
Comp Sci 704
Fall 2024 Ethan CecchettiLectures 32 and 33:

Information Flow Control

So far we have defined a wide range of programming language constructs. We will now see an example of
how these can be used in an application domain, specifically security. Language-based security is the field of
defining, analyzing, and enforcing security properties by building analysis and enforcement structures into
programming languages themselves. Today we will be specifically focused on information flow control (IFC),
a technique for tracking and controlling flows of information through a program.

IFC is most commonly used to prevent data leakage by tracking and constraining data flows based on
confidentiality. That is the context in which we will discuss it today. Notably, identical ideas and techniques
can operate with integrity [Biba 1977] (avoiding data corruption), availability [Zheng and Myers 2005] (under-
standing how crashes in one part of a system impact others), data consistency in a distributed system [Milano
and Myers 2018] (ensuring data from weakly consistent stores doesn’t pollute strongly consistent ones), and
more. It has been shown to be effective in helping audit the security of code, even code written by malicious
developers [Ernst et al. 2014], it is used to secure isolation in parts of Firefox [Narayan et al. 2020], has been
proposed for internal use in operating systems [Zeldovich et al. 2008], and can even help detect and eliminate
speculative execution vulnerabilities [Guarnieri et al. 2020; Zagieboylo et al. 2019].

1 Security Labels
To define, analyze, and enforce the security of a program, we need to know the security policies of that

code. For IFC systems, we do that by attaching security labels to the inputs and outputs of the program. To be
useful for tracking and controlling flows of information, we need to know when information labeled with one
policy is allowed to influence (flow to) some output. We also need to know how to label computations with
inputs that have different labels.

To accomplish these goals, we require the security labels L form a lattice¹ A lattice is a set with a partial
order—we will write v and call it “flows to”—and join (least upper bound) and meet (greatest lower bound)
operations, that we denote using t and u, respectively.² That is, (L, v,t,u) must satisfy the following rules.

• Flows to (v) is a partial order; it is reflexive, transitive, and anti-symmetric.
• The join of two labels, ℓ1 t ℓ2, is their least upper bound. That is, it is an upper bound of the two
labels—ℓ1, ℓ2 v ℓ1 t ℓ2—and it flows to every upper bound—if ℓ1, ℓ2 v ℓ then ℓ1 t ℓ2 v ℓ. More
succinctly, for all ℓ1, ℓ2, ℓ,

ℓ1 t ℓ2 v ℓ ⇐⇒ ℓ1 v ℓ and ℓ2 v ℓ.

• The meet of two labels, ℓ1 u ℓ2, is their greatest lower bound:

ℓ v ℓ1 u ℓ2 ⇐⇒ ℓ v ℓ1 and ℓ v ℓ2.

The simplest lattices are the empty and singleton lattices, but those are uninteresting from a security
perspective, so we will ignore them. The next simplest lattice, shown visually in Figure 1a, is a two-point
lattice consisting of “high” (H) and “low” (L) where L v H, but not vice versa. This is a good lattice for
building intuition where you think of H as “high confidentiality” or “secret” and L as “low confidentiality”
or “public.” All of the math we will discuss works with arbitrary lattices, but those can be harder to build
intuition with.

¹These are order-theory lattices, not to be confused with geometric lattices, which are the ones sometimes used in cryptography.
²Order theory often uses ≤, ∨, and ∧ for ordering, join, and meet, respectively. We use the square versions to avoid confusion

with numeric less than and logical conjunction and disjunction.

1

H

L

(a) Two-point Lattice

>

A B

⊥

(b) Four-point Lattice

{?, @, A}

{?, A}{?, @} {@, A}

{?} {@} {A}

∅
(c) Subset lattice

Figure 1: Examples of lattices

Another common example of lattices include four-point lattices (Figure 1b), where A and B are not related
to each other. Here > is the most-secret data that nobody can read, ⊥ is the most-public data that everyone
can read, and A and B specify data that only one party can read.

Subset lattices of permissions (e.g., Figure 1c) are also good examples. Here the labels L are the subsets
of a permission set {?, @, A}. Flows to is simply set inclusion ⊆, and join and meet are union and intersection,
respectively. In a security context, a label might represent the permissions required to see a piece of data.

