
Comp Sci 704
Fall 2024 Ethan CecchettiLectures 17 and 18:

A Functional Language

To this point, we have only talked about small languages that felt a bit like toys. Imp had some basic pro-
gramming constructs we expect, but was conspicuously missing functions. On the other hand _-calculus was
conspicuously missing everything but functions. We saw how to encode a variety of useful constructs in
_-calculus, but we will now go a step farther and augment the language itself with more constructs.

This new functional language Fl is a richer language than anything we have seen and is something we
might actually be willing to program in. We will give semantics for this language in two ways: a structural
operational semantics and a translation to the CBV _-calculus.

1 Syntax of Fl
In addition to _-abstractions, we introduce some new primitives:
• natural number constants =,
• primitive booleans true and false, and
• a letrec construct for constructing recursive functions.

All of these will be language primitives. That is, they are given as part of the syntax, not encoded by other
constructs. We could also include arithmetic and boolean operators as before, but for simplicity of exposition,
we will include only conditional if statements. Note that these are functional-style if statements which means
they return whatever value the chosen branch returns.

Expressions. Fl is an expression language, so there is only one kind of expression. The syntax is as follows.

4 F G | = | 41 42 | _G1 . . . G=. 4 | let G = 41 in 42

| true | false | if 40 then 41 else 42

| (41, . . . , 4=) | #= 4

| letrec 51 = _G1. 41 and . . . and 5= = _G=. 4= in 4

Here = must be strictly positive in projections #= 4, _-abstractions _G1 . . . G=. 4, and letrec constructs.
Computation will be performed on closed terms only. We have said what we mean by closed in the case of

_-terms, but there are also variable bindings in the let and letrec construct, so we need to extend the definition
to those cases by defining the scope of the bindings. The scope of the binding of G in let G = 41 in 42 is 42
(but not 41), and the scope of 58 in letrec 51 = _G1. 41 and . . . and 5= = _G=. 4= in 4 is the entire expression,
including 41, . . . , 4= and 4. That is, letrec allows us to define arbitrary mutually recursive functions.

Values. Values are a subclass of expressions for which no reduction rules will apply. Thus values are
irreducible. There will be other irreducible terms that are not values, which we will call stuck terms. The
grammar for values is as follows.

E F = | true | false | _G1 . . . G=. 4 | (E1, . . . , E=)

2 Operational Semantics of Fl
Wewill define our operational semantics by a set of evaluation order rules and a set of reduction rules. With

all of these extra programming constructs, the power of evaluation contexts to concisely specify evaluation
order rules becomes readily apparent.

1

For evaluation order rules, we will define our evaluation contexts so that evaluation is left-to-right, in
applicative order (like CBV), and deterministic

� F [·] | � 4 | E � | let G = � in 4 | if � then 41 else 42

| #= � | (E1, . . . , E<, �, 4<+2, . . . , 4=)

Note that there are no holes in the branches of if expressions. We want to delay evaluation of the branches
until we finish evaluating the condition, and then discard the incorrect branch without ever evaluating it.

The operational semantic rule using these evaluation contexts is the standard structural congruence rule.

4 −→ 4′

� [4] −→ � [4′]

Our reduction rules are as follows. Note that multi-argument functions expect one argument at a time and
are implicitly curried. That allows for a simpler semantics as well as partial evaluation, though it prevents the
semantics from checking that the correct number of arguments were applied.

[AppN]
= ≥ 2

(_G1 . . . G=. 4) E −→ (_G2 . . . G=. 4) [G1 ↦→ E]
[App1]

(_G. 4) E −→ 4[G ↦→ E]

[IfT]
if true then 41 else 42 −→ 41

[IfF]
if false then 41 else 42 −→ 42

[Proj]
1 ≤ = ≤ <

#= (E1, . . . , E<) −→ E=
[Let]

let G = E in 4 −→ 4[G ↦→ E]

[LetRec]
letrec . . . −→ (to be continued)

We can already see the distinction between a value and an irreducible term. For example, what happens
with the expression if 3 then 1 else 5 or #3 (true, false, 0)? Those expressions are not values, but they also
cannot be reduced further. They are stuck. Unlike in _-calculus, not all expressions work in all contexts.

In a real programming language, these examples might produce a runtime type error. For that, we would
need a notion of types, which wee will see later in the course.

3 Translation to _-calculus
To capture the semantics of Fl, we can also translate it to the call-by-value _-calculus. The translation is

defined by structural induction on the syntax of the expression. For the basis of the induction we will use
Church numerals and Church booleans, modified to thunk and apply their arguments—as we did in when
translating CBN to CBV—to avoid evaluating the branches of if statements early.

