
Comp Sci 704
Fall 2025 Ethan CecchettiLecture 11:

Semantics by Translation

Recall from Lecture 6 that we can define the semantics of a program denotationally by showing how to
translate programs into a different mathematical space that we understand better. In that case, we translated
programs into mathematical objects (functions from stores to either numbers, booleans, or stores). Another
useful form of denotational semantics is semantics by translation, where we translate programs in one language
into another language that we understand better—essentially the process of compilation.

To see how these relate, we will look at translating _-calculus to a different version of itself. Specifically,
we see how to translate call-by-name (CBN) _-calculus into call-by-value (CBV) _-calculus. This exploration
has a few different purposes.

• By showing that we can translate CBN _-calculus into CBV _-calculus, we show that CBV _-calculus is
at least as expressive as CBN. That is, there are no behaviors in CBN _-calculus that we cannot (locally)
simulate in CBV.

• We will see how to precisely state and prove that a translation is correct.
• We will expose some thorny issues around implementing lazy programming languages.

1 Translating CBN _-calculus to CBV _-calculus
In Lecture 10 we defined the operational semantics for call-by-name (lazy) _-calculus as follows.

(_G. 41) 42 −→ 41 [G ↦→ 42]
41 −→ 4′1

41 42 −→ 4′1 42

We defined the operational semantics for call-by-value (strict) _-calculus as follows.

(_G. 4) E −→ 4[G ↦→ E]
41 −→ 4′1

41 42 −→ 4′1 42

4 −→ 4′

E 4 −→ E 4′

These are perfectly good operational semantics, but they tell us nothing about why CBV is as expressive as
CBN. We can see this more clearly by translating CBN into CBV. That is, we create a denotational semantics
for CBN that treats CBV as the meaning space.

To translate from the CBN _-calculus to the CBV _-calculus, the key issue is how to make it lazy. That is,
how do we stop CBV from evaluating its arguments before applying a function? Normally CBV evaluation
eagerly evaluates its arguments, so we need to protect those arguments from evaluation. To do this, notice that
CBV does have a way to encapsulate a pending computation and save if for later: wrap it in a _-abstraction.
Later, when the value of the argument is needed, applying the abstraction to a dummy argument will extract
the body. Such a wrapped computation is referred to as a thunk.

For our translation, we will use the notation __. 4, which is shorthand for _G. 4 where G ∉ FV 4. We also
need a dummy argument to apply our thunks and extract the computation, so we will use id = _G. G for that.

Formally, we define the translation function È·É recursively on the structure of expressions as follows.

ÈGÉ , G id È_G. 4É , _G. È4É È41 42É , È41É (__. È42É)

To see how this works, we will looks at the example of Church booleans. Recall the following definition
from Lecture 8.

true , _GH. G false , _GH. H if , _1C 5 . 1 C 5

1

https://cecchetti.sites.cs.wisc.edu/cs704/2025fa/notes/lec06-denotational-semantics.pdf
https://cecchetti.sites.cs.wisc.edu/cs704/2025fa/notes/lec10-reduct-strats.pdf
https://cecchetti.sites.cs.wisc.edu/cs704/2025fa/notes/lec08-lambda-encodings.pdf


There is a slight problem with this construction in CBV _-calculus: if 1 41 42 will always evaluate both 41
and 42 regardless of the value of 1. In CBN, however, this problem goes away. That means that by applying
our translation to the above terms, we should get a CBV version of this encoding that behaves the way we
expect.

ÈtrueÉ = È_GH. GÉ = _GH. ÈGÉ = _GH. G id

ÈfalseÉ = È_GH. HÉ = _GH. ÈHÉ = _GH. H id

ÈifÉ = È_1C 5 . 1 C 5 É = _1C 5 . È(1 C) 5 É = _1C 5 . È1 CÉ (__. È 5 É)
= _1C 5 . È1É (__. ÈCÉ) (__. È 5 É)
= _1C 5 . (1 id) (__. C id) (__. 5 id)

Now we can see what happens when we first translate if true 41 42 and then evaluate it with CBV rules.