2 Noninterference
The simplest and most standard of security definitions for IFC systems is noninterference, which says an

attacker should learn nothing about high (secret) inputs just from looking at low (public) outputs. Intuitively,
noninterference says that high inputs cannot influence, or “interfere with,” low outputs in any way. The
following picture depicts this intuition graphically.

H

L
×

Low inputs may freely influence both high and low outputs (the blue lines) and high inputs may freely flow to
high outputs (the yellow line). However, flows are not allowed from high inputs to low outputs (the crossed-out
dotted red line).

Noninterference is a semantic property. That is, its definition considers only the behavior of a program,
not its source code (which contains information about other possible behaviors). That poses a challenge for
formalizing this intuition about noninterference. How can we know that a low output did or did not depend on
a high input when running the program? For instance, the program _ℎ. ℎ ∗ 2 produces the output 6 when run
on input 3, but so too does the program _ℎ. 6.

The trick is to notice that the output of the first program changes when we change the high input ℎ, while
the output of the second does not. That is, we need to run the program twice! Specifically, a program is
noninterfering if running it multiple times with different high inputs (but the same low inputs) will always
produce the same high outputs.

Notably, an interfering program only needs to leak information sometimes. For instance, a program that
takes high and low integers and multiplies them together is interfering, despite the fact that it will never leak
information if the low value is 0. Because there is some low input (say, 1) where running it with that low input
and different high inputs produces different results, the program is interfering (insecure).

2

We formalize noninterference using a notion of indistinguishability. Two values are indistinguishable at
some label ℓ, often denoted ≈ℓ , if an observer at level ℓ cannot tell them apart. We then say that a program is
noninterfering at ℓ if it produces indistinguishable outputs when run with indistinguishable inputs.

Definition 1. A program ? is noninterfering at ℓ if, for any inputs E1 and E2 such that E1 ≈ℓ E2, whenever
?(E1) −→∗ F1 and ?(E2) −→∗ F2, it must be the case that F1 ≈ℓ F2.

What constitutes input and output varies by setting, as does the definition of indistinguishability. For
instance, an imperative language modeling a system where an attack can read portions of the memory during
execution might define the input as an initial memory, the outputs as the sequence of memory states, and ≈ℓ by
comparing the portion of the memory the attacker can read. A functional language might consider functions
on one variable where the variable is the input and the computed value is the output. In other settings, other
definitions may be appropriate.

3 An Information Flow Language
We will now show one way to make the discussion above precise. To do that, we define an information

flow calculus that is a slightly simplified version of the Dependency Core Calculus (DCC) [Abadi et al. 1999].
Specifically, we omit the fixed point operator of DCC, meaning that our calculus will be strongly normalizing.
This choice substantially simplifies reasoning, allowing us to use simpler definitions and techniques. It also
avoids the need to decide whether to model nontermination behavior itself as an information channel.

Our calculus will be Stlc with sums, pairs, and a special tagged value to describe the security label on
values. We denote tagged types Tℓ g, and tag values by wrapping them in wrapℓ E. To compute on a tagged
value, we must first unwrap it, using an unwrap expression that unwraps a value, binds it to a variable G, and
substitutes the unwrapped value in for G in the body. The types and expressions of this language are as follows.
We include integers for simplicity of examples.

ℓ ∈ L
g F unit | int | g1 → g2 | g1 × g2 | g1 + g2 | Tℓ g

4 F () | = | G | _G. 4 | 41 42 | (41, 42) | proj8 4
| inl 4 | inr 4 | match 4 with inl(G). 41 | inr(H). 42

| wrapℓ 4 | unwrap G = 41 in 42

The semantic rules for the language are identical to Stlc with sums and pairs, plus the following rules for
wrap and unwrap, formalizing the intuition described above.

� F · · · | wrapℓ � | unwrap G = � in 4
unwrap G = (wrapℓ E) in 4 −→ 4[G ↦→ E]

Note that the semantics does not attempt to check that an unwrapped values is used in accordance with the
security policy specified in the removed tag. That will be the job of the type system, which we will see later.

As a side note, this calculus is a coarse grained IFC system, one in which security-relevant values are
wrapped, must be unwrapped to be used, and the entire computation in which they are used is then tainted by
any restrictions present in the removed label. There are also fine grained systems that attach a label to every
type instead of creating a new type constructor and the typing rules specify how they combine.

3.1 Examples

This language allows us to write some simple examples of both secure and insecure programs. For simplicity,
we will use untagged values to represent fully public information.

