
Comp Sci 704
Fall 2024 Ethan CecchettiLecture 24:

Data Types

Last time we saw Simply Typed _-Calculus (Stlc), but noted that the types not stopped us from writing loops,
but also hindered our ability to encode much simpler constructs like numbers, and pairs. In this lecture we
will recover those by adding them to the language as primitives, and investigate the semantics and typing
rules of these new constructs.

1 Recap: Stlc
Recall that Stlc has not only expressions and values, but also types. The three are defined by the following

BNF grammar
Types g F unit | g1 → g2

Terms 4 F () | G | _G :g. 4 | 41 42

Values E F () | _G :g. 4 closed
We also saw typing rules that allowed us to prove the judgment Γ ` 4 : g, meaning that we can prove 4

has type g in context Γ. The rules were as follows.
[Unit]

Γ ` () : unit

[Var]
Γ(G) = g

Γ ` G : g

[Abs]
Γ, G :g1 ` 4 : g2

Γ ` _G :g1. 4 : g1 → g2

[App]
Γ ` 41 : g1 → g2 Γ ` 42 : g1

Γ ` 41 42 : g2

This type system guaranteed type soundness, the requirement that well-typed programs not get stuck, but
it restricted us substantially. For instance, our encoding of numbers as Church numerals no longer worked the
way we wanted. Instead, we will see how to add various other types to the language as primitives.

2 Integers
We have seen these before as a primitive language feature in Fl, but that language did not have types. To

add integers to our language, we extend the syntax of both types, terms, and values. As previously, we will
use ⊗ to denote arithmetic operations (+, −, ∗, ^).

g F · · · | int
4 F · · · | = | 41 ⊗ 42

E F · · · | =
Like in Fl, we need to define the semantics for these new operations. For integers, we have seen how to do
this before and we can just do it again.

� F · · · | � ⊗ 4 | E ⊗ �
< = =1 ⊗ =2 (mathematically)

=1 ⊗ =2 −→ <

Unlike in Fl, we also need to extend the type system with rules for these new terms. We need an axiom
saying a literal = has type int in every environment, and an inductive rule to handle arithmetic expressions.

[Int]

Γ ` = : int

[Arith]
Γ ` 41 : int Γ ` 42 : int

Γ ` 41 ⊗ 42 : int
While we no longer have Church numerals that behave the way we want, we now have regular arithmetic

expressions and can use them accordingly. We do not have the full power of Church numerals, which allowed
us to define bounded for loops, but we have gotten a substantial feature back.

1

3 Pairs
Another useful data structure that we previously encoded as pairs. Again, we need to extend the grammars

of types, terms, and values. The type of a pair where the first element has type g1 and the second has g2
is g1 × g2. These are often called product types. For terms, we include a pairing operator and a projection
operator, and only pairs of values are themselves values.

g F · · · | g1 × g2

4 F · · · | (41, 42) | proj1 4 | proj2 4
E F · · · | (E1, E2)

Notice that for every added syntactic form, we have have an expression to introduce the form that we will
write in blue (here (41, 42)), and a separate expression to eliminate the form that we will write in red (here
proj1 4 and proj2 4). This will be a common theme.

The semantics of pairs mirrors precisely the equational requirements we used to structure an encoding of
them in untyped _-calculus.

� F · · · | (�, 4) | (E, �) | proj8 �
8 ∈ {1, 2}

proj8 (E1, E2) −→ E8

Note that the elimination form only proceeds when operating on the introduction form, which it eliminates.
Lastly, we again need typing rules for our new pairing expressions.

[Pair]
Γ ` 41 : g1 Γ ` 42 : g2

Γ ` (41, 42) : g1 × g2

[Proj]
Γ ` 4 : g1 × g2 8 ∈ {1, 2}

Γ ` proj8 4 : g8

4 Records
A record type is like an arbitrary-sized tuple, but with names, similar to a C-style struct. Each entry is

labeled with a name from a countable list of labels Lab. The syntax for records is as follows.

ℓ ∈ Lab
g F · · · | {ℓ1 :g1, . . . , ℓ= :g=}
4 F · · · | {ℓ1 = 41, . . . , ℓ= = 4=} | 4.ℓ
E F · · · | {ℓ1 = E1, . . . , ℓ= = E=}

The semantics for the introduction form evaluates the expression in a record left-to-right, and the elimina-
tion form simply accesses the relevant value.