Èif true 41 42É = ÈifÉ (__. ÈtrueÉ) (__. È41É) (__. È42É)
=

(
_1C 5 . (1 id) (__. C id) (__. 5 id)

)
(__. ÈtrueÉ) (__. È41É) (__. È42É)

−→3 (
(__. ÈtrueÉ) id

) (
__. (__. È41É) id

) (
__. (__. È42É) id

)
−→ ÈtrueÉ

(
__. (__. È41É) id

) (
__. (__. È42É) id

)
= (_GH. G id)

(
__. (__. È41É) id

) (
__. (__. È42É) id

)
−→2 (

__. (__. È41É) id
)

id
−→2 È41É

Notice that 42 was never evaluated. This is exactly what we were hoping for!

2 Adequacy
We now have two semantics for CBN _-calculus: the small-step operational semantics, and the translation
to CBN _-calculus. That raises the important question: are they the same? We say a second semantics is
adequate with respect to the first if it fundamentally defines the same meaning.

To formalize that notion, note that both the CBV and CBN _-calculus are deterministic reduction strategies
in the sense at most one reduction is possible for any term (up to U-equivalence). When an expression 4 in a
language is evaluated in a deterministic system, one of three things can happen:

1. There is an infinite sequence of expressions 41, 42, . . . such that 4 −→ 41 −→ 42 −→ · · · . In this case
we write 4⇑ and say 4 diverges.

2. The expression produces a value E in zero or more steps. That is, 4 −→∗ E. In this case we say 4 converges
to E, or write 4 ⇓ E.

3. The computation converges to a non-value. That is, 4 −→∗ 4′ where 4′ is not a value but 4′ cannot step.
In this case we say the computation is stuck.¹

A semantic translation is adequate if these three behaviors in the source system are adequately represented
in the target system, and vice versa. This relation is illustrated with the following commutative diagram.

4 E

È4É ÈEÉ≈C

∗

È·É È·É

∗

¹This cannot happen in CBV or CBN _-calculus for closed terms, but we will see examples soon.

2



Here ≈ is some notion of target term equivalence that is preserved by evaluation, such as V-equivalence, and
we use C to represent a target terms to distinguish them from source terms 4.

That is, if 4 converges to some value E in CBN semantics, then È4É must converge to some value C in
CBV semantics that is equivalent to E, and vice versa. Formally, we state this as the combination between
soundness and completeness of the translation.

Definition 1 (Soundness). The translation from CBN to CBV is sound if any behavior any possible behavior
of the translated program is possible in the source program. That is,

• If È4É ⇓ C, then there is some E such that 4 ⇓ E and C ≈ ÈEÉ.
• If È4É⇑ then 4⇑.

Definition 2 (Completeness). The translation from CBN to CBV is complete if any behavior any possible
behavior of the source program is possible for the translated program. That is,

• If 4 ⇓ E, then there is some C such that È4É ⇓ C and C ≈ ÈEÉ.
• If 4⇑ then È4É⇑.

3 Proving Adequacy
We would like to show that evaluation commutes with our translation È·É from CBN to CBV. To do this,
we first need a notion of target term equivalence (≈) that is preserved by evaluation. This is challenging,
because in the evaluation sequence in the target language, intermediate terms may appear that are not the
translation È4É of any source term 4. For some translations (but not this one), the reverse may also happen.
The equivalence must allow for these extra V-redexes that appear during translation.

For our CBN-to-CBV translation, an appropriate notion is to say two terms are equivalent if the differ
only by thunks waiting to be applied. That is, C ≈ (__. C) id, and ≈ is a structural congruence—meaning C ≈ C

and if C1 ≈ C2 then _G. C1 ≈ _G. C2, etc. We can think of this equivalence as saying that if C1 ≈ C2, then C1 and C2
are the same up to optimizing away applied thunks everywhere (including under _-abstractions).

Adequacy will follow from a series of lemmas, all of which are proved by induction in some form. Most
of the work is contained in Lemma 5. We write C1 −−→cbv

: C2 if C1 reduces to C2 in = steps with CBV semantics.
If we do not care about the exact number of steps, we use C1 −−→cbv

∗ C2 for zero or more and C1 −−→cbv
+ C2 for one

or more.
To show adequacy, we show that each CBN evaluation step starting from 4 is mirrored exactly by a

sequence of CBV evaluation steps starting from È4É. To keep track of corresponding stages in the two
evaluation sequences, we define a simulation relation . between source and target terms that is more general
than the translation È·É and is preserved during evaluation of both source and target. Intuitively, 4 . C means
that CBN term 4 is simulated by the CBV term C.