3

As one example, a constant function _ℎ. 6 would be noninterfering—it returns the same result regardless
of its input. The simplest insecure (interfering) program is one that takes a tagged secret value, unwraps it,
and simply returns the same value in the clear (or wrapped in a much less secret tag).

_ℎ. unwrap G = ℎ in G

This is an example of an explicit flow, where secret data flows directly to the output of the program. We could
have modified the value in some simple ways, say by adding, subtracting, or multiplying by other values, and
it would still be insecure. For instance, if ℎ : TH int and ; : TL int, the program

_ℎ;. unwrap G = ℎ in
unwrap H = ; in
G ∗ H

remains interfering; there exist pairs of inputs that are indistinguishable to a low observer and produce different
outputs.

A more subtle type of leak is an implicit flow, where a secret impacts the control flow of the program,
and the output depends on that control flow. For instance, consider the following example program of type
TH (unit + unit) → TL int.

_ℎ. unwrap G = ℎ in match G with
inl(_). wrapL 0

| inr(_). wrapL 1

This program only ever returns wrapped constants, and constants never leak information, right? However,
because the control flow depends on the value of the secret input, it returns a different constant depending on
the value of that input, thereby leaking precisely what the secret is. Indeed, to a low observer, this program will
produce a different result when given wrapH (inl()) versus wrapH (inr()) (wrapL 0 and wrapL 1, respectively).

We will see in Section 4 how we can use a type system to rule out these sorts of programs while still
allowing numerous (though not all) secure ones.

3.2 Defining Indistinguishability

If we had wrapped the outputs in the second example above with the high label H instead of the low one, the
outputs would have been marked just as secret as the inputs and we would like to consider that program secure.
Defining that distinction formally requires a precise notion of indistinguishability that captures the idea that a
low observer can tell apart TL 0 from TL 1 (or just unwrapped 0 and 1), but cannot tell apart TH 0 from TH 1.

To define ℓ-equivalence (our notion of indistinguishability), we look at the various types in our language.
Units and integers are clearly only indistinguishable if they are equal. For products, each component must be
equal, and for sums, it must be the same injection (inl or inr), and the value must be the same. The other two
type constructors—functions and tagged types—things are a little more complicated.

For tagged types, the label matters. Consider whether values wrapℓ′ E1 and wrapℓ′ E2 of type Tℓ′ g are
indistinguishable at label ℓ. If ℓ′ v ℓ, that means ℓ should be able to see the values, and it makes sense to
require E1 and E2 to be indistinguishable. If ℓ′ @ ℓ, however, the whole point of tagged values is to make
them opaque! In particular, we want any pair of internal values to be equivalent. For technical reasons, we
will require that E1 and E2 behave properly as values of type g, which we will denote E1 ∈ bgc and E2 ∈ bgc,
but otherwise place no restrictions on them. For simplicity, we will define this as just being well-typed with
type g—that is, E ∈ bgc 4⇐⇒ ` E : g—but many definitions use a more complicated purely semantic notion
of “behaves as a value of type g.” We will provide the definition of the type system in Section 4.

Functions are, perhaps, the most complicated. For two functions to be indistinguishable to ℓ, they should
behave the same way whenever given to inputs that are indistinguishable to ℓ. In essence, they need to look

4

noninterfering in their execution! This sort of definition starts to feel circular very quickly, and the way out of
the hole is to use a logical relation.

Unlike the logical relation we used to prove normalization, this is a binary logical relation. That is, it
relates two terms, not one. Also, in addition to being parameterized by a type, the relation is also parameterized
by a label to indicate the level of indistinguishability. To make our lives easier, we actually define two relations:
one on expressions, denoted EÈgÉℓ , and one on values, denoted VÈgÉℓ . The expression relation simply says
that, if the expressions evaluate to values, those values must be related.

(41, 42) ∈ EÈgÉℓ
4⇐⇒ 41, 42 ∈ bgc ∧ ∀E1, E2. 41 −→∗ E1 ∧ 42 −→∗ E2 ⇒ (E1, E2) ∈ VÈgÉℓ

The value relation precisely captures the intuition described above about how to define indistinguishability.

