
Comp Sci 704
Fall 2024 Ethan CecchettiLecture 22:

Exceptions

Exceptions are a language feature that provide for non-local control flow in exceptional situations. They
are generally considered a double-edged sword from a software engineering and maintenance perspective:
exceptional control flow is harder to understand and reason about (and thus maintain), but factoring out
some control flow into an exceptional path often makes it easier to understand and maintain the other control
flow paths. As a result, exceptions are typically used to signify and handle abnormal, unexpected, or rarely
occurring events and simplify code for the common cases.

To add exceptions to Fl, we extend the syntax with two new constructs: raise and try–catch.

4 F · · · | raise B 4 | try 41 catch B (_G. 42)

Informally, raise B 4 throws an exception named B with value 4. Meanwhile, try 41 catch B (_G. 42)
provides the handler _G. 42 for any exception named B raised while executing 41. In other words, if 41
terminates normally with value E, the result of try 41 catch B (_G. 42) will also be E. If it raises an exception
named B, the handler _G. 42 will be invoked and provided the value of that exception. If it raises an exception
with a different name, the exception will propagate through.

Most languages use a dynamic scoping mechanism to find the handler for a given exception. When an
exception occurs, the language walks up the runtime call stack until it finds a suitable exception handler. We
will take the same approach in Fl and see multiple ways to define it.

1 Operational Semantics of Exceptions

One way to formalize the definition of exceptions is to define a small-step operational semantics. Here we
will extend the semantics for Fl to define the semantics for our new exception terms.

First, we extend our evaluation contexts as follows:

� F · · · | raise B �.

Note that we do not include try–catch statements in our evaluation contexts. This is because we want to
use our evaluation contexts to succinctly define how exceptions propagate. In particular, we can define the
following exception propagation rule.

[Raise]
� ≠ [·]

� [raise B E] −→ raise B E

This rule is what creates the non-local control flow described earlier. Any evaluation context surrounding an
exception is simply destroyed without executing any pending computations it specifies. The side condition
that � ≠ [·] is a technical requirement to prevent and infinite sequence of reduction steps that do nothing by
reducing raise B E to itself.

Note that, if we included the body of a try–catch statement as an evaluation context, Raise would bypass
the handlers and propagate exceptions in ways it should not. Instead, we include an explicit evaluation order
rule along with the other semantic rules for try–catch.

[TryE]
41 −→ 4′1

try 41 catch B (_G. 42) −→ try 4′1 catch B (_G. 42)
[TryV]

try E catch B (_G. 4) −→ E

[Catch]
try (raise B E) catch B (_G. 4) −→ 4[G ↦→ E]

[NCatch]
B ≠ B′

try (raise B′ E) catch B (_G. 4) −→ raise B′ E

1

The first rule (TryE) is a simple evaluation order rule. The second rule (TryV) says that if the body of
the try–catch block terminates normally with a value, there is no catching to be done and the block should
return the same value. The other two rules address the case where the body 41 raises an uncaught exception.

If the name of the raised exception matches the name of the exception this block catches—here B—then
Catch applies. Catch applies the provided handler function to the value of in the exception. If the name of
the raised exception and the name of the caught exception do not match, then NCatch applies and this block
simply propagates the exception outward.

There is a slightly subtle decision hiding in the Catch rule. Because Catch discards the try–catch
and steps to only the body of the handler, if the handler body itself throws an exception named B, it will not
recursively handle itself (though a different handler in a larger try–catch block might).

Note also that we did not change our definition of values, so, in particular raise B E is not a value. However,
there is no semantic rule for what to do with a top-level raise expression. These globally uncaught exceptions
are considered errors, so the semantics simply gets stuck.

2 CPS and Exception Handlers

Another way to cleanly define the semantics of raise and try–catch is to extend the CPS conversion with
exception handlers. To do that, we extend the CPS conversion definition from the previous lecture with a
handler environment ℎ that maps exception names to continuations. The continuation associated with B in ℎ

should run the handler specified by the inner-most try–catch block that handles B and pass its result to the
outer continuation passed to that try–catch block.

We will again use lookup and update for an environment, this time lookup ℎ pBq should return the
continuation associated with B in ℎ, and update ℎ pBq : should rebind B in ℎ to continuation : .

