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To this point, we have seen how to encode a variety of constructs in A-calculus, including numbers, conditionals,
and pairs. We can also essentially write simple for loops using Church numerals by defining the body of the
loop as a function, applying a Church numeral to it, and then running that on an initial value. We have also
seen how to encode an infinite loop as Q. What we have not seen is how to write (interesting) unbounded
loops or recursive functions.

1 Building a Fixed Point

In functional languages like OCaml, we could write a recursive factorial function over natural numbers as
follows.
let rec fact n = if (n == 0) then 1 else n = (fact (n — 1))

But how do we write this in A-calculus where all functions are anonymous? We know how to encode
conditionals and the basic arithmetic operations of checking if a number is zero, multiplication, and predicate,
but we must somehow construct a A-term fact that satisfies the equation

fact = An. if (iszero n) then 1 else (mult n (fact (pred n))).

As a first step, we could try giving the function a name, let’s say f, and define a function F that, if we
gave it a correct implementation of fact would give us what we needed:

F = Af. An.if (iszero n) then 1 else (mult n (f (pred n))).

When we were defining the denotational semantics of while loops, we built a transformation function like
this and then found a fixed point of it by building better and better approximations. It would be nice to do
something similar here, but we cannot build a A-term by taking the limit of mathematical functions. Instead
we need do something a little different.

By construction, we need to give F something that behaves like fact. If we could just give it fact, we
would be done. We don’t have fact yet, but we do have something very similar: F. So would we get a correct
implementation if we just passed F to itself?

If we do so blindly, things do not work. The body of F applies its argument f directly to a number, but if
we give it F it expects an extra argument (the function) before a number. However, the function it needs is one
that behaves like fact, which is exactly what we passed in as f! Therefore, we can just tweak the definition
of F so that, instead of applying its function argument directly to a number, it applies the argument to itself
and a number. That produces a new F’ defined as

F’ = Af. An.if (iszero n) then 1 else (mult n ((f f) (pred n))).

We can now correctly define fact by
fact=F'F’.

Notice, that fact, as defined this way, is, in fact, a fixed point of F. That is, F fact =g fact (under full
[S-reduction, at least).



2 The Y Combinator

What just happened? We had an operator F defining the factorial function recursively, and we wanted a fixed
point of . We were able to build one simply by replacing all references to f (the first argument) with the
self-application (f f). That is,

F' =Af.F(ff).

Then we applied the result to itself to get
fact=F" F' = (Af.F (f ) (Af.F (f ).

This is a fixed point of F because in one step, we get

AfF (D) QFF(ff) — FQFF ()@ F(ff).

Notably, this construction didn’t depend on the particulars of F at all. We could have done it with any
function! Indeed, we can define a general version

Y £ 2g.(Af.g (f ) (Af.8 (f )

that takes any function g and produces a fixed point such that Y g = g (Y g). For instance, we could define the
factorial function simply as fact = Y F. This Y is the famous fixed point combinator, a closed A-term that
constructs solutions to recursive equations in a uniform way.

3 The Z Combinator

The Y combinator is extremely useful, but it does something curious in a very simple case: the identity function
id = Ax. x. Although every A-term is a fixed point of id, ¥ produces a particularly unfortunate one:

Yid — (Af.id (f ) (Af.id (ff)) =p Q.

This curiosity is actually indicative of a bigger shortcoming of Y. It works great with CBN semantics, but
with CBYV it immediately goes into an infinite loop. To see why, we can just evaluate it for a few steps with
CBV semantics when applied to any function G.

YG (Ag-(Af.g (ff)(Af.8 (f )G
Af.G(f ) Af.G(f )
G ((Af.G(f ) Af.G(f))

G (G ((Af.G (f ) Af.G(f))
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To fix this problem, we would like to delay computation of the argument after the first step. In previous
lectures, we delayed computation with thunks, but those require dummy arguments to restart computation.
Instead here, we simply want to wrap the argument in a A-abstraction that behaves the same way, but delayed.
That is, we would like the second step to produce

G (Az.(Af.G ---) (Af.G --+) 2)

with something appropriate for the - - - to cause this to happen every time. This change avoids an infinite
loop, as the argument to G is already a value, but when it is applied to anything, it will behave just as it should.



This type of wrapping, where a A-term e is wrapped in an abstraction Ax. e x that simply applies e to
its argument (assume here x ¢ FV(e)), is known as n-expansion.! In general, an n-expanded term produces
the same result as the original when applied to a value, but it is already a value itself, meaning it will delay
evaluation until the argument is available. This approach simulates what CBN would do.

Modifying Y to accomplish this goal requires -expanding the self-application f f, changingitto Az. f f z.
The result is a CBV-friendly fixed point combinator, often called the Z combinator.

Z 2 28.(Af.g (Az. f f2) (Af. g (Az. f [ 2))

4 Turing’s ® Combinator

For any fixed point combinator Fix, it is the case that Fix F = F (Fix F) for any function F and a suitable
equivalence =. That is the point of a fixed point combinator. While we defined two of them directly above and
then showed that they have that property, we can instead let this property guide the construction. Specifically,
we could try to build an Fix that satisfies the recursive equation

Fix = Af. f (Fix f).

We can use the same trick we used to build Y on this equation. That is, we make Fix an argument, replace
each use of it with a self-application, and then apply the resulting A-term to itself. The result, which satisfies
the original equation, is the fixed point combinator ®:

@ = (xf.f (xx f) (xf. f (xx f)).

This ® combinator was first discovered by Alan Turing (1912-1954) and published as part of his PhD
dissertation, and is often called Turing’s combinator, or Turing’s ©.

The Y and Z combinators above create fixed points in the sense that Y F behaves as a fixed point of F.
Syntactically, however, there is some A-term e such thatY F —* e and e —* F e (or Z F —* ¢ and
e —* F (1z. e 7), respectively), but e itself does not syntactically contain ¥ (or Z, respectively). Turing’s © is
different; for any F', the term ® F reduces syntactically to F (® F). That follows directly from constructing ®
to solve the recursive equation of Fix defined above. Indeed, in a single step

© = (Axf.f&xf)@xf.f(xxf))
— Af f(Qxf. f (xx ) (Axf. f (xx f)) f)
= Af.f(Of).

As aresult, forany F,® F —? F (O F).

Note that, when using CBV semantics, ® has the same nontermination problem as Y. Fixing it requires an
n-expansion similar to the one we used to create Z. We leave the precise details as an exercise.

These are the only fixed point combinators we will talk about here, but there are infinitely many more!

IThere is a corresponding n-contraction by removing such expansions, and n-equivalence when one term can be converted to
another through a combination of 5-expansions and n-contractions.
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