Formally, we define . as follows.

G . G id
4 . C

_G. 4 . _G. C

41 . C1 42 . C2

41 42 . C1 (__. C2)
4 . C

4 . (__. C) id

The first three rules ensure that a source term corresponds to its translation. The last rule takes care of the
extra V-reduction (from applied thunks) that may arise during evaluation—≈-equivalent terms may appear.

3



To use this relation in our proof of adequacy, we being with a simple but important lemma.

Lemma 1 (Projection Simulates). For all expressions 4, 4 . È4É.

Proof. The proof follows by structural induction on 4.

Case 4 = G: G . G id = ÈGÉ by definition.
Case 4 = _G. 4′: By induction, 4′ . È4′É, so by the second rule, 4 = _G. 4′ . _G. È4′É = È4É.
Case 4 = 41 42: By induction, 41 . È41É and 42 . È42É. Therefore, by the third rule,

4 = 41 42 . È41É (__. È42É) = È41 42É = È4É .

Next we show that if 4 is simulated by C, then its translation is ≈-equivalent to C.

Lemma 2 (Related Terms Project to Equivalent Terms). If 4 . C then È4É ≈ C.

Proof. This is a proof by induction on the derivation of 4 . C.

Case G . G id: Here 4 = G and C = G id, so È4É = C, and we are done.
Case _G. 4′ . _G. C′ where 4′ . C′: By induction, È4′É ≈ C′, so therefore È4É = _G. È4′É ≈ _G. C′ = C.
Case 41 42 . C1 (__. C2) where 41 . C1 and 42 . C2: By induction, È41É ≈ C1 and È42É ≈ C2. Therefore,

È4É = È41 42É = È41É (__. È42É) ≈ C1 (__. C2) = C.

Case 4 . (__. C) id where 4 . C: By induction, È4É ≈ C. So by the definition of ≈, È4É ≈ (__. C) id.

The next lemma says that if a value _G. 4 relates to a term C, then C always reduces to some value _G. C′
while preserving the correspondence.

Lemma 3 (Reduction to Related Values). If _G. 4 . C, then there is some C′ such that C −−→cbv
∗ _G. C′ and 4 . C′.

Proof. This is a proof by induction on the derivation of _G. 4 . C. Note that the first and third rules are
impossible, as G ≠ _G. 4 and 41 42 ≠ _G. 4.

Case _G. 4 . _G. C′ where 4 . C′: This is immediate in zero steps.
Case 40 . (__. C0) id where 40 . C0: In this case 40 = _G. 4 and C = (__. C0) id. By the induction hypothesis,

there is some C′ such that C0 −−→cbv
∗ _G. C′ and 4 . C′. Therefore C = (__. C0) id −−→cbv C0 −−→cbv

∗ _G. C′.

The next lemma deals with substitution.

Lemma 4 (Substitution). If 41 . C1 and 42 . C2, then 41 [G ↦→ 42] . C1 [G ↦→ __. C2].

Proof. This is a proof by induction on the derivation of 41 . C1.

Case H . H id: There are two sub-case, depending on whether or not H = G.
• H = G: Here 41 [G ↦→ 42] = 42 and C1 [G ↦→ __. C2] = (__. C2) id, so the fourth rule applies.
• H ≠ G: Here 41 [G ↦→ 42] = H and C1 [G ↦→ __. C2] = C1, and the case follows from H . H id.

Case _H. 4′1 . _H. C′1: We again have two sub-cases, depending on whether or not H = G.
• H = G: Here (_G. 4′1) [G ↦→ 42] = _G. 4′1 and (_G. C′1) [G ↦→ __. C2] = _G. C′1, so the result is immediate.

4



• H ≠ G: Without loss of generality, we can U-convert so H ∉ FV(41) ∪ FV(C2), meaning

(_H. 4′1) [G ↦→ 42] = _H. 4′1 [G ↦→ 42] and (_H. C′1) [G ↦→ __. C2] = _H. C′1 [G ↦→ __. C2] .

