
Comp Sci 704
Fall 2024 Ethan CecchettiLecture 27:

Recursive Types

What is the type of a cons (singly-linked) list of integers? How about a binary tree of integers? In a language
like Java, we might write

class IntList {
int data;
IntList next;

}

class IntTree {
int data;
IntTree leftChild, rightChild;

}

In OCaml, we might write

type intList = Empty | Cons of int * intList
type intTree = Leaf | Node of int * intTree * intTree

How would we write these types in a language we have seen before, such as Stlc with extra datatypes as
defined in Lecture 24? We might hope to write something like

intList = unit + (int × intList)

as this would precisely mirror the OCaml definition above. However, that is not a well-defined type in our
language; it is self-referential. Even if we take it to be an equation that intList must satisfy, we do not yet have
the constructs to build a type satisfying that equation. Indeed, we will need a new construct in our space of
types to handle it.

1 The ` Constructor
As in a variety of previous contexts, to solve the equation U = unit + (int × U), we need to find a fixed

point of the function T U = unit + (int × U). To handle this, we introduce a fixed point type constructor `U. g

that defines the least fixed point of the function T U = g. Such a fixed point exists and is unique as long as
g ≠ U. Note that if g does not reference U, then the result is simply g.

Syntactically, `U. g introduces a concept we have not previously seen: type variables. In this expression,
U is a type variable that is bound by the constructor `. These variables and binders have the same notions of
scope, free and bound variables, renaming, and safe substitution as variables in _-calculus.

Since `U. g is a solution to U = g, we have that

`U. g = g[U ↦→ `U. g] .

This construct therefore allows us to build types like the intList described above. We can define

intList , `U. unit + (int × U).

To see why, we can unroll this one level, noting that

intList = unit + (int × (`U. unit + (int × U))) = unit + (int × intList).

The ` constructor is even sufficient to build mutually-recursive types. For example, if U1 = g1 and U2 = g2
where both g1 and g2 may refer to either or both of U1 and U2, we can define the mutually-recursive types f1
and f2 by:

f1 , `U1. (g1 [U2 ↦→ `U2. g2]) f2 , `U2. (g2 [U1 ↦→ `U1. g1]).

1

2 Recursive Types in a Language
To use the fixed point type constructor in a type system, we need rules for it. There are two approaches to

using recursive types in languages: equirecursive and isorecursive.

2.1 Equirecursive Types

With equirecursive types, we consider `U. g and g[U ↦→ `U. g] to be the same type. A term of one may freely
be used as the other. To support this in the type system, we would include the following two rules.

[`-intro]
Γ ` 4 : g[U ↦→ `U. g]

Γ ` 4 : `U. g
[`-elim]

Γ ` 4 : `U. g
Γ ` 4 : g[U ↦→ `U. g]

This is the approach taken by languages like Haskell and OCaml. It is generally simpler and easier to
program with, but it can be more challenging to reason about formally.

2.2 Isorecursive Types

The other option is isorecursive types, where `U. g and g[U ↦→ `U. g] are not considered the same type, but
merely isomorphic. That means we can convert terms of one into terms of the other in both directions, but we
must do so explicitly. The explicit conversions are known as fold and unfold, with the types:

fold`U.g : g[U ↦→ `U. g] → `U. g unfold`U.g : `U. g → g[U ↦→ `U. g]

We will omit the subscripts on these operations when there is no ambiguity.
To use folding and unfolding in programs, we add fold and unfold to our language syntax, where fold

serves as an introduction form for a recursive type and unfold serves as the corresponding elimination form.

4 F · · · | fold 4 | unfold 4

E F · · · | fold E

As always when adding new syntactic forms, we need to define their operational semantics and provide
typing rules. The typing rules follow directly from the idea that these or isomorphisms on recursive types.

[Fold]
Γ ` 4 : g[U ↦→ `U. g]
Γ ` fold 4 : `U. g

[Unfold]
Γ ` 4 : `U. g

Γ ` unfold 4 : g[U ↦→ `U. g]

The semantic rules for these new operations consider them both evaluation contexts, and the introduction
and elimination forms cancel each other, as normal.

