
Comp Sci 704
Fall 2024 Ethan CecchettiLecture 26:

Subtyping

Many modern languages include a features called subtyping. Subtyping is particularly well known in object
oriented languages, and indeed was first introduced in the first object oriented language: Simula. The inventors
of Simula, Ole-Johan Dahl and Kristen Nygaard, went on to win the Turing award for their contribution to the
field of object-oriented programming. Simula introduced a number of innovative features that have become
the mainstay of modern OO languages including objects, subtyping and inheritance.

The concept of subtyping is that one type may be more precise than another. A type g1 is a subtype of g2
if g1 is more precise than g2. Any instance of g1 must then also be an instance of g2, but not necessarily vice
versa. If we think of a type as encapsulating the set of terms that have that type, a subtyping relationship says
that the set of terms described by g1 is a subset of those described by g2.

The concept of subtyping is closely tied to inheritance and polymorphism and offers a formal way of
studying them. It is well illustrated by means of an example.

Person

StudentFaculty Staff

Grad Undergrad

Unfunded TA RA

Figure 1: A Subtype Hierarchy

This example hierarchy describes a subtype relationship between different types. In this case, Student,
Faculty, and Staff are all subtypes of Person. One could also say that Person is a supertype of all of Student,
Faculty, and Staff. Similarly, TA is a subtype of Student and Person. This is because the subtype relationship
must be reflexive and transitive, together making it a preorder.

Notationally, we will write g <: g′ to mean that g is a subtype of g′. Textbooks and papers sometimes
also use other symbols (the most common being ≤), but we will stick with <: here.

1 Basic Subtyping
Informally, the statement g <: g′ means that g is more specific than g′, meaning anything that has type g

should be usable wherever we need or expect something of type g′. To make this sensible, we require that <:
create a preorder. That is, it must be reflexive and transitive, obeying the following rules.

g <: g
g1 <: g2 g2 <: g3

g1 <: g3

Type systems usually formalize this intuition with a rule called a subsumption rule that allows a supertype
to subsume terms of any of its subtypes.

[Subsume]
Γ ` 4 : g′ g′ <: g

Γ ` 4 : g

Some languages also have maximal and minimal types, which we will call 1 and 0, respectively. The
subtyping rules for these types are interesting.

1

• 1 (unit): Every type is a subtype of the maximal type 1. That is, g <: 1 for every type g. If a context
expects something of type 1, it can accept any value. In Java, this is equivalent to the type Object.

• 0 (void): The minimal type 0 is a subtype of every type. That is, 0 <: g for every type g. If a context
expects anything, it can accept a value of type 0. In Java, this is the type of null.

Now let us investigate how subtyping works on some of the data types we have seen previously.

1.1 Products and Sums

When is something a subtype of a product type g1 × g2? Since a product type has a pair of values, any value
provided where we expect a product must itself have two values. Moreover, the first value must be usable
whenever a g1 is expected and the second must be usable whenever a g2 is expected. In other words, the subtype
must itself be a pair, and its elements must be subtypes of g1 and g2, respectively. This insight produces the
following subtyping rule.

g′1 <: g1 g′2 <: g2

g′1 × g′2 <: g1 × g2

For sum types, a similar logic applies. To provide a context with a g′1 + g′2, then context must expect to
receive a sum type where the left option can handle—expects a supertype of—g′1 and the right option is a
supertype of g′2. That is,

g′1 <: g1 g′2 <: g2

g′1 + g′2 <: g1 + g2
.

These rules say the product and sum type constructors (· × · and · + ·, respectively) are monotone with
respect to the subtyping relation. When the subtyping relationship is monotone—it goes in the same direction
in the premise and the conclusion—it is called a covariant subtyping relationship.

