
Comp Sci 704
Fall 2025 Ethan CecchettiLecture 6:

Denotational Semantics

We have now seen two operational models for programming languages: small-step and big-step. In this lecture,
we consider a different semantic model, called denotational semantics.

The idea of denotational semantics is to translate the program to a mathematical object that represents
what it computes. The objects are generally functions are relations with well-defined extensional meanings in
terms of sets. That is, we are taking the intensional representation of a computation that is a program in the
language, and we are giving it an extensional meaning as a mathematical function. The main challenge is
getting a precise understanding of the meaning of the sets over which these functions or relations operate.

1 Structure of Denotational Semantics
To define a denotational semantics for Imp, we are faced with the same situation as with an operational

semantics: there are three different categories of Imp terms (AExp, BExp, and Com), and we need a different
semantics for each. As a reminder, the BNF grammar for Imp is as follows.

AExp : 0 F G | = | 01 + 02 | 01 ∗ 02 | 01 − 02

BExp : 1 F true | false | 01 = 02 | 01 ≤ 02 | 11 ∧ 12 | 11 ∨ 12 | ¬1
Com : 2 F skip | G B 0 | 21 ; 22 | if 1 then 21 else 22 | while 1 do 2

For each category of term, we will define a separate denotational semantics that maps that term into a
mathematical function representing its meaning. The notation È·É is common for denotational semantics, so
we will use AÈ·É, BÈ·É, and CÈ·É for our three functions. Since the meaning of an Imp program is dependent
on the environment in which it is run (here the store), each will be a function from Store to something.

To simplify presentation, we change the type of stores to map variables to mathematical integers, rather
than integer symbols. That is, Store , Var → Z for this semantics. We also let 2 = {true, false} be the
set of mathematical boolean values, distinct from the symbols true and false, just as Z is the mathematical
counterpart to Int. The denotation functions then have the following types.

AÈ0É : Store → Z BÈ1É : Store → 2 CÈ2É : Store ⇀ Store

Note that, as with the big-step semantics, the denotational semantics for arithmetic and boolean expressions
both produce total functions, while the semantics for commands produces a partial function.

2 Arithmetic and Boolean Expressions
We can define the denotational semantics for arithmetic and boolean expressions by structural recursion.

To avoid repeating nearly-identical rules, we use the metasymbols ⊗ ∈ {+, ∗,−}, ∼ ∈ {=, ≤}, and � ∈ {∧,∨}.

AÈ=Éf , =

AÈGÉf , f(G)
AÈ01 ⊗ 02Éf , AÈ01Éf ⊗ AÈ02Éf

BÈtrueÉf , true
BÈfalseÉf , false
BÈ¬1Éf , ¬(BÈ1Éf)

BÈ01 ∼ 02Éf , (AÈ01Éf) ∼ (AÈ02Éf)
BÈ11 � 12Éf , (BÈ11Éf) � (BÈ11Éf)

As in previous semantics, we allow the slight, but convenient, abuse of notation in a few cases and
overload the metasymbols ⊗, ∼ and � as well as the symbol ¬. The symbol on the left side represents the
syntactic object in the Imp language, while the symbol on the right side represents a semantic object, namely
a mathematical operation on integers or booleans.

1

3 Commands
For a command 2, the function CÈ2É should take an initial state and produce the final state reached by

applying 2. However, if the computation does not halt, there is no final state! This is why the function is
partial. To simplify some of the analysis, it is easier to work with total functions, so we will add a special
element ⊥ (called “bottom”) to the codomain that indicates nontermination. For any set (, let (⊥ = (∪ {⊥}.
This is called a pointed set. Now we can regard CÈ2É as a total function CÈ2É : Store → Store⊥ where
CÈ2Éf = f′ if 2 terminates with final store f′ on input f, and CÈ2Éf = ⊥ if 2 diverges with initial store f.
Using this pointed set of stores, we can define most of the rules recursively.

Non-Looping Commands. For non-looping commands, the denotational semantics is defined by a straight-
forward recursion on the command as follows.

CÈskipÉf , f

CÈG B 0Éf , f[G ↦→ AÈ0Éf]

CÈif 1 then 21 else 22Éf ,

{
CÈ21Éf if BÈ1Éf = true
CÈ22Éf if BÈ1Éf = false

= if BÈ1Éf then CÈ21Éf else CÈ22Éf

CÈ21 ; 22Éf ,

{
CÈ22É (CÈ21Éf) if CÈ21Éf ≠ ⊥
⊥ if CÈ21Éf = ⊥

= if CÈ21Éf = ⊥ then ⊥ else CÈ22É (CÈ21Éf)

Note that for conditionals and sequencing, the italic if -then-else is not the Imp symbols, but the mathematical
construct equivalently specified using a piecewise function.

For the last case involving sequential composition 21 ; 22, another way to achieve this effect is by defining
a lifting operator (·)† : (� → �⊥) → (�⊥ → �⊥) on functions that maps ⊥ to bot and otherwise applies the
original function. That is,

5 †(G) , if G = ⊥ then ⊥ else 5 (G).