By induction, 4′1 [G ↦→ 42] . C′1 [G ↦→ __. C2], so the second . rules completes the case.
Case 4 4′ . C (__. C′) where 4 . C and 4′ . C′: By definition, substitution distributes over application, so

41 [G ↦→ 42] = (4 4′) [G ↦→ 42] = (4[G ↦→ 42]) (4′ [G ↦→ 42])
and

C1 [G ↦→ __. C2] = (C C′) [G ↦→ __. C2] = (C [G ↦→ __. C2]) (C′ [G ↦→ __. C2]).

By the induction hypotheses, we have 4[G ↦→ 42] . C [G ↦→ __. C2] and 4′ [G ↦→ 42] . C′ [G ↦→ __. C2].
The third (application) rule of the definition of . completes the case.

Case 41 . (__. C′1) id where 41 . C′1: By induction, 41 [G ↦→ 42] . C′1 [G ↦→ __. C2]. Therefore, using the
fourth inference rule,

41 [G ↦→ 42] . (__. C′1 [G ↦→ __. C2]) id = (__. C′1) id[G ↦→ __. C2] = C1 [G ↦→ __. C2] .

We now have enough machinery to show that the . relation is preserved by stepping.

Lemma 5 (Simulation Preservation). If 4 . C and 4 −−→cbn 4′, then there is a C′ such that C −−→cbv
+ C′ and 4′ . C′.

4 4′

C C′

cbn
∗

. .

cbv
+

Proof. We again proceed by induction on the derivation of 4 . C.

Case G . G id: In this case 4 cannot step, so this case is impossible.
Case _G. 4′ . _G. C′ where 4′ . C′: Again 4 cannot step, so this case is impossible.
Case 41 42 . C1 (__. C2) where 41 . C1 and 42 . C2: There are two subcases depending on the form of the

derivation of 4 −−→cbn 4′.

• Where 41 42 −−→cbn 4′1 42 with 41 −−→cbn 4′1: By the induction hypothesis, there is some C′1 such that
C1 −−→cbv

+ C′1 and 4′1 . C′1. Therefore C1 (__. C2) −−→cbv
+ C′1 (__. C2), and by the third rule defining our

simulation relation, 4′1 42 . C′1 (__. C2).
• Where 41 = _G. 4′1 and (_G. 4′1) 42 −−→cbn 4′1 [G ↦→ 42]: By assumption, _G. 4′1 . C1, so by Lemma 3,
C1 −−→cbv

∗ _G. C′1 where 4′1 . C′1. We therefore have that

C = C1 (__. C2) −−→cbv
∗ (_G. C′1) (__. C2) −−→cbv C′1 [G ↦→ __. C2] .

Lemma 4 now shows that 4′1 [G ↦→ 42] . C′1 [G ↦→ __. C2], completing the case.

Case 4 . (__. C0) id where 4 . C0: By induction, there exists some C′ such that C0 −−→cbv
+ C′ such that 4′ . C′.

Therefore C = (__. C0) id −−→cbv C0 −−→cbv
+ C′, completing the case.

5



We are now ready to complete our proof of adequacy.

Theorem 1 (Adequacy of È·É). The CBN-to-CBV translation È·É is sound and complete.

Proof. We begin with completeness. Given a source term 4 and its translation È4É, Lemma 1 gives us that
4 . È4É. Lemma 5 then shows that each step of the CBN evaluation of 4 is mirrored precisely by a CBV
execution that preserves 4 . C. Thus, if the evaluation of 4 diverges, so too will the evaluation of È4É. Similarly,
if the evaluation of 4 converges to a value E, then by Lemma 3, the evaluation of È4É will converge to a value C
such that E . C. Lemma 2 shows ÈEÉ ≈ C, completing the proof of completeness.

For soundness, we need to show that every evaluation in the target language corresponds to some evaluation
in the source language. Suppose we have a target-language evaluation È4É −−→cbv

∗ C for a value C. There are
three possibilities for the evaluation of 4: (i) the evaluation could get stuck. This cannot happen for the
source language because all terms are either values or have a valid evaluation step. (ii) the evaluation of 4
could terminate with a value E. In this case E . C by Lemma 5 because the target language evaluation is
deterministic. (iii) the evaluation of 4 could diverge. In this case, Lemma 5 proves there must be some divergent
target-language evaluation. The determinism of the target language proves this cannot happen.

6


	Translating CBN -calculus to CBV -calculus
	Adequacy
	Proving Adequacy