((), ()) ∈ VÈunitÉℓ (=, =) ∈ VÈintÉℓ

(E1, F1) ∈ VÈg1Éℓ (E2, F2) ∈ VÈg2Éℓ
((E1, E2), (F1, F2)) ∈ VÈg1 × g2Éℓ

(E1, E2) ∈ VÈg1Éℓ
(inl E1, inl E2) ∈ VÈg1 + g2Éℓ

(E1, E2) ∈ VÈg2Éℓ
(inr E1, inr E2) ∈ VÈg1 + g2Éℓ

∀(E1, E2) ∈ VÈg1Éℓ . (41 [G ↦→ E1], 42 [G ↦→ E2]) ∈ EÈg2Éℓ
(_G. 41, _G. 42) ∈ VÈg1 → g2Éℓ

(E1, E2) ∈ VÈgÉℓ
(wrapℓ′ E1,wrapℓ′ E2) ∈ VÈTℓ′ gÉℓ

ℓ′ @ ℓ E1 ∈ bgc E2 ∈ bgc
(wrapℓ′ E1,wrapℓ′ E2) ∈ VÈTℓ′ gÉℓ

Note that, while these are presented as inference rules to make them easier to read, this is not an inductive
definition! The logical relation is defined by recursion over the type constructors. For sum types and tagged
types, there are two rules, meaning the relation VÈg1 + g2Éℓ is the union of the relations defined by the two
rules, and similarly for VÈTℓ gÉℓ .

One really interesting property about this logical relation is that it forms a partial equivalence rela-
tion (PER). A PER is a binary relation that is symmetric and transitive, but not necessarily reflexive. Notably,
if 0 ≡ 1 and ≡ is a PER, then 1 ≡ 0 by symmetry and 0 ≡ 1 ≡ 0 by transitivity. That means that a PER
behaves like an equivalence relation (including reflexivity) on any values that relate to anything, but some
values may be unrelated to anything (including themselves). Checking symmetry and transitivity of the
indistinguishability relation above is straightforward.

Proving that it is not reflexive comes down to looking at the definition for the function case coupled with
the semantics for unwrap. A function that takes a wrapped value, unwraps it, will not be related to itself.
There exists a pair of inputs (two different values that have been wrapped) that are indistinguishable, but
produce a distinguishable result when fed into the function. Indeed, proving that a function is noninterfering
is equivalent to proving that it is indistinguishable from itself!

4 Enforcing Noninterference
There are a variety of ways to enforce noninterference, but we will focus on a type-based approach. That

is, we will give our calculus a type system such that every well-typed program is noninterfering. Most of
the typing rules are unmodified from Stlc with sums and pairs—this is one of the benefits of our coarse-
grained IFC approach. However, we still need typing rules for wrap and unwrap. The typing rule for wrap is
straightforward.

[Wrap]
Γ ` 4 : g

Γ ` wrapℓ 4 : Tℓ g

5

Things are a bit more complicated for unwrap, however. We said in Section 3 that the type system was
responsible for ensuring that data is used in accordance with its security label. Since unwrap is the language
construct that removes the labels and allows computation on the values, the typing rule for it must enforce the
security policies. In particular, the typing rule should require that computation using data with label ℓ should
produce output that respects (at least) the restrictions specified by ℓ.

We could accomplish that goal by requiring the output type be tagged with label ℓ (or some label that ℓ
flows to). That would be safe, but unnecessarily restrictive. For instance, unit values carry no information,
so there is no need to wrap them. Similarly, pair values already enforce any restrictions enforced by both
types—the type (Tℓ1 g1) × (Tℓ2 g2) enforces all restrictions of ℓ1 t ℓ2. We therefore define a new relation,
know as a protection relation relating labels and types: ℓ ⊳ g. This relation means that values of type g will
respect (at least) the restrictions specified by ℓ. It is defined by induction on the type as follows.

ℓ ⊳ ()
ℓ v ℓ′

ℓ ⊳ Tℓ′ g

ℓ ⊳ g

ℓ ⊳ Tℓ′ g

ℓ ⊳ g1 ℓ ⊳ g2

ℓ ⊳ g1 × g2

ℓ ⊳ g2

ℓ ⊳ g1 → g2

The first, second, and fourth rules are straightforward. The third says that, if g already includes all restrictions
of ℓ, then adding more is safe. The last rule recognizes that functions can only be used by applying them, so
they inherently enforce all restrictions of their outputs.

