
Comp Sci 704
Fall 2024 Ethan CecchettiLecture 19:

Static and Dynamic Scope

Until now, we could look at a program and determine from the syntax where a variable is bound. This is
possible because _-calculus and Fl as previously presented use static scoping (also known as lexical scoping).
This is not, however, the only possible scoping discipline.

The scope of a variable is where that variable can be mentioned and used. With static scoping, the places a
variable can be used are determined by the lexical structure of the program. An alternative is dynamic scoping,
where a variable is bound to the most recent (in time) value assigned to that variable.

The difference becomes apparent when a function is applied. In static scoping, free variables in the
function body are evaluated based on the context in which the function was defined. In dynamic scoping, they
are evaluated in the context of the function call. The difference is illustrated by the following program:

let 3 = 2 in
let 5 = _G. G + 3 in
let 3 = 1 in

5 3

With lexical scoping (what we have seen to this point), the block above evaluates to 3.

1. The outer 3 is bound to 2.
2. The 5 is bound to _G. G + 3. Since 3 is bound statically, it is “locked” to the 3 that is in scope at the

point of this definition, so 5 will always be equal to _G. G + 2. (The value of 3 cannot change since
there is no variable assignment/mutation in this language.)

3. The inner 3 is bound to 1. This does not change the outer binding, it simply overrides it within the
scope of the inner-most let.

4. When evaluating the expression 5 3, the value of 3 is determined based on the current environment—so
it will be 1—but the free variables in the body of 5 are evaluated using the environment in which 5

was defined—where 3 = 2. We will therefore get (_G. G + 2) 1, which evaluates to 3.

With dynamic scoping, however, the block evaluates to 2.

1. The outer 3 is bound to 2.
2. The 5 is bound to _G. G + 3. The free variable 3 is not locked to any particular binding.
3. The inner 3 is bound to 1.
4. When evaluating the expression 5 3, the variable 3 is evaluated in the current environment in both the

argument position and the function body. Since 3 is bound to 1 in the current environment, this will
produce (_G. G + 1) 1, which evaluates to 2.

Dynamically scoped languages are quite common and include many interpreted scripting languages.
Examples of languages with dynamic scoping are (in roughly chronological order): early versions of LISP,
APL, PostScript, TEX, and Perl. Early versions of Python also had dynamic scoping, but it was later changed
to static scoping.

There are advantages and disadvantages to both disciplines. Some advantages of dynamic scoping include:

• It is easier to implement interpreters for languages with dynamic scope.
• Dynamic scope allows developers to extend almost any piece of code by overriding the values of

variables that are used internally by that code.

1

Some advantages of static scope include:

• It is much easier to keep code modular. With dynamic scope, the true interface of any block of code
becomes the entire set of variables used by that block. With static scope, internal implementation details
can be kept hidden from anyone using the code.

• A compiler can determine where the variable will be located. As a result, it can optimize variable
accesses into simple memory lookups or array accesses rather than needing expensive run-time lookup
mechanisms that would be required with dynamic scope.

Most modern languages have opted for static scope. The modularity advantage makes it far easier for
developers to reason about and analyze, and the performance advantages are a nice add-on.

1 Scope and the Interpretation of Free Variables
To see how to formalize these notions of scope and how they impact free variables, we will translate pure

CBV _-calculus into Fl in two ways, SÈ·É will implement static scope, and DÈ·É will implement dynamic
scope.

Scoping rules are all about how to evaluate free variables in a program fragment. With static scope, free
variables of a term _G. 4 are interpreted according to the syntactic context in which the term _G. 4 occurs.
With dynamic scope, free variables of _G. 4 are interpreted according to the environment in effect when _G. 4

is applied. These are not the same in general.
Both translations will use an environment to capture the interpretation of names. An environment is

simply a partial function with finite domain from variables G to values.

d : Var ⇀ Val

As in previous lectures, we can extend or modify d with the rebinding operator d[G ↦→ E] defined by

d[G ↦→ E] (H) ,

{
E if G = H,

d(H) if G ≠ H.

We also need a way to represent this environment in the target language, here Fl. To do this, we will encode
variables in the environment into values of the target language. We will write pGq to denote the encoding of
variable G into Fl. The exact details of the encoding don’t really matter as long as we can look up the value of
a variable given its encoding and update an environment with a new or modified binding. For instance, any
structure that allows us to encode variables with different names differently and check equality of encoded
variable names would work. Numbers are generally a good choice, but they are not the only one.