� F · · · | {ℓ1 = E1, . . . , ℓ8−1 = E8−1, ℓ8 = �, ℓ8+1 = 48+1, . . . , ℓ= = 4=} | �.ℓ

1 ≤ 8 ≤ =

{ℓ1 = E1, . . . , ℓ= = E=}.ℓ8 −→ E8

The typing rule for creating a record require that all expressions match the type specified, and the typing
rule for accessing simply pulls out the appropriate type.

[Record]
Γ ` 41 : g1 · · · Γ ` 4= : g=

Γ ` {ℓ1 = 41, . . . , ℓ= = 4=} : {ℓ1 :g1, . . . , ℓ= :g=}

[Access]
Γ ` 4 : {ℓ1 :g1, . . . , ℓ= :g=} 1 ≤ 8 ≤ =

Γ ` 4.ℓ8 : g8

2

5 Sums
Sum types are a little more interesting. They are useful when we the collection of data a type represents to

include data with multiple forms. For instance, a list can be either empty or non-empty.
The standard way to represent these datatypes is with a sum type, denoted g1 + g2, meaning data of this

type is either a g1 or a g2. To construct something of type g1 + g2, we can take something of type g1 (or g2) and
inject it into the space g1 + g2 using an appropriate injection operator. The introduction forms for sum types
are therefore inl and inr, the left injection and right injection, respectively.

To eliminate a g1 + g2, we need to be able to handle both the case where we have a g1 and the case where
we have a g2, though not necessarily in the same way. To do that, we use a match expression, that takes a value
of type g1 + g2 and the code to execute in each case, examines whether it has a left (g1) value or a right (g2)
value, and calls the appropriate branch.

The syntax for these operations is as follows. Note that we annotate the introduction forms with types
because otherwise we cannot determine what g2 should be with inl or g1 with inr.

g F · · · | g1 + g2

4 F · · · | inlg1+g2 4 | inrg1+g2 4 | match 4 with inl(G). 41 | inr(H). 42

E F · · · | inlg1+g2 E | inrg1+g2 E

Again, we must provide a semantics for these new terms, which we do by following the intuition described
above. Note that, as with pairs, the elimination for (match) proceeds by destructing the introduction forms.

� F · · · | inlg1+g2 � | inrg1+g2 � | match � with inl(G). 41 | inr(H). 42

match (inlg1+g2 E) with inl(G). 41 | inr(H). 42 −→ 41 [G ↦→ E]

match (inrg1+g2 E) with inl(G). 41 | inr(H). 42 −→ 42 [H ↦→ E]

Note that the evaluation of the branches is lazy; only one will evaluate, and only after we destruct a sum value
to determine which one.

Adding typing rules to these terms also requires some thought. The typing rules for inl and inr are fairly
simple, as they specify both types and which one must be provided. For match, however, things are slightly
more complicated. First we note that the match expression itself binds variable G inside 41 and H inside 42.
That means that, when type checking those branches, we need to add the appropriate variable to the context.
Second, we note that the return type of the whole match cannot depend on whether we took the left or right
branch. That means that 41 and 42 must both of the same return type as each other, even though their inputs
types may be different! We formalize this intuition with the following typing rules.

[Inl]
Γ ` 4 : g1

Γ ` inlg1+g2 4 : g1 + g2

[Inr]
Γ ` 4 : g2

Γ ` inrg1+g2 4 : g1 + g2

[Match]
Γ ` 4 : g1 + g2

Γ, G :g1 ` 41 : g Γ, H :g2 ` 42 : g
Γ ` match 4 with inl(G). 41 | inr(H). 42 : g

To see an example of a sum type, we look to a datatype that has been conspicuously absent to this point:
booleans. A boolean is a type with two values, true and false. We already have unit, a type with exactly one
value, so we can use that along with sums to construct the type unit + unit, that has exactly two values: inl ()
and inr (). We can take these as our definitions of true and false and build if statements using match.

3

In particular, if 1 then 41 else 42 should evaluate 41 when 1 −→∗ true and 42 when 1 −→∗ false. The
match statement above can produce the same behavior with following definitions.

true , inlunit+unit ()
false , inrunit+unit ()

if 1 then 41 else 42 , match 1 with inl(_). 41 | inr(_). 42

Here _ is used to indicate a dummy variable that is not free in its scope.

4

	Recap: Stlc
	Integers
	Pairs
	Records
	Sums