Note that there is no protection rule for g1 + g2. That is because it doesn’t protect any label at all! Simply
knowning which side of the sum we are on is information, so it must be wrapped in a label to satisfy any
policy. A protection rule for g1 + g2 would be like a protection rule for an unwrapped boolean.

This new protection relation is now sufficient to define the typing rule for unwrap.

[Unwrap]
Γ ` 41 : Tℓ g1 Γ, G :g1 ` 42 : g2 ℓ ⊳ g2

Γ ` unwrap G = 41 in 42 : g2

4.1 Examples Revisited

We can use this new understanding to look back at the examples from Section 3.1 to see how the typing rules
rule out interfering programs, while allowing their secure counterparts.

Recall the first (secure) example: _ℎ. 6. In this case, we never unwrap—or otherwise examine—the secret
input ℎ, so the new typing rules do not impede us. However, consider the insecure example

_ℎ. unwrap G = ℎ in G

where we assumed ℎ : TH int. In this case, the Unwrap rule requires that the output type—here int—protect
the label of the unwrapped value—here H. That is, it requires H ⊳ int. However, there is no protection rule for
raw integers, so this protection relation does not exist, meaning the term is not well-typed—exactly what we
were hoping for.

Similarly, the example of the more complicated implicit flow suffers from the same flaw. By unwrapping
both high and low arguments and multiplying them together, the two uses of Unwrap require the return
type g to satisfy H ⊳ g and L ⊳ g, respectively. We again have g = int, so those protections do not hold and the
program, correctly, fails to type check.

Finally, we can look at the implicit flow case:

_ℎ. unwrap G = ℎ in match G with
inl(_). wrapL 0

| inr(_). wrapL 1

6

where ℎ : TH (unit + unit). Again, Unwrap requires H ⊳ g for the return type g. The [Match] rule (see
Lecture 24) says that the return type of a match statement is the return type of each of its branches (which
must be the same as each other). Here, both branches return a value of type TL int. Inspecting the protection
rules tell us that H ⊳ Tℓ g if and only if either H v ℓ or H ⊳ g. Since neither of these is the case when ℓ = L
and g = int, this program again fails to type check.

Notably, a secure version of this program could return its output wrapped at label H instead of L. The
outputs would then be indistinguishable to a low observer, so we would hope our type system would allow
such a program. And indeed, it does. If the output type were changed to TH int, then the second protection
rule proves that H ⊳ TH int, and the program is well-typed.

4.2 Proving Noninterference

To prove our language enforces noninterference, we prove the fundamental theorem of our logical relation. As
with normalization, we cannot directly prove that ` 4 : g implies 4 ∈ EÈgÉℓ , but instead we must include a
substitution of the type of the context. Because we have a binary logical relation instead of a unary one, we
instead extend VÈ·Éℓ to contexts to be a binary relation on substitutions.

(W1, W2) ∈ VÈΓÉℓ
4⇐⇒ dom(Γ) = dom(W1) = dom(W2)

∧ ∀G ∈ dom(Γ). (W1(G), W2(G)) ∈ VÈΓ(G)Éℓ

From here, we can state the fundamental theorem.

Theorem 1 (Fundamental Theorem). If Γ ` 4 : g, then for any W1 and W2 such that (W1, W2) ∈ VÈΓÉℓ ,
(W1(4), W2(4)) ∈ EÈgÉℓ .

Proving this theorem requires three simple lemmas. The first two should be familiar from the proof of
strong normalization of Stlc. The third formalizes the intuition that the protection relation works properly.
That is, any two values of protected types are indistinguishable to someone who cannot see the protected label.
The proofs of all three lemmas are left as exercises.

Lemma 1 (Substitution). If Γ ` 4 : g and (W1, W2) ∈ VÈΓÉℓ , then W8 (4) ∈ bgc for both 8 = 1, 2.

Lemma 2 (Preservation of Indistinguishability). If ` 41 : g and ` 42 : g and 48 −→∗ 4′
8
, for both 8 = 1, 2, then

(41, 42) ∈ EÈgÉℓ if and only if (4′1, 4
′
2) ∈ EÈgÉℓ .

Lemma 3 (Hidden Values). If ` E1 : g and ` E2 : g and ℓ′⊳g, then for any ℓ, either ℓ′ v ℓ or (E1, E2) ∈ VÈgÉℓ .

Proof of Theorem 1. This is a proof by induction on the derivation of Γ ` 4 : g.

