
Comp Sci 704
Fall 2024 Ethan CecchettiLecture 25:

Type Inference

So far we have seen _-calculus (and several extensions) without types, and we have seen simply-typed _-
calculus as well as a few extra features. These languages appeared to be almost exactly the same except for the
presence of types in the latter but not the former. This similarity raises an important question: can we take a
program from untyped _-calculus and, based on how it is used, determine what type it must have in Stlc (if
it has any type at all)? The process by which we try to do this is called type inference.

1 Type Inference
Languages like Haskell and OCaml perform this sort of operation. For instance, in the expression (5 3),

the language knows that 5 must be a function (because it is applied to something, not because of its name).
More than that, it must be a function that takes an integer as input. This usage tells us nothing about the output
type, though, so all we can say right now is that 5 has type int → U for some type variable U.

If there are other occurrences of 5 , those will provide different constraints, and these constraints must
all have a common solution for the program to have a type. For instance, a separate occurrence of the form
if (5 G) then 41 else 42 would create the constraint that 5 : UG → bool where UG is the type of G. This
constraint does not inherently conflict win the one above; if UG = int, then giving 5 type int → bool is
consistent with both uses. If, however, G has some other type, say bool × bool, the two constraints would be
inconsistent and the program would not have a valid type.

For simple type systems like the ones we have seen, if a program is well-typed, then the type can be
inferred.¹ For example, consider the following program.

let sqr = _I. I ∗ I
in _ 5 . _G. _H.

if (5 G H)
then (sqr G)
else H

The body of sqr applies the multiplication operator to I, so we know that I : int, meaning _I. I ∗ I : int → int
and thus sqr : int → int. We also know that the type of 5 must be g1 → g2 → bool for some g1 and g2
since it is applied to two arguments and its return value is used as a conditional test. Since sqr is applied the
variable G in the then branch, we know that G : int, and since 5 is applied to G, we therefore know that g1
must be int, so 5 must have type int → g2 → bool. Next, because the two branches of an if statement must
produce the same type and (sqr G) : int, we know that H must also have type int. Since the second argument
to 5 is H, that means g2 must be int as well. Putting this all together, the type of the entire program must be
(int → int → bool) → int → int → int.

That intuition makes sense, but can we form that into a precise algorithm?

2 Unification
Type inference and pattern matching in many languages, as well as the example above, are instances of a

general mechanism called unification. Briefly, unification is the process of taking two terms and finding a
variable substitution that will take the two input terms to the same result. Pattern matching is generally done

¹This stops being true if your type system gets complicated and powerful enough. In fact, it is possible to write a type system
where type inference is an undecidable problem.

1

by unifying language expressions, while type inference is done by unifying type expressions. There are other
applications of unification; for example, the programming language Prolog is based on it.

The essential task of unification is to find a substitution W that unifies two terms. That is, given B and C, we
would like to find some W such that W(B) = W(C). For example, say 5 and 6 are functions that construct terms
(like application in _-calculus or → as a type constructor), not terms that can be substituted, while G, H, I,
and F can all be substituted. Given the terms

B = 5 (G, 6(H)) C = 5 (6(I), F)

the substitution
W(·) = · [G ↦→ 6(I), F ↦→ 6(H)]

serves as a unifier since

W(B) = 5 (G, 6(H)) [G ↦→ 6(I), F ↦→ 6(H)]
= 5 (6(I), 6(H))
= 5 (6(I), F) [G ↦→ 6(I), F ↦→ 6(H)]
= W(C).

As a notation, we will write W = [G ↦→ B, H ↦→ C, · · ·] to indicate the parallel substitution, not a sequential
one. In particular, given a substitution like G [G ↦→ 6(H), H ↦→ I] would produce 6(H), which is different then
the sequential behavior of 6(I).

Unifiers do not necessarily exist. For example, the terms G and 5 (G) cannot be unified; there is no
substitution that can make these terms syntactically equal.

Most General Unifiers. Evenwhen unifiers exist, they are not necessarily unique. For example, the substitution

W′ = [G ↦→ 6(5 (0)), H ↦→ 5 (1), I ↦→ 5 (0), F ↦→ 6(5 (1))]

is also a unifier for the terms B and C above. However, if a unifier does exist, there is always a most general
unifier (MGU) that is unique up to renaming. A substitution W is a most general unifier for B and C if

• W is a unifier for B and C, and
• any other unifier W′ for B and C is a refinement of W. That is, we can get W′ from W by doing more substitutions.

For example, the W above is an MGU for 5 (G, 6(H)) and 5 (6(I), F). We can get W′ by composing W with

X = [H ↦→ 5 (1), I ↦→ 5 (0)] .

We can apply the substitution directly, noting that

W ; X = [G ↦→ X(6(I)), F ↦→ X(6(H))] ∪ X

= [G ↦→ 6(5 (0)), F ↦→ 6(5 (1))] ∪ [H ↦→ 5 (1), I ↦→ 5 (0)]
= X.

2.1 Unification Algorithm

The unification algorithm is known as Robinson’s algorithm (1965). We need a unification not just for pairs of
terms, but more generally, for sets of pairs of terms. We say that W is a unifier for the set {B1 � C1, . . . , B= � C=}
if W(B8) = W(C8) for all 1 ≤ 8 ≤ =. Note that these are unordered equality constraints, so B � C and C � B are
considered the same.

2

The unification algorithm is given by the following recursive function Unif that takes a set of equality
constraints and produces their MGU if one exists. If � is a set of equality constraints, then � [G ↦→ C] denotes
the result of apply the substitution [G ↦→ C] to all terms in � .

