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State

Program state refers to the ability to change program variables over time. We saw this feature in Imp (which
was conspicuously missing functions) but then it went away in _-calculus (which was conspicuously missing
everything but functions). Even Fl, which reintroduced most of the programming constructs, still did not
have state. Once a variable was bound, there was no way to change its value as long as it was in scope.

State is not a necessary feature in a programming language—after all, _-calculus is Turing complete
despite no notion of state—but it is common in most languages and many programmers are accustomed to it.

Programming Paradigms. Two major programming paradigms are functional (stateless) and imperative
(stateful). In a purely functional language, expressions resemble mathematical formulae. This structure allows
programmers to reason equationally and not worry about where else a function is used or how many times
something may be run. As a result, it avoids many of the pitfalls associated with a constantly changing
execution environment.

Concurrency, in particular, is much simpler with functional programming. Confluence (the Church–Rosser
property ) means it does not matter which order operations execute, at the end the result will be the same.
There can be no race conditions or inconsistent views of the world.

On the other hand, imperative programming more closely resembles the way we perceive the world and,
especially, the operations happening inside of a real computer. There exists some underlying notion of state
(of the world, of memory, of storage, etc), and that state can change over time.

1 Mutable References
Instead of allowing variable assignment directly, we will work with mutable references (aka pointers).

These references can be updated in a way that cannot be handled by the simple substitution rules of their
functional counterparts. They are somewhat more complicated than ordinary variable bindings because they
introduce the extra complication of aliasing—the possibility of naming the same data value with different
names.

For example, consider the following code.

let G = ref 1 in
let H = G in
G B 2 ; !H

In this code, ref 1 allocates a new reference pointing to the value 1 and returns the reference. So the first line
creates this reference and assigns G to the reference. The second line assigns H to G, meaning both variables
are bound to the same reference. Then we update the value pointed to by G to 2, and finally dereference H

with !H. Because G and H point to the same place, modifying the value one points to also modifies the value
the other points to, so this program will return 2. When you kick G, H jumps!

Reference should not be confused with mutable variables. A variable is mutable if its binding can change.
The difference is subtle: variables are bound to values in an environment, and if the variable is mutable, it can
be rebound to a different value. With references, the variable itself is bound to a location. The location is
mutable—it can be rebound to a different value—but the variable itself is not. In Imp and imperative languages
such as C, variables are typically mutable, whereas in functional languages such as Fl, OCaml, and Haskell,
they are typically not.
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2 The Fl! Language
To see how mutable references work in an otherwise-functional language, we will add them to the Fl

language we defined previously to create a new language Fl!.¹ All Fl expressions are also expressions of Fl!,
and there are a few more. Note that there is a set Loc of memory locations that we denote ℓ. The syntax is as
follows.

4 F · · · | ref 4 | 41 B 42 | !4 | ℓ | 41 ; 42

The “· · · ” is used to indicate that we are extending the BNF grammar from Fl without having to write out
everything again.

2.1 Small-Step Operational Semantics

Unlike in _-calculus or functional Fl, we can no longer define our semantics entirely by substitution.
Instead we will use a store to keep track of the mappings of memory locations for our references. This store

is extremely similar to stores we saw previously in the semantics for Arith and Imp. It is a partial function
f : Loc ⇀ Val from memory locations to Fl! values, and we require that it have a finite domain (that is, only
finitely many location have mappings). We will again use the standard rebinding operator f[ℓ ↦→ E]. We now
define the small-step operational semantics on configurations, 〈4, f〉, just as we did for Imp and Arith.

We will again simplify our evaluation order rules by using evaluation contexts. Just as we extended the Fl
grammar for expressions, we extend the Fl grammar for evaluation contexts.

� F · · · | ref � | � B 4 | E B � | !� | � ; 4

Note that the hole [·] is already included with the · · · , so we do not need to write it again.
The operational semantic rule for using these contexts must change slightly. Before, our small step relation

was over Fl expressions, but now it is over entire configurations. Because of the nature of state, if the state
changes when stepping an expression 4, we need to retain that change when stepping 4 inside a larger context.
The rule is therefore

〈4, f〉 −→ 〈4′, f′〉
〈� [4], f〉 −→ 〈� [4′], f′〉

We also need to add reduction rules for these new forms. Those rules are as follows.

[New]
ℓ ∉ dom(f)

〈ref E, f〉 −→ 〈ℓ, f[ℓ ↦→ E]〉
[Assign]

ℓ ∈ dom(f)
〈ℓ B E, f〉 −→ 〈(), f[ℓ ↦→ E]〉

[Deref]
ℓ ∈ dom(f)

〈!ℓ, f〉 −→ 〈f(ℓ), f〉
[Seq]

〈E ; 4, f〉 −→ 〈4, f〉

It can be shown by induction that it is impossible to create dangling pointers in Fl!. That is, if a program
doesn’t start with any pointers at all, then every pointer that appears will always be mapped in the store.

3 Translating Fl! to Fl
Even though we had to modify the structure of the small step operational semantic relation, this addition

did not fundamentally add any computational power to the language. To show this, we will build an adequate
translation from Fl! to Fl (though we will not prove its adequacy here). Using the same mechanism we used

¹Fl! is pronounced “Fl bang.” The exclamation point, or bang, is a common symbol used to indicate a stateful operation in a
primarily functional language.
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in the last lecture to implement environments when defining a scoping translation, we can implement stores
with the following operations.

empty = the completely undefined store with domain ∅
lookup f pℓq = f(ℓ)

update f pℓq E = f[ℓ ↦→ E]
alloc f E = (pℓq, f[ℓ ↦→ E]) where ℓ ∉ dom(f)

As with the environments before, pℓq denotes a representation in Fl of the location ℓ. And again, at the risk of
confusion, we will denote both the store and its representation as f.

The following translation maps Fl! expressions to Fl expression. Note that È4É represents a function that
takes a store f and produces an Fl pair (E, f′) where E is an Fl value and f′ is a store. These represent the
output value (translated) and final store (representation) obtained by evaluating 4. To simplify notation, we
will use the expression let (G, f′) = È4Éf in . . . as syntactic sugar for

let ? = È4É f in let G = #1 ? in let f′ = #2 ? in . . .

Here is the translation for simple expressions. For simplicity of exposition, we skip tuples, multi-argument
functions, and letrec.

ÈGÉ f , (G, f)
È=É f , (=, f)

ÈtrueÉ f , (true, f)
ÈfalseÉ f , (false, f)

Èif 40 then 41 else 42É f , let (1, f′) = È40Éf in
if 1 then È41Éf′ else È42Éf′

È_G. 4É f , (_Gg. È4É g, f)
È41 42É f , let ( 5 , f1) = È41Éf in

let (G, f2) = È42Éf1 in
5 G f2

Èref 4É f , let (G, f′) = È4É f in alloc f′ G

È41 B 42É f , let (;, f1) = È41Éf in
let (G, f2) = È42Éf1 in
((), update f2 ; G)

È!4É f , let (;, f′) = È4É f in ((lookup f′ ;), f′)
È41 ; 42É f , let (G, f′) = È41É f in È42É f′

Note that the translation of _G. 4 now takes an extra argument for the new store that is current at the time
of the call. Thus stores are dynamically scoped. Indeed, to implement a dynamic scoping in a small step
operational semantics, we would have needed to track the environment as part of the configuration (though it
would be even more difficult than the store here because a dynamic scope environment needs to undo bindings
when they fall out of scope).

3


	Mutable References
	The Fl! Language
	Small-Step Operational Semantics

	Translating Fl! to Fl

