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Polymorphic _-Calculus and System F

Last time we saw how to use recursive types to define the type of a list of integers. We then used that to
implement basic list values and operations like empty, cons, isempty, head, and tail. However, the types of
those operations were specifically working with intList. What if we want them to work with a list of any type?
How can we represent cons that works with a list g for every type g?

1 Polymorphic _-Calculus
We do not even need lists and recursive types to see the problem. Consider the type inference algorithm

we previously covered applied to something as simple as the identity function id = _G. G. The most general
type for id will be U → U for some free type variable U. Intuitively, that seems to mean that we should be able
to apply id to a value of any type, and we can, but only if we only ever apply it to values of one type.

As an example, consider the following program.

let 5 = _G. G in if ( 5 true) then ( 5 3) else ( 5 4)
The type inference algorithm will correctly infer the type U → U for 5 , but then as soon as it sees the
application 5 true in the condition, it will unify U = bool. Then when it sees the applications in the branches,
it will attempt to unify bool = int, at which point it will fail; those are disparate types that cannot be unified.

The problem is that we do not have as much polymorphism¹ as we would like. The solution is to add a
new constructor the universally quantifies over types. That is,

g F · · · | U | ∀U. g.
The type ∀U. g is a polymorphic type, or a type schema, which is a pattern with type variables that can be
instantiated to obtain actual types. For example, the polymorphic type of id would be

id : ∀U. U → U.

Note that, much like the recursive type constructor `, this ∀ constructor binds a type variable with the
same notions of scope, free and bound variables, renaming, and safe substitution as both ` for types and _ for
terms. Unlike `, however, these universally quantified type variables are not being defined by this constructor,
merely bound. More like a variable in a _-abstraction, they must be instantiated later when they are used.

The language that results from adding these types is known as the polymorphic _-calculus. It has the same
terms and evaluation rules as Stlc, but with these extra polymorphic types. All terms that were well-typed
before will still be well-typed, but now more terms will be typable as well.

1.1 Typing Rules

In addition to the old typing rules, polymorphic _-calculus adds two new rules, called the generalization and
instantiation rules, that introduce and eliminate these quantifiers, respectively. The full type system is then as
follows.

[Unit]
Γ ` () : unit

[Var]
Γ(G) = g

Γ ` G : g
[Abs]

Γ, G :g1 ` 4 : g2

Γ ` _G. 4 : g1 → g2
[App]

Γ ` 41 : g1 → g2
Γ ` 42 : g1

Γ ` 41 42 : g2

[Generalize]
Γ ` 4 : g U ∉ FV(Γ)

Γ ` 4 : ∀U. g
[Instantiate]

Γ ` 4 : ∀U. g
Γ ` 4 : g[U ↦→ g′]

¹Greek for “many forms”
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One notable change here is that the types themselves are open—that is, they may contain free variables.
The Generalize rule—which is only interesting when U ∈ FV(g)—says that, if Γ ` 4 : g holds and
U ∉ FV(Γ), then there are no assumptions involving U, meaning we can safely put in any type for it and
the typing proof will still work. We can then conclude that 4 has type g for all values of U, or, succinctly,
Γ ` 4 : ∀U. g. The Instantiate rule is the other side of this concept. It says that, if 4 has a quantified type,
then anything we put in for that type variable will work.

1.1.1 Examples

To see how this works, we can look at a couple of proof trees.
First, we see how to show that ` _G. G : ∀U. U → U.

[Generalize]

[Abs]

[Var]
G :U ` G : U

` _G. G : U → U

` _G. G : ∀U. U → U

Notably, some terms are typable that were not in Stlc. For example, l = _G. G G can now have a type!

[Generalize]

[Abs]

[App]

[Instantiate]

[Var]
G : (∀U. U) ` G : ∀U. U
G : (∀U. U) ` G : W → V

G : (∀U. U) ` G : ∀U. U
[Var]

G : (∀U. U) ` G : W
[Instantiate]

G : (∀U. U) ` G G : V
` _G. G G : (∀U. U) → V

` _G. G G : ∀V. (∀U. U) → V

Unfortunately, this type is not particularly meaningful because nothing has the type ∀U. U. It is said to be
uninhabited, and we can give it the name void. By a nearly identical argument, however, we can say that l
has type ∀V. (∀U. U → U) → V → V, which is a meaningful type.

Interestingly, while l is typable, polymorphism is not enough by itself to allow us to type Ω = l l. We
still need recursive types for that. Indeed, polymorphic _-calculus on its own (without recursive types or
something similar) still has the same property of Stlc that every well-typed program terminates. Proving that
is considerably more complicated and is beyond the scope of this course.

2 Using Polymorphism
While polymorphic _-calculus allows for reuse of programs in very convenient ways, it has a major

downside: type inference is now undecidable. A compiler could try its best and ask programmers to insert
type annotations when it fails, but we can also restrict the use of polymorphism to regain decidability.