Unif(∅) , � (the identity substitution)
Unif({G � G} ∪ �) , Unif(�)

Unif({ 5 (B1, . . . , B=) � 5 (C1, . . . , C=)} ∪ �) , Unif({B1 � C1, . . . , B= � C=} ∪ �)
Unif({G � C} ∪ �) , [G ↦→ C] ; Unif(� [G ↦→ C]) if G ∉ FV(C)

Let us explain these four rules.

1. The first rule says that if there is nothing left to unify, so the identity substitution—which is the most
general substitution that can exists—is sufficient.

2. The second rule says that the constraint G � G can be simply ignored, as the terms are already the same,
so nothing needs to change.

3. The third rule handles unification of compound forms. For example, if 5 is the type constructor →,
then this rule says the constraint (B1 → B2) � (C1 → C2) can be decomposed into B1 � C1 and B2 � C2.
Note here that both sides of the constraint must have the same 5 and the same =. A constraint
5 (B1, . . . , B=) � 6(C1, . . . , C<) where 5 ≠ 6 or = ≠ < cannot be unified.

4. In the fourth rule, we actually create part of the unifier substitution. Note the sequential composition
operator, so this is the substitution [G ↦→ C] sequentially composed with the result of Unif(� [G ↦→ C]).
Additionally, because we have already accounted for G, the recursive call can replace every occurrence
of G with C in � . This is important because, not only does it remove G, which is already dealt with in
the final substitution, but it also means that if C is a compound term, say, 5 (B1, . . . , B=), then a further
constraint that G � 5 (C1, . . . , C=) will result in unification of the subterms.
Also note the requirement that G ∉ FV(C). This is critical. Indeed, if G ∈ FV(C), then either C = G, in
which case the second rule applies, or it is impossible to unify G and C, so Unif should fail.

3 Type Inference and Unification
We now show how to do type inference using unification on type expressions. This technique gives the

most general type (MGT) of any typable term. That is, any other type of this term is a substituted instance of
its most general type.

For this example, we will use Stlc, but without any type annotations in the syntax, as the point is to infer
them. Note that the syntax with type annotations is known as “Church style” syntax, while the syntax without
type annotations is referred to as “Curry style.” That means the syntax we are using is as follows.

g F unit | g1 → g2

4 F () | G | _G. 4 | 41 42

The typing rules are

Γ ` () : unit
Γ(G) = g

Γ ` G : g
Γ, G :g1 ` 4 : g2

Γ ` _G. 4 : g1 → g2

Γ ` 41 : g1 → g2 Γ ` 42 : g1

Γ ` 41 42 : g2

For the language of types, the third unification rule translates to:

Unif({B1 → B2 � C1 → C2} ∪ �) , Unif({B1 � C1, B2 � C2} ∪ �)

3

A problem here is that any type derivation starts with assumptions about the types of variables in the form
of the type context Γ. But without a type environment or any annotations as in Church style syntax, we do not
know what these are. However, we can observe that the form of the subterms impose constraints on the types.
We can write down these constraints and then try to solve them.

Suppose we want to infer the type of a _-term 4. Without loss of generality, assume 4 has no variables
bound more than once and no variable with a binding occurrence _G that also occurs free.²

Now let 41, . . . , 4= be an enumeration of all subterms of 4. First create a unique type variable U8 to each 48
for 1 ≤ 8 ≤ =, and also a different unique type variable VG for each variable G that occurs in 4. Then take the
following constraints.

Syntactic form Constraint
48 = () U8 � unit
48 = G U8 � VG

48 = _G. 4 9 U8 � VG → U 9

48 = 4 9 4: U 9 � U: → U8

This provides a list of constraints imposed by the typing rules. We can now run Robinson’s unification
algorithm on these constraints to acquire a substitution W, and then the type of the whole expression is
just W(U4) where U4 is the type variable associated with the full expression 4 to get the MGT of 4.

If there are more complicated types, we would have more rules for those. For instance, including integer
arithmetic and boolean if statements would result in the following constraints.

Syntactic form Constraint
48 = = U8 � int
48 = 4 9 ⊗ 4: U8 � int, U 9 � int, U: � int
48 = true or 48 = false U8 � bool
48 = if 4 9 then 4: else 4; U 9 � bool, U8 � U: , U8 � U;

3.1 An Example

To see how this works, let us infer the type of the following term:

4 = _G. _H. _I. if G then (H I) else I

First we break the term into all of its subterms and generate the associated constraints:

41 = _G. _H. _I. if G then (H I) else I U1 � VG → U2

42 = _H. _I. if G then (H I) else I U2 � VH → U3

43 = _I. if G then (H I) else I U3 � VI → U4

44 = if G then (H I) else I U5 � bool, U4 � U6, U4 � U9

45 = G U5 � VG

46 = H I U7 � U8 → U6

47 = H U7 � VH

48 = I U8 � VI

49 = I U9 � VI

²This assumption is known as the Barendregt variable convention after Henk Barendregt and can be achieved by a simple
U-renaming.

4

Solving these constraints with Robinson’s algorithm yields:

U1 ↦→ bool → (U8 → U8) → U8 → U8

U2 ↦→ (U8 → U8) → U8 → U8

U3 ↦→ U8 → U8

U4 ↦→ U8

U5 ↦→ bool
U6 ↦→ U8

U7 ↦→ U8 → U8

U9 ↦→ U8

VG ↦→ bool
VH ↦→ U8 → U8

VI ↦→ U8

That means the MGT of the expression is g = bool → (U → U) → U → U for a type variable U. In other
words, no matter what type g′ we put in for U, the term 4 can be well-typed at type g[U ↦→ g′].

5

	Type Inference
	Unification
	Unification Algorithm

	Type Inference and Unification
	An Example