� F · · · | fold � | unfold �
unfold (fold E) −→ E

3 Using Recursive Types
To see how we can use recursive types to build interesting datatypes, we will look at some examples.

2

3.1 Lists

Perhaps the simplest place to see the value of recursive types is in defining lists. In Section 1 we saw that we
could define the type

intList , `U. unit + (int × U).

Using isorecursive types, this guides us in how to define the basic list operators. For instance, we want empty
to have type intList and correspond to having no elements. Using the injection functions for the sum type, we
note that

() : unit
inl () : unit + (int × `U. unit + (int × U))

fold (inl ()) : `U. unit + (int × U) = intList

Therefore, we can define
empty , fold (inl ()).

Similarly, to define cons we will need to fold an injection of a pair.

cons ℎ C , fold (inr (ℎ, C))

To access elements of the list, we need to unfold the list and then match.

isempty ; , match (unfold ;) with inl(_). true | inr(_). false
head ; , match (unfold ;) with inl(_). error | inr(?). proj1 ?

tail ; , match (unfold ;) with inl(_). error | inr(?). proj2 ?

3.2 Numbers as Recursive Types

The most basic types in many contexts are unit, nat, and bool. We have already seen how to encode bool
using unit and sum types. With the presence of recursive types, we no longer need a primitive type for nat.

A natural number is either 0 or the successor of a natural number. We can therefore define

nat , `U. unit + U 0 , fold (inl ()) 1 , fold (inr 0) 2 , fold (inr 1) · · ·

Using this encoding, it is straightforward to define successor and predecessor functions.

succ = , fold (inr =)
pred = , match (unfold =) with inl(_). 0 | inr(<). <

So all we really need as primitive types and type constructors are unit, recursive types, products, and
sums, and, of course, →. With these we can build all the other types like natural numbers, integers, lists, trees,
floating point numbers, and so on.

3.3 Self-Application and Ω

Recall the infinite loop Ω defined by l = _G. G G and Ω = l l.
We saw before that it was impossible to give a type to l (and thereforeΩ) in Stlc. The reason for this was

we needed types g1 and g2 such that g1 = g1 → g2. In Stlc that was impossible. However, with the addition
of recursive types, it is extremely straightforward; we can give G type `U. U → g for any type g!

3

To actually apply G to something we need to unfold it, and the resulting type is

unfold G : (`U. U → g) → g.

This is a function with domain `U. U → g, which is the type of G, so we can apply it to G. This insight lets us
define

l , _G :`U. U → g. (unfold G) G

which has type (`U. U → g) → g. If we fold that, we get back something of the same type as the argument,
thereby allowing us to define

Ω , l (fold l).

This is a well-typed term that will never terminate. It does not immediately step to itself because of the folding
and unfolding involved, but it doesn’t take very long.

Ω = l (fold l) = (_G :`U. U → g. (unfold G) G) (fold l)
−→ (unfold (fold l)) (fold l)
−→ l (fold l) = Ω

4 Untyped to Typed _-Calculus
Recursive types not only allow for Ω, they bring back the full expressive power of untyped _-calculus. To

prove this, it is possible to translate any untyped _-calculus term into a well-typed term with the universal
type: * , `U. U → U. This type satisfies the equation * = * → *. Since all pure _-calculus terms are
functions, we can represent them all as this type.

The translation is as follows.

DÈGÉ , G

DÈ41 42É , (unfold DÈ41É) DÈ42É
DÈ_G. 4É , fold (_G :*.DÈ4É)

You can prove by induction that, for any untyped _-calculus term 4, Γ ` DÈ4É : * where Γ maps all free
variables in 4 to*.

4

	The Constructor
	Recursive Types in a Language
	Equirecursive Types
	Isorecursive Types

	Using Recursive Types
	Lists
	Numbers as Recursive Types
	Self-Application and

	Untyped to Typed -Calculus