We can now add support for exceptions to the CPS translation. We write this extended translation EÈ4É,
and note that it takes both a continuation, as before, and a new exception handler environment. For most of the
expressions in Fl, this new translation looks the same as standard CPS conversion, but with ℎ being passed in
to nearly everything. Here are the cases for some representative expressions.

EÈGÉ : ℎ , : G

EÈ=É : ℎ , : =

EÈ41 ⊗ 42É : ℎ , EÈ41É (_G1. EÈ42É (_G2. : (G1 ⊗ G2)) ℎ) ℎ
EÈ_G. 4É : ℎ , : (_G. EÈ4É)

=[: (_G: ′ℎ′. EÈ4É : ′ ℎ′)
EÈ41 42É : ℎ , EÈ41É (_ 5 . EÈ42É (_G. 5 G : ℎ) ℎ) ℎ
EÈtrueÉ : ℎ , : true
EÈfalseÉ : ℎ , : false

EÈif 40 then 41 else 42É : ℎ , EÈ40É (_1. if 1 then (EÈ41É : ℎ) else (EÈ42É : ℎ)) ℎ

The cases for raise and try–catch make interesting use of ℎ.

EÈraise B 4É : ℎ , EÈ4É (lookup ℎ pBq) ℎ
EÈtry 41 catch B (_G. 42)É : ℎ , EÈ41É : (update ℎ pBq (_G. EÈ42É : ℎ))

The translation of raise B 4 simply evaluates 4 and passes the result as an argument to the handler bound
to B in the handler environment. The translation of try 41 catch B (_G. 42) makes a new continuation by

2

translating the handler _G. 42 with the current continuation : and handler environment ℎ, and then updates ℎ
to map the specified name B to that new continuation. It then runs the body 41 with the same continuation
passed to the try–catch block and this new updated handler environment.

There are some subtle decisions captured by this translation. First, in the translation of try 41 catch B (_G. 42),
B is in scope in 41 but not in 42. Thus, if 42 raises an exception B, it will not be invoked again, matching
the decision made in the operational semantics in Section 1. Second, in the translation of raise B 4, the
continuation : disappears completely. That means that whatever computation is pending will simply be
ignored and we will instead execute an exception handler—which will include the continuation from outside
of the corresponding try–catch block. This behavior also matches something we saw in Section 1: the Raise
rule destroyed the evaluation context � [·], which corresponds to the continuation : .

3 Exceptions with Resumption

The exception mechanism above has the property that raising an exception terminates execution of the
evaluation context. Most modern programming languages have exceptions with this termination semantics. A
different approach to exceptions is to allow execution to continue at the point where the exception was raised,
after the exception handler gets a chance to repair the damage. This approach is known as exceptions with
resumption semantics. In practice it seems to be difficult to use these mechanisms usefully, though a few kinds
of systems (and research languages) do support them.

Operating system interrupts are one practical instance of resumption semantics. When a process receives
an interrupt, the interrupt handler runs and only then does execution continue from the program point where
the interrupt happened.

One reason to use the CPS conversion in Section 2 is that it is far easier to modify it to implement
resumption semantics than the operational semantics from Section 1. Operational semantics would need to
keep track of the evaluation context � [·] that Raise currently removes and be able to reestablish it after
handling the exception. With the CPS-style semantics, however, the only change is considerably more simple.

To see how this works, we can give resumption-style exceptions to Fl with the constructs

4 F · · · | interrupt B 4 | run 41 handle B (_G. 42).

The new translation of these constructs treats the handler environment ℎ as a mapping of names to functions
that take a value and a continuation, not just a continuation. Note that only the exception cases need to change
from the translation described in Section 2.

Èinterrupt B 4É : ℎ , È4É (_G. (lookup ℎ pBq) G :) ℎ
Èrun 41 handle B (_G. 42)É : ℎ , È41É : (update ℎ pBq (_G: ′. È42É : ′ ℎ))

The main difference between termination semantics and resumption semantics is that with the former, the
continuation to be invoked when the handler is finished is the continuation at site of the handler definition,
whereas with the latter, it is the continuation at the site of the interrupt.

3

	Operational Semantics of Exceptions
	CPS and Exception Handlers
	Exceptions with Resumption