2.1 Let-Polymorphism

A simple approach taken by languages like Haskell and OCaml is two restrict polymorphism in two ways.

1. Type quantification can only appear at the top level of a type. That is, we only allow polymorphic
expressions of the form ∀U1, . . . ,∀U=. g where g is quantifier-free.

2. Polymorphism can only be introduced in the context of a let expression, not arbitrary variable bindings.
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Together, these restrictions result in the following modifications to the language.

Quantifier-Free Terms g F unit | U | g1 → g2

Primitive let 4 F · · · | let G = 41 in 42

[PolyLet]

Γ ` 41 : g1 Γ, G :∀U1, . . . ,∀U=. g1 ` 42 : g2
{U1, . . . , U=} = FV(g1) − FV(Γ)

Γ ` let G = 41 in 42 : g2

Note that we retain the Instantiate rule from Section 1.1, but we remove that Generalize rule.
We previously considered the term let G = 41 in 42 to be syntactic sugar for (_G. 42) 41. While the two

still have the same semantic rules, they are no longer equivalent in the type system. Some terms are well-typed
using let, but not using function application, including the example from the beginning of this lecture.

The fact that polymorphism can only be introduced with let expressions is why this is known as let-
polymorphism. Both Haskell and OCaml use let-polymorphism. In theory, this could cause the type checker
to require exponential time, but in practice it is not a problem.

2.2 System F

When we first introduced Stlc, we used Church-style terms with types explicitly annotated on function
arguments. The corresponding version of polymorphic _-calculus is called System F. In System F, we explicitly
abstract terms with respect to types and explicitly instantiate those types before using the term. We therefore
augment the syntax of Stlc with new types and terms as follows.

g F · · · | U | ∀U. g
4 F · · · | ΛU. 4 | 4 g

These new terms are known as type abstraction and type application, respectively. Operationally, we can add
the following semantic rule

(ΛU. 4) g −→ 4[U ↦→ g]
.

This just gives a rule for instantiating a polymorphic type. Since these reductions only involve types, they can
be performed at compile time.

Unlike in polymorphic _-calculus, in System F we only want to introduce new type variables if they
are going to be bound by a Λ-expression. To check this, the type system needs to keep track of which type
variables are bound, and make sure that any type that appears in a type application is well-formed, meaning
all of its free variables have been bound in the surrounding context. To do this, we introduce a new context Δ
to keep track of these variables. In more complicated type systems, Δ would be a partial map from variables
to kinds, that tell us the space a type lives in (kinds are to types as types are to terms), but right now we only
have one kind, so we will simply consider Δ to be a set.

The type system then has two classes of judgements:

Δ ` g Δ; Γ ` 4 : g

The first says that g is well-formed in type context Δ, while the second says that we can prove 4 has type g in
type context Δ and variable context Γ. The rules for the well-formed type judgment are as follows.

Δ ` unit
U ∈ Δ

Δ ` U

Δ ` g1 Δ ` g2

Δ ` g1 → g2

Δ, U ` g

Δ ` ∀U. g
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Right now, since these rules do nothing more than keep track of the type variables bound in the surrounding
context, one can show that Δ ` g if and only if FV(g) ⊆ Δ.

The typing rules for terms are as follows.

Δ; Γ ` () : unit
Γ(G) = g Δ ` g

Δ; Γ ` G : g
Δ; Γ, G :g1 ` 4 : g2 Δ ` g1

Δ; Γ ` _G :g1. 4 : g1 → g2

Δ; Γ ` 41 : g1 → g2
Δ; Γ ` 42 : g1

Δ; Γ ` 41 42 : g2

Δ, U; Γ ` 4 : g U ∉ FV(Γ)
Δ; Γ ` ΛU. 4 : ∀U. g

Δ; Γ ` 4 : ∀U. g Δ ` g′

Δ; Γ ` 4 g′ : g[U ↦→ g′]

The first four rules are the same as the rules for Stlc, but with Δ included and a requirement that any types
that appear be well-formed. The last two rules specify the types for type abstractions and applications, also
requiring that types be well-formed. In fact, one can show that if Δ; Γ ` 4 : g, then g and all type annotations
occurring in 4 must be well-formed in Δ. In particular ` 4 : g is only possible when 4 and g are both closed.

To see how to use this, we can look at the polymorphic identity function: ΛU. _G :U. G which has type
∀U. U → U according to the following proof.

U ` U

U; G :U ` G : U U ` U

U; · ` _G :U. G : U → U

` ΛU. _G :U. G : ∀U. U → U

To apply this function, we must specify what type we are applying it to. So, the correct version of our original
example written in System F (with booleans and integers) would be:

let 5 = ΛU. _G :U. G
in if ( 5 bool true)

then ( 5 int 3)
else ( 5 int 3)
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