This notation allows us to simplify the definition of CÈ21 ; 22Éf , CÈ22É† (CÈ21Éf). Or, equivalently,

CÈ21 ; 22É , CÈ22É† ◦ CÈ21É

where 5 ◦ 6 is standard function composition.

While Loops. We have one command left: while 1 do 2. Recalling the small-step operational semantics from
before, this is semantically equivalent to if 1 then (2 ; while 1 do 2) else skip, so we might hope the definition
would be

CÈwhile 1 do 2Éf = if BÈ1Éf then CÈ2 ; while 1 do 2Éf else f

= if BÈ1Éf then CÈwhile 1 do 2É†(CÈ2Éf) else f.
(1)

Unfortunately, this definition is circular. It isn’t merely recursive—defining the semantics of a command with
respect to its subterms—it attempts to define the semantics of CÈwhile 1 do 2É in terms of CÈwhile 1 do 2É,
which is not valid. The big-step semantics in the previous lecture did not suffer from this problem because it
was an inductively-defined relation, and we relied on the well-founded nature of the derivation trees. Here we
are trying to define a function, so we need another way to solve the circularity.

2

To untangle this knot, we can take (1) as an equation that the function must satisfy, rather than a definition.
That is, to define CÈwhile 1 do 2É, we need to build some function, such that, for every store f,

, f = if BÈ1Éf then ,†(CÈ2Éf) else f. (2)

To find such a , , we first define another function F : (Store → Store⊥) → (Store → Store⊥) that
transforms denotations and loosely represents “one iteration” of the loop:

F F f , if BÈ1Éf then F†(CÈ2Éf) else f

Now we can simply say that we need to find a, such that F , = , . That is, we are looking for a fixed point
of F . By how do we take a fixed point of F ? The solution is to think of a while statement as the limit of a
sequence of approximations. Intuitively, by running through the loop more and more times, we get better and
better approximations.

The first, and least accurate, approximations is the totally undefined function:

,0 f , ⊥.

This function gives the right answer for nonterminating programs, but is wrong for every terminating program.
The next approximation will be to apply F and “run the loop” once. That is,

,1 f , F ,0 f

= if BÈ1Éf then ,
†
0 (CÈ2Éf) else f

= if BÈ1Éf then ⊥ else f.

This improved approximation gives the correct answer both for nonterminating programs and for while loops
where the condition is immediately false, so the body of the loop never runs. That is, loops where the guard is
evaluated only once. We appear to be getting closer! By applying F again, we can get closer.

,2 f , F ,1 f = if BÈ1Éf then ,
†
1 (CÈ2Éf) else f

This approximation will also be correct for a program that evaluates the guard at most twice before terminating.
In general, we can define

,=+1 f , F ,= f = if BÈ1Éf then ,†
= (CÈ2Éf) else f

and know that,= will provide the correct answer for both nonterminating programs (it will return ⊥), and for
any loop that checks its guard at most = times before terminating. The denotation of the while loop is then the
limit of this sequence.

But how do we take limits on spaces of functions? To do this, we need some structure on the functions.
We will define an ordering v on the functions such that,0 v ,1 v ,2 v · · · , and then find the least upper
bound (or supremum) of this sequence. That is, the smallest function,—according to our ordering—such
that,8 v , for every 8 ≥ 0. That will be the solution to equation (2).

Defining the ordering v is where our use of ⊥ and pointed sets comes in. The ordering we use is known
as the flat ordering on a pointed set (⊥. The flat ordering is a reflexive ordering (∀B ∈ (⊥. B v B) that says
⊥ is less than everything (∀B ∈ (⊥.⊥ v B), but all other elements are independent (if B1 ≠ B2, then they are
unrelated). Visually, the ordering appears as follows.

B0 B1 B2 · · · B= · · ·

⊥

3

We can extend v to function point-wise. That is, for functions 5 , 6 : � → (⊥,

5 v 6
4⇐⇒ ∀3 ∈ �. 5 (3) v 6(3).

This ordering on the function space forms something called a chain-complete partial order (CPO), and
taking � and (to both be Store, we can see that ,= v ,=+1 for all = ≥ 0. This notably requires that if
,= (f) = f′ ≠ ⊥, then,<(f) = f′ for all < ≥ =. This ordering property means the,=’s form a chain, so
the Knaster–Tarski theorem—mentioned in Lecture 3 but not proven in this course—applies and proves that
, =

⊔∞
==0 ,= is the least fixed point of F . The resulting function is equivalently defined by

, f =

{
⊥ if ∀=.,= f = ⊥
f′ if ∃=.,= f = f′.

By the stability property of,= (f) discussed above, this is well defined.
Note that this entire construction is very similar to the “bottom-up” approach to building a fixed point of

the rule operator ' in Lecture 3. These are, indeed, deeply connected to each other and both are special cases
of the Knaster–Tarski theorem.

4

	Structure of Denotational Semantics
	Arithmetic and Boolean Expressions
	Commands

