
Comp Sci 704
Fall 2024 Ethan CecchettiLecture 21:

Continuations

When executing a program, the program is broken into two parts: the current expression being executed, and
the continuation, which refers to what we do next—how we continue the computation. For example, consider
the expression if G > 0 then G else G + 1. First we will evaluate G > 0 to obtain a boolean value 1. Only then
will we use that boolean to evaluate if 1 then G else G + 1. If we think of the if statement as a function that
takes the result of the condition, the continuation would be _1. if 1 then G else G + 1.

We have seen representations of continuations before, though we did not call them that. The evaluation
contexts we used to simplify the definition of evaluation order steps in small-step operational semantics were
fundamentally continuations. For an expression in a context � [4], the expression 4 represents the current
computation, and � [·] is a representation of the continuation.

Some languages, like Scheme and its derivatives (e.g., Racket) have ways to capture and save the current
continuation as a function (call/cc and let/cc). Saving that continuation and applying it in another context
can have highly non-intuitive behavior, as it replaces the continuation at the point of application with the
continuation that was saved. In essence, it destroys the call stack and replaces it with an old, saved one.

The most common use of continuations, however, is a transformation to continuation passing style.

1 Continuation Passing Style
Given an expression 4, it is possible to transform it into a function that takes a continuation : and applies :

to the result of evaluating 4. If we apply this transformation recursively, the result is called continuation
passing style (CPS). There are a number of advantages to CPS.

• CPS expressions have much simpler evaluation semantics. The sequence of reductions is specified
by the series of continuations, so the next operation to perform is always uniquely determined and
the continuation handles the rest of the computation. Evaluation contexts are therefore unnecessary to
specify evaluation order. In fact, the choices we made when defining evaluation contexts are instead
made in the translation to CPS.

• In practice, function calls and function returns can be handled in a uniform way. Instead of returning,
the called function simply calls the continuation.

• In recursive functions, any computation performed on the value returned by a recursive call is bundled
into a continuation that is handed to the recursive call. As a result, every recursive call becomes
tail-recursive. For example, the factorial function

fact = = if = = 0 then 1 else = ∗ fact (= − 1)

becomes
fact′ = : = if = = 0 then : 1 else fact′ (= − 1) (_G. : (= ∗ G))

It is possible to show that fact′ = : = : (fact =), and therefore fact′ = id = fact =. The transformation
essentially trades stack space for heap space in the implementation.

• Continuation-passing gives a convenient mechanism for non-local flow of control, such as goto state-
ments and exception handling.

As a result of these advantages, a variety of compiles perform CPS transformations to help with optimiza-
tion and analysis of programs. We will see how a simple one works now.

1



2 CPS Semantics
In pure _-calculus, our grammar was

4 F G | _G. 4 | 41 42.

Our grammar for CPS _-calculus will be slightly different to account for the fact that all computations must
be bundled into continuations. It is defined as follows.

E F G | _G. 4 4 F E | 4 E

This is a highly constrained syntax. Barring reductions inside of _-abstractions, the values E are all
irreducible. The only reducible expressions are of the form 4 E. Moreover, there is only one possible redex:
the inner-most 4 must be E0 E1, and both the function and argument are already fully reduced. This means
that we do not need any interesting evaluation order rules, we can get away with a simple structural one with
no choices and a single reduction rule for our small-step operationsl semantics:

4 −→ 4′

4 E −→ 4′ E (_G. 4) E −→ 4[G ↦→ E]

A proof that 4 −→∗ E only has one possible shape with this semantics, no matter what 4 is. It just applies
the same operation over and over again. This fact allows for a much simpler interpreter that can work in a
straight line rather than having to make multiple recursive calls.

Indeed, the fact that it would be so simple to implement an interpreter is an indication the CPS _-calculus
is, in a deep sense, a lower-level language than CBV _-calculus. Because it is lower-level (and actually closer
to assembly code), CPS is typically used in functional language compilers as an intermediate representation.
It also is a good code representation if one is building an interpreter.

3 CPS Conversion
Despite the restrictions of CPS syntax, we have not lost any expressive power. We can define a translation

È·É to take a regular _-term 4 and produce a CPS term È4É with the same meaning. This is known as CPS
conversion and was first described by John C. Reynolds (1935–2013).

Recall that a CPS term is a function that takes a continuation : as an argument, so we would like our
translation to satisfy

4 −−−→
cbv

∗ E ⇐⇒ È4É : −−→
cps

∗ ÈEÉ :

for any primitive value E and any variable : ∉ FV(4).
If we allow numbers as primitive values and add simple arithmetic operators, which we denote ⊗, then

the transformation is as follows. Recall that È4É : , 4′ is short-hand for È4É , _:. 4′.

È=É : , : =

ÈGÉ : , : G

È_G. 4É : , : (_G: ′. È4É : ′) =[ : (_G. È4É)
È41 ⊗ 42É : , È41É (_G1. È42É (_G2. : (G1 ⊗ G2)))
È41 42É : , È41É (_ 5 . È42É (_G. 5 G :))

In this translation, we transform a _-abstraction _G. 4 that takes one input, a value G, to a _-abstraction
_G: ′. È4É : ′ that takes two inputs: the same value G and a continuation : ′. Note that : and : ′ are not the same.
The continuation : ′ is supplied to È4É at the point of the function call, while the continuation : is applied to
the translated _-abstraction itself where the function is defined.

2



3.1 An Example

In CBV _-calculus, we have
(_GH. G) 1 −→ _H. 1

The CPS translations of those two are:

È(_GH. G) 1É : = È_G. _H. GÉ (_ 5 . È1É (_E. 5 E :)) È_H. 1É : = : (_H: ′. È1É : ′)
= (_ 5 . È1É (_E. 5 E :)) (_G: ′. È_H. GÉ : ′) = : (_H: ′. : ′ 1)
= (_ 5 . (_E. 5 E :) 1) (_G: ′. : ′ (_H. ÈGÉ))
= (_ 5 . (_E. 5 E :) 1) (_G: ′. : ′ (_H: ′′. : ′′ G))

The translation of the value is itself : applied to a value, so there is nothing to do. We can, however, evaluate
the right side, producing the following sequence.

(_ 5 . (_E. 5 E :) 1) (_G: ′. : ′ (_H: ′′. : ′′ G)) −→ (_E. (_G: ′. : ′ (_H: ′′. : ′′ G)) E :) 1
−→ (_G: ′. : ′ (_H: ′′. : ′′ G)) 1 :

−→ (_: ′. : ′ (_H: ′′. : ′′ 1)) :
−→ : (_H: ′′. : ′′ 1)
=U È_H. 1É :

This is precisely the result we were hoping for. Also note that, in every step of that evaluation, the leftmost
term was already a _-abstraction, and each term in an argument position was already a value. There was never
any choice of which steps to take, it was always just applying a continuation to the value produced by the
previous operation.

3


	Continuation Passing Style
	CPS Semantics
	CPS Conversion
	An Example