1.2 Records

Recall the grammar for types and terms with record types:

ℓ ∈ Lab
g F · · · | {ℓ1 :g1, . . . , ℓ= :g=}
4 F · · · | {ℓ1 = 41, . . . , ℓ= = 4=} | 4.ℓ

where = ≥ 1. The ℓ8s are called field identifiers, are assumed to be distinct, and can appear in any order without
changing the type. We had the following rule in the small-step operational semantics

1 ≤ 8 ≤ =

{ℓ1 = E1, . . . , ℓ= = E=}.ℓ8 −→ E8

and the following typing rules

Γ ` 41 : g1 · · · Γ ` 4= : g=
Γ ` {ℓ1 = 41, . . . , ℓ= = 4=} : {ℓ1 :g1, . . . , ℓ= :g=}

Γ ` 4 : {ℓ1 :g1, . . . , ℓ= :g=} 1 ≤ 8 ≤ =

Γ ` 4.ℓ8 : g8

To build the subtyping rules for record types, we need to consider what constitutes a “more precise”
type that can be used when a record type is expected (or, conversely, what would be “less precise” than a
record type). If a context expects a record of type {ℓ1 :g1, . . . , ℓ= :g=}, then any value it receives must have
two properties: (1) the value must have all of the fields ℓ1, . . . , ℓ=, and (2) the type of field ℓ8 must be usable
whenever a g8 is expected.

2

Putting this intuition together points to two different subtyping rules for records.

• Depth subtyping is a typing relation where the records have the same fields, but those fields have a
covariant subtyping relationship:

g′1 <: g1 · · · g′= <: g=
{ℓ1 :g′1, . . . , ℓ= :g′=} <: {ℓ1 :g1, . . . , ℓ= :g=}

• Width subtyping is a relation where the subtype can have more fields than the subtype, but the types
must be the same on fields in both records:

< ≤ =

{ℓ1 :g1, . . . , ℓ= :g=} <: {ℓ1 :g1, . . . , ℓ< :g<}

Note that in this case the subtype has more fields. That is because a context expecting fields ℓ1, . . . , ℓ<
requires that they all be present, but can safely ignore the extra fields ℓ<+1, . . . , ℓ=. This is analogous
to the relationship between a subclass and a superclass; the subclass must have all of the fields of the
superclass and may also have more.

It is possible to combine depth and width subtyping of records into a single, somewhat more complicated rule:

< ≤ = g′1 <: g1 · · · g′< <: g<
{ℓ1 :g′1, . . . , ℓ= :g′=} <: {ℓ1 :g1, . . . , ℓ< :g<}

Records as Indexed Products. Mathematically, record types can be viewed as product types whose com-
ponents are indexed by the field labels ℓ. The operators .ℓ are the corresponding projections. Thus if
Δ : Lab ⇀ Type is a partial function with finite domain dom(Δ) associating a type Δ(ℓ) with each el-
ement ℓ in its domain, we might write ∏

ℓ∈dom(Δ)
Δ(ℓ)

for a record type, or just
∏

Δ for short. An expression of this type would be a tuple indexed by dom(Δ):

(4ℓ | ℓ ∈ dom(Δ)).

In this view, the typing rules would take the form

∀ℓ ∈ dom(Δ). Γ ` 4ℓ : Δ(ℓ)
Γ ` (4ℓ | ℓ ∈ dom(Δ)) :

∏
Δ

Γ ` 4 :
∏

Δ

Γ ` 4.ℓ : Δ(ℓ)

and the subtyping rule would take the form

dom(Δ2) ⊆ dom(Δ1) ∀ℓ ∈ dom(Δ2).Δ1(ℓ) <: Δ2(ℓ)∏
Δ1 <:

∏
Δ2

2 Function Subtyping
Based on what we have seen so far, our first impulse might be to write down something like the following

to describe the subtyping relation on functions:

g′1 <: g1 g′2 <: g2

g′1 → g′2 <: g1 → g2

3

However, this would be incorrect. To see why, assume g′1 <: g1 and g′2 <: g2 and consider the functions

5 : g1 → g2

5 ′ : g′1 → g′2

If some value E has type g1, we can certainly apply 5 E and have it produce a g2. If the above subtyping rule
were correct, we would be able to use 5 ′ in place of 5 and apply 5 ′ E without any type concerns. But we
cannot! If g1 is a strict supertype of g′1, then E may not have type g′1 at all, and 5 ′ E will crash.