Cases Unit and Int: Here 4 = () or =, so W1(4) = W2(4) = 4, and the inclusion in VÈgÉℓ is by definition.
Case Var: By the definition of (W1, W2) ∈ VÈΓÉℓ .
Case App: Here 4 = 41 42, and Γ ` 41 : g1 → g2 and Γ ` 42 : g1. By induction,

(W1(41), W2(41)) ∈ EÈg1 → g2Éℓ and (W1(42), W2(42)) ∈ EÈg1Éℓ .

By definition of EÈ·Éℓ , that means if W8 (41) −→∗ 58 and W8 (42) −→∗ E8 for both 8 = 1, 2, then both
(51, 52) ∈ VÈg1 → g2Éℓ and (E1, E2) ∈ VÈg1Éℓ . By inspection on the definition of VÈg1 → g2Éℓ , we
know that 58 = _G. 4′

8
for both 8 = 1, 2 and that (4′1 [G ↦→ E1], 4′2 [G ↦→ E2]) ∈ EÈg2Éℓ . Since

W8 (41 42) = W8 (41) W8 (42) −→∗ 58 E8 −→ 4′8 [G ↦→ E8]

for both 8 = 1, 2, Lemma 2 finishes the case.

7

Case Abs: Here we have 4 = _G. 4′ and g = g1 → g2. We need to show that for any (E1, E2) ∈ VÈg1Éℓ , that
applying W8 (4) to E8 produces indistinguishable results.
Let W′

8
= W8 [G ↦→ E8] for both 8 = 1, 2. Using the same argument as in the Abs case of the normalization

proof in Lecture 31,
W8 (_G. 4′) E8 −→ W′8 (4′).

Moreover, we also have (W′1, W
′
2) ∈ VÈΓ, G :g1Éℓ . Therefore, by induction, (W′1(4

′), W′2(4
′)) ∈ EÈg2Éℓ .

A single-step application of Lemma 2 completes the case.
Case Wrap: Here g = Tℓ′ g

′ and 4 = wrapℓ′ 4′. By induction, (W1(4′), W2(4′)) ∈ EÈg′Éℓ . That means, if
they step to values E1 and E2, then (E1, E2) ∈ VÈg′Éℓ , so (wrapℓ′ E1,wrapℓ′ E2) ∈ VÈTℓ′ g

′Éℓ . By
the definition of EÈTℓ′ g

′Éℓ , this completes the case.
Case Unwrap: Here 4 = (unwrap G = 41 in 42).

Sub-case ℓ′ v ℓ: The induction hypothesis for the premise Γ ` 41 : Tℓ′ g1 of Unwrap proves that
(W1(41), W2(41)) ∈ EÈTℓ′ g1Éℓ , meaning W8 (41) evaluates to wrapℓ′ E8 for both 8 = 1, 2, and

(wrapℓ′ E1,wrapℓ′ E2) ∈ VÈTℓ′ g1Éℓ .

Unfolding the definition of EÈ·Éℓ , it suffices to show that

((W1 − {G})(42) [G ↦→ E1], (W2 − {G})(42) [G ↦→ E2]) ∈ EÈg2Éℓ .

Note that, as before, (W8 − {G})(42) [G ↦→ E8] = (W8 [G ↦→ E8]) (42).
Because ℓ′ v ℓ, inversion on the fact that (wrapℓ′ E1,wrapℓ′ E2) ∈ VÈTℓ′ g1Éℓ proves that
(E1, E2) ∈ VÈg1Éℓ , proving (W1 [G ↦→ E1], W2 [G ↦→ E2]) ∈ VÈΓ, G :g1Éℓ . Induction on the
original typing derivation thus proves

((W1 [G ↦→ E1]) (42), (W2 [G ↦→ E2]) (42)) ∈ EÈg2Éℓ ,

completing the sub-case.
Sub-case ℓ′ @ ℓ: For both 8 = 1, 2, Lemma 1 gives us that W8 (4) ∈ bgc, and therefore type preservation

proves that if W8 (4) −→∗ E8 , then E8 ∈ bgc. Lemma 3 and the existing assumptions that ℓ′ @ ℓ and
ℓ′ ⊳ g combine to show (E1, E2) ∈ VÈgÉℓ , as needed.