ÈGÉ , G È=É , _ 5 G. 5 = G ÈtrueÉ , _GH. G id ÈfalseÉ , _GH. H id

We can project multi-argument functions by making the currying explicit, single-argument functions by
translating their bodies, function application remains function application, if translates based on the encoding
of true and false above, and let is simply a desugaring operation.

È_G1 . . . G=. 4É , _G1. È_G2 . . . G=. 4É for = ≥ 2 È_G. 4É , _G. È4É È41 42É , È41É È42É

Èif 40 then 41 else 42É , È40É (_3. È41É) (_3. È42É) Èlet G = 41 in 42É , (_G. È42É) È41É

2

Tuples. To project arbitrary length tuples, we will rely on the our existing knowledge of pairs, and how to
extend that to encoding lists. Specifically, we will project the tuple (41, . . . , 4=) to the list [41; . . . ; 4=]. To do
so, we will use the list constructs in the homework: empty, cons, head, tail, and get.

È()É , empty È(41, . . . , 4=)É , cons È41É È(42, . . . , 4=)É for = ≥ 1 È#= 4É , get È=É È4É

We again leave recursive definitions for later.

Adequacy. It would be great if this translation were adequate. Unfortunately, the presence of stuck terms
in Fl and the lack of a runtime type system mean it is not. For instance, #1 () is stuck in the Fl operational
syntax, but not in the _-calculus translation. That translated term may not behave in a reasonable way, but the
fact that it can step at all makes the translation unsound.

4 Recursive Functions
Recursion in Fl is implemented with the letrec construct

letrec 51 = _G1. 41 and . . . and 5= = _G=. 4= in 4

This construct allows us to define mutually recursive functions, each of which is able to call itself and other
functions defined in the same letrec block. Note that all the variables 58 are in scope in the entire expression;
thus any 58 may occur in 4 and in any of the bodies 4 9 of the functions being defined. The latter occurrences
represent recursive calls.

For the semantics of letrec, we will consider only the case = = 1 for simplicity of the presentation. That
is, we need to know the semantics of

letrec 5 = _G. 41 in 42.

4.1 Operational Semantics

We would like to substitute _G. 41 into 42 for each occurrence of 5 , but the whole point of the recursive
definition is that 5 may itself be free in 41 (and thus _G. 41). We therefore need to retain the definition of 5

somehow in the substitution.
To retain the definition of 5 , we substitute every instance of 5 in 41 with something to retain its definition.

In particular, we use letrec 5 = _G. 41 in 5 . This expression defines the recursive function 5 and then simply
returns it. This approach allows us to define the semantics of letrec as follows.

[LetRec]
letrec 5 = _G. 41 in 42 −→ 42

[
5 ↦→ (_G. 41) [5 ↦→ letrec 5 = _G. 41 in 5]

]
With this semantic rule, we note something interesting about the body of the substitution:

letrec 5 = _G. 41 in 5 −→ (_G. 41) [5 ↦→ letrec 5 = _G. 41 in 5] .

Looking back, this gives us confidence that the semantic rule is doing the right thing. The inner substitution is
replacing every instance of 5 in 41 with something that will behave identically to the outer substitution when
it is used, exactly the behavior we want from a recursive function.

Note also that if 5 = G, then _G. 41 has no free occurrences of 5 , so the inner substitution does nothing
and this definition devolves into a regular (non-recursive) let expression.

Expanding this to multiple mutually-recursive functions requires a parallel substitution of all of the
recursive function names, and each inner substitution must include the entire letrec, not just the relevant
function. This is a conceptually simple extension, but one that is extremely long to write down formally.

3

4.2 Translation to _-calculus

For the translation, recall the fixed point combinators from the previous lecture. Note that, instead of doing
this nested substitution, if we could define 5 directly as a recursive function, we could substitute that into
42 immediately. Using the / combinator, as it is call-by-value friendly, can accomplish this goal. That is,
/ (_ 5 . _G. 41) will be the desired fixed point. From here, we can use the translation of a non-recursive let
expression to get

Èletrec 5 = _G. 41 in 42É , (_ 5 . È42É) (/ (_ 5 . È_G. 41É)).

Extending this to multiple mutually-recursive functions requires a mutual recursion combinator that is
considerably more complicated than . or / , but does exist.

4

	Syntax of Fl
	Operational Semantics of Fl
	Translation to -calculus
	Recursive Functions
	Operational Semantics
	Translation to -calculus