Actually, the incorrect typing rule given above was implemented in the language Eiffel, and runtime type
checking had to be added later to make the language type safe.

To get the correct typing rule, we need to think about when it is safe to use 5 ′ in place of 5 . Succinctly, if
every valid input to 5 is also a valid input of 5 ′ and every output of 5 ′ is also a valid output of 5 , then it is
safe to use 5 ′ when 5 was expected. Translating that intuition to types, 5 takes input of type g1 while 5 ′ takes
input of type g′1. So the intuition translate to requiring that every value of type g1 can be seen as a value of
type g′1: in other words, g1 <: g′1. For the output types, requiring every value 5 ′ can produce (type g′2) to be a
valid output of 5 (type g2) translates to g′2 <: g2. The correct subtyping rule for functions is therefore:

g1 <: g′1 g′2 <: g2

g′1 → g′2 <: g1 → g2
.

In the subtyping rules for all previous constructors, subtype ordering was preserved—the types were
covariant. This remains true for output types on functions, but input types vary in the opposite direction. We
say that the function type construct → is contravariant on its domain and covariant on its codomain.

3 References
To discuss subtyping of references, we first need typing rules for references. They are fairly straightforward

and presented below.
g F · · · | ref g
4 F · · · | ref 4 | 41 B 42 | !4

[Ref]
Γ ` 4 : g

Γ ` ref 4 : ref g
[Assign]

Γ ` 41 : ref g Γ ` 42 : g
Γ ` 41 B 42 : unit

[Deref]
Γ ` 4 : ref g
Γ ` !4 : g

As for subtyping, our first impulse might once again be to make the rule covariant. That is, if g′ <: g,
then ref g′ <: ref g. As with functions, however, this would be incorrect. To see why, consider the following
code snippet with types Square, Circle, and Shape where Square,Circle <: Shape. Assume sq : Square and
2 : Circle.

let G : ref Square = ref sq in
let H : ref Shape = G in

H B 2 ; (!G).side

With the covariant typing rule above, this code will be well-typed. Unfortunately, it places a circle 2 in the
location that G points to, and 2.side will not be defined, causing an error. This problem actually exists in Java
when using arrays, as the language incorrectly uses covariant subtyping for arrays. As a result, a runtime
check is necessary.

4

As a demonstration, say the file Test.java contains the following code.
public class Test {

public static void main(String[] args) {
String[] a = new String[1];
Object[] b = a;
b[0] = Integer.valueOf(1);

}
}

We can then run the following commands with the following outputs.
$ javac Test.java
$ java Test
Exception in thread "main" java.lang.ArrayStoreException: java.lang.Integer

at Test.main(Test.java:5)

This example shows that ref cannot safely vary covariantly because an assignment will use it as an input,
which can cause problems. But what about contravariance? If we try that, we end up with a similar problem,
but the code is even simpler:

let H : ref Shape = ref 2 in
let G : ref Square = H in

(!G).side

In other words, dereferencing treats a ref g as an output, meaning it cannot safely be contravariant. The only
option, then is invariance, which means the type can only change based on equivalence in the subtyping
relation:

g <: g′ g′ <: g
ref g′ <: ref g

Note that, for most languages, the subtyping relationship is antisymmetric—meaning g <: g′ and g′ <: g
if and only if g = g′—which also makes it a partial order, not just a preorder. In that case, invariance requires
equality of the two types. Some languages, however, are more permissive, so we do not force that restriction.

5

	Basic Subtyping
	Products and Sums
	Records

	Function Subtyping
	References

