_ 5 . 5 41 42) true −→ true 41 42 −→∗ 41

Similarly, applying false extracts 42. This observation allows us to simple definition of projections:

first , _?. ? true second , _?. ? false.

Again, if ? is not of the form pair 0 1, all bets are off and this might do anything.

4 Lists

One can define lists [G1; · · · ; G=] and _-terms corresponding to the standard list operators cons, head, and
tail (or car and cdr, for the Lispers). We leave these constructions as an exercise.

5 Local Variables

One feature common in functional programming languages that appears to be missing from _-calculus is the
ability to define local variables. Languages like OCaml, Haskell, and Lisp all have the ability to bind local
variables using a let construct that looks something like this:

let G = 41 in 42

Intuitively, this expression should evaluate 41 to some value E, then replace all instances of G in 42 with E, and
evaluate the result. In other words, it should evaluate 42 [G ↦→ E]. But we already have a _-term that behaves
exactly like this: function application!

(_G. 42) 41 −→∗ (_G. 42) E −→ 42 [G ↦→ E]

We can thus view let G = 41 in 42 as syntactic sugar for (_G. 42) 41. This is a very common encoding.
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