Given that we really just need operations to look up and update the environment, if ' is a representation
of environment d, we demand two things:

1. lookup ' pGq =

{
d(G) if G ∈ dom(d)
error if G ∉ dom(d)

2. update ' pGq E is a representation of d[G ↦→ E]
To simplify notation, despite a slight risk of confusion, we will use d to represent both the environment and
the representation of that environment in Fl, so we will write lookup d pGq and update d pGq E.

With this in hand, we can construct our translations. Note that the translation of a _-term 4 will take the
representation of an environment d and produce an expression in Fl. In other words,

È4É : Env → ExpFl.

2

1.1 Static Scoping

The translation for static scoping is as follows.

SÈGÉ d , lookup d pGq

SÈ41 42É d , (SÈ41É d) (SÈ42É d)
SÈ_G. 4É d , _E.SÈ4É (update d pGq E) E fresh

One important note about this translation is that it removes all of the variables in the source program 4

and replaces them with fresh names that are only used immediately after being bound. As a result, there is no
room for the scoping discipline of the target language to impact the behavior of the translated program.

1.2 Dynamic Scoping

The translation for dynamic scoping is as follows.

DÈGÉ d , lookup d pGq

DÈ41 42É d , (DÈ41É d) (DÈ42É d) d
DÈ_G. 4É d , _Eg.DÈ4É (update g pGq E) E, g fresh

This translation is a bit more interesting. In the translation of _-abstractions, we have completely dis-
carded d and replaced it with a fresh parameter g!

This choice has two ramifications. First, the translation no longer expects one argument E, it expects two,
E and g. That means that when applying a function, as in the translation of function application, we need to
pass in a second argument, which is the environment at the time of application.

Second, the environment in which the _-abstraction is defined is completely irrelevant to the translation, and
thus to what happens when we apply the function. Instead, we use the environment passed in at application time
to look up the value of encoded variables. Since function application passes in the environment present there,
a single function may execute multiple times with multiple different environments, determined dynamically
by where it is applied.

2 Correctness of Static Scoping Translation
While we do not already have a formal definition of dynamic scoping, we already have a semantics for

CBV _-calculus that we claimed implemented static scoping. The following theorem says that this belief is
correct.

Theorem 1. Given any _-term 4 and any d ∈ Env such that FV(4) ⊆ dom(d), then the translation of 4 is
V[-equivalent to substituting all values of d in for the free variables in 4. That is,

SÈ4É d =V[4[H ↦→ d(H) | H ∈ dom(d)] .

Proof. The proof follows by structural induction on 4. The simple cases are variables and applications.

SÈGÉ d = lookup d pGq = d(G) = G [H ↦→ d(H) | H ∈ dom(d)]

SÈ41 42É d = (SÈ41É d) (SÈ42É d)
=V[(41 [H ↦→ d(H) | H ∈ dom(d)]) (42 [H ↦→ d(H) | H ∈ dom(d)])
= (41 42) [H ↦→ d(H) | H ∈ dom(d)]

3

For the _-abstraction case _G. 4, for any value E, since update d pGq E is a representation of d[G ↦→ E],
the induction hypothesis gives

SÈ4É (update d pGq E) =V[4[H ↦→ d[G ↦→ E] (H) | H ∈ dom(d)]
= 4[H ↦→ d(H) | H ∈ dom(d) − {G}] [G ↦→ E]
=V (_G. 4[H ↦→ d(H) | H ∈ dom(d) − {G}]) E
= ((_G. 4) [H ↦→ d(H) | H ∈ dom(d)]) E.

Using this, we can move back to the full translation of _G. 4, giving

È_G. 4É d = _E.SÈ4É (update d pGq E)
=V[_E. ((_G. 4) [H ↦→ d(H) | H ∈ dom(d)]) E
=[(_G. 4) [H ↦→ d(H) | H ∈ dom(d)]

The pairing of a function _G. 4 with an environment d in this way is called a closure. Theorem 1 says that
we can implement SÈ·É by forming a closure consisting of the term 4 and an environment d that tells us how
to interpret free variables in 4. By contrast, in dynamic scoping, the translated function does not record the
environment where it is defined, so there is no need for a closure.

4

	Scope and the Interpretation of Free Variables
	Static Scoping
	Dynamic Scoping

	Correctness of Static Scoping Translation