Case Pair: By induction, the first and second components of W1(4) and W2(4) are related by EÈg1Éℓ and
EÈg2Éℓ , respectively. Therefore, if they step to values, the components of those values must be related
by VÈg1Éℓ and VÈg2Éℓ as well. The definition of VÈg1 × g2Éℓ completes the case.

Case Proj: By induction, using a similar argument as the previous case.
Cases Inl and Inr: By induction, using a nearly identical argument to the Pair case.
Case Match: By induction, using the definition of VÈg1 + g2Éℓ to ensure that both executions take the

same branch of the match statement, and then using the same logic as the sub-case of Unwrap where
ℓ′ v ℓ from there.

To avoid the need for complicated logical relations, noninterference theorems are often phrased in a simpler
and more intuitive form: if inputs are not visible, outputs are, and the outputs have an easily-comparable type
(e.g., int or unit + unit), then the running the program with different inputs must produce identical outputs.
This formulation follows as a corollary from Theorem 1 above.

Corollary 1 (Noninterference). Assume G :g ` 4 : Tℓ int where ℓ′ ⊳ g. Let E1, E2 such that ` E1 : g and
` E2 : g, and 4[G ↦→ E1] −→∗ F1 and 4[G ↦→ E2] −→∗ F2. Then either ℓ′ v ℓ or F1 = F2.

8

Proof. ByLemma 3, either ℓ′ v ℓ, in which casewe are done, or (E1, E2) ∈ VÈgÉℓ . Theorem 1 then guarantees
that (4[G ↦→ E1], 4[G ↦→ E2]) ∈ EÈTℓ intÉℓ . Unfolding the definition, this means (F1, F2) ∈ VÈTℓ intÉℓ ,
which, by inspection, is only possible when F1 = F2.

There are several other ways to define noninterference, other ways to enforce it, and many ways to prove
it. If you are interested, there is a relatively large body of literature on various IFC systems with different
structures, goals, definitions, and proof techniques.

References
Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon Riecke. A core calculus of dependency. In 26th ACM SIGPLAN

Symposium on Principles of Programming Languages (POPL ’99), January 1999. doi: 10.1145/292540.292555.

Kenneth J. Biba. Integrity considerations for secure computer systems. Technical report, MITRE Corp, Bedford, MA,
1977. URL https://apps.dtic.mil/sti/pdfs/ADA039324.pdf.

Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart Pernsteiner, Franziska Roesner, Karl Koscher, Paulo
Barros, Ravi Bhoraskar, Seungyeop Han, Paul Vines, and Edward X. Wu. Collaborative verification of information
flow for a high-assurance app store. In 21st ACM Conference on Computer and Communication Security (CCS ’14),
November 2014. doi: 10.1145/2660267.2660343.

Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés Sánchez. Spectector: Principled detection
of speculative information flows. In 41st IEEE Symposium on Security and Privacy (S&P ’20), May 2020. doi:
10.1109/SP40000.2020.00011.

Mae Milano and Andrew C. Myers. MixT: A language for mixing consistency in geodistributed transactions. In 39th
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’18), June 2018. doi:
10.1145/3192366.3192375.

Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd, Eric Rahm, Sorin Lerner, Hovav Shacham, and Deian
Stefan. Retrofitting fine grain isolation in the Firefox renderer. In 29th USENIX Security Symposium (USENIX
Security ’20), August 2020.

Drew Zagieboylo, G. Edward Suh, and Andrew C. Myers. Using information flow to design an ISA that controls timing
channels. In 32nd IEEE Computer Security Foundations Symposium (CSF ’19), June 2019. doi: 10.1109/CSF.2019.
00026.

Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Securing distributed systems with information flow
control. In 5th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’08), April 2008. URL
https://www.usenix.org/legacy/events/nsdi08/tech/full_papers/zeldovich/zeldovich.pdf.

Lantian Zheng and Andrew C. Myers. End-to-end availability policies and noninterference. In 18th IEEE Computer
Security Foundations Workshop (CSFW ’05), June 2005. doi: 10.1109/CSFW.2005.16.

9

https://apps.dtic.mil/sti/pdfs/ADA039324.pdf
https://www.usenix.org/legacy/events/nsdi08/tech/full_papers/zeldovich/zeldovich.pdf

	Security Labels
	Noninterference
	An Information Flow Language
	Examples
	Defining Indistinguishability

	Enforcing Noninterference
	Examples Revisited
	Proving Noninterference

