Comp Sci 704 Lecture 13:

Fall 2025 A Functional Language Ethan Cecchetti

To this point, we have only talked about small languages that felt a bit like toys. IMp had some basic pro-
gramming constructs we expect, but was conspicuously missing functions. On the other hand A-calculus was
conspicuously missing everything but functions. We saw how to encode a variety of useful constructs in
A-calculus, but we will now go a step farther and augment the language itself with more constructs.

This new functional language FL is a richer language than anything we have seen and is something we
might actually be willing to program in. We will give semantics for this language in two ways: a structural
operational semantics and a translation to the CBV A-calculus.

1 Syntax of FL

In addition to A-abstractions, we introduce some new primitives:

* natural number constants n,

* primitive booleans true and false, and

* arec construct for constructing recursive functions.
All of these will be language primitives. That is, they are given as part of the syntax, not encoded by other
constructs. We could also include arithmetic and boolean operators as before, but for simplicity of exposition,
we will include only conditional if statements. Note that these are functional-style if statements which means
they return whatever value the chosen branch returns.

Expressions. FL is an expression language, so there is only one kind of expression. The syntax is as follows.

e = x|n|lee| Axi...xp.e | letx=ejines
| true | false | if eg then e; else ey
| (e1,....en) | #ne

| rec f(x)=e

Here n must be strictly positive in projections #n e, A-abstractions Ax; . ..x,. ¢, and let rec constructs.
Computation will be performed on closed terms only. We have said what we mean by closed in the case of
A-terms, but there are also variable bindings in the let and rec construct, so we need to extend the definition
to those cases by defining the scope of the bindings. The scope of the binding of x in let x = ¢ in e; is e;
(but not e1), and the scope both f and x in rec f(x) = e is e. That is, rec defines named recursive functions.

Values. Values are a subclass of expressions for which no reduction rules will apply. Thus values are
irreducible. There will be other irreducible terms that are not values, which we will call stuck terms. The
grammar for values is as follows.

v = n|true | false | Axy...xp.e¢ | (vi,...,v,) | rec f(x) =e

2 Operational Semantics of FL

We will define our operational semantics by a set of evaluation order rules and a set of reduction rules. With
all of these extra programming constructs, the power of evaluation contexts to concisely specify evaluation
order rules becomes readily apparent.

For evaluation order rules, we will define our evaluation contexts so that evaluation is left-to-right, in
applicative order (like CBV), and deterministic

E == [[]|Ee|VvE |letx=Eine | if E then e else e;
| #nE | Vi,...,vi, E, e, ..., €p)

Note that there are no holes in the branches of if expressions. We want to delay evaluation of the branches
until we finish evaluating the condition, and then discard the incorrect branch without ever evaluating it.
The operational semantic rule using these evaluation contexts is the standard structural congruence rule.

e—e'

Ele] — E[€]

Our reduction rules are as follows. Note that multi-argument functions expect one argument at a time and
are implicitly curried. That allows for a simpler semantics as well as partial evaluation, though it prevents the
semantics from checking that the correct number of arguments were applied.

nx=?2
[APPN] [ApP1]
(Ax1...xp.0) v — (Ax2...xp.€)[x1 > V] (Ax.e) v — e[x > V]
[TFT] - [IFF] -
if true then e else e — e if false then e else e; — e,
1<n<m
[Pro7J] [LET]
#n (Vvi,...,vm) — vy letx=vine — e[x > v]
[REC]

rec f(x) = e —> (to be continued)

We can already see the distinction between a value and an irreducible term. For example, what happens
with the expression “if 3 then 1 else 5” or “#5 (true, false, 0)”? Those expressions are not values, but they
also cannot be reduced further. They are stuck. Unlike in A-calculus, not all expressions work in all contexts.

In a real programming language, these examples might produce a runtime type error. For that, we would
need a notion of types, which we will see later in the course.

2.1 Recursive Functions

Recursion in FL is implemented with the rec construct rec f(x) = e. We would like this to operate like a
normal A-abstractions; we would be able to apply it to an argument an execute the body e with the argument
substituted in for the formal parameter x. But the whole point of the recursive definition is that f may itself
be free in e! We therefore need to retain the definition of f somehow in the substitution.

To accomplish this goal, we substitute every instance of f in e with something to retain its definition.
Luckily, we have precisely the definition of f available: rec f(x) = e. That is, we simply need to substitute
the entire recursive function definition in for any free occurrence of f. We therefore get the following rule.

[REC]
(rec f(x) =e)v — e[x > v, f > rec f(x) =e]

3 Translation to A-calculus

To capture the semantics of FL, we can also translate it to the call-by-value A-calculus. The translation is
defined by structural induction on the syntax of the expression. For the basis of the induction we will use
Church numerals and Church booleans, modified to thunk and apply their arguments—as we did in when
translating CBN to CBV—to avoid evaluating the branches of if statements early.

[x] = x [n] &7 = Afx. f"x [true] £ Axy.xid [false] £ Axy.yid

We can project multi-argument functions by making the currying explicit, single-argument functions by
translating their bodies, function application remains function application, if translates based on the encoding
of true and false above, and let is simply a desugaring operation.

[Ax1...x5.e] 2 Ax1.[Axz...x,. €] forn>2 [Ax.e] = Ax.[e] [e1 ea] = [e1] [ez2]

[if eo then e; else e2] = [[eo] (A_.[er]) (A_.[e2]D) [let x = ey inex] 2 (Ax.[ea]) [e1]

Tuples. To project arbitrary length tuples, we will rely on the our existing knowledge of pairs, and how to
extend that to encoding lists. Specifically, we will project the tuple (e1, ..., e,) to the list [e1;... ;e,]. To do
so, we will use the list constructs in the homework: empty, cons, head, tail, and get.

[O] £ empty [(ets...,en)] = cons [er] [(e2,...,en)] forn>1 [#n e] £ get [n] [e]

Recursive Functions. For the translation, recall the fixed point combinators from the previous lecture. These
fixed point combinators allow us to uniformly build recursive functions, so we can use them to implement rec
as follows. Since we are translating to call-by-value A-calculus, we use the Z combinator.

[rec f(x)=e] & Z (Af.[Ax.e])

Adequacy. It would be great if this translation were adequate. Unfortunately, the presence of stuck terms
in FL and the lack of a runtime type system mean it is not. For instance, #1 () is stuck in the FL operational
syntax, but not in the A-calculus translation. That translated term may not behave in a reasonable way, but the
fact that it can step at all makes the translation unsound.

	Syntax of Fl
	Operational Semantics of Fl
	Recursive Functions

	Translation to -calculus

