
Comp Sci 704
Fall 2025 Ethan CecchettiLecture 14:

State

Program state refers to the ability to change program variables over time. We saw this feature in Imp (which
was conspicuously missing functions) but then it went away in _-calculus (which was conspicuously missing
everything but functions). Even Fl, which reintroduced most of the programming constructs, still did not
have state. Once a variable was bound, there was no way to change its value as long as it was in scope.

State is not a necessary feature in a programming language—after all, _-calculus is Turing complete
despite no notion of state—but it is common in most languages and many programmers are accustomed to it.

Programming Paradigms. Two major programming paradigms are functional (stateless) and imperative
(stateful). In a purely functional language, expressions resemble mathematical formulae. This structure allows
programmers to reason equationally and not worry about where else a function is used or how many times
something may be run. As a result, it avoids many of the pitfalls associated with a constantly changing
execution environment.

Concurrency, in particular, is much simpler with functional programming. Confluence (the Church–Rosser
property) means it does not matter which order operations execute, at the end the result will be the same.
There can be no race conditions or inconsistent views of the world.

On the other hand, imperative programming more closely resembles the way we perceive the world and,
especially, the operations happening inside of a real computer. There exists some underlying notion of state
(of the world, of memory, of storage, etc), and that state can change over time.

1 Mutable References
Instead of allowing variable assignment directly, we will work with mutable references (aka pointers). These
references can be updated in a way that cannot be handled by the simple substitution rules of their functional
counterparts. They are somewhat more complicated than ordinary variable bindings because they introduce
the extra complication of aliasing—the possibility of naming the same data value with different names.

For example, consider the following code.

let G = ref 1 in
let H = G in
G B 2 ; !H

In this code, ref 1 allocates a new reference pointing to the value 1 and returns the reference. So the first line
creates this reference and assigns G to the reference. The second line assigns H to G, meaning both variables
are bound to the same reference. Then we update the value pointed to by G to 2, and finally dereference H

with !H. Because G and H point to the same place, modifying the value one points to also modifies the value
the other points to, so this program will return 2. When you kick G, H jumps!

Reference should not be confused with mutable variables. A variable is mutable if its binding can change.
The difference is subtle: variables are bound to values in an environment, and if the variable is mutable, it can
be rebound to a different value. With references, the variable itself is bound to a location. The location is
mutable—it can be rebound to a different value—but the variable itself is not. In Imp and imperative languages
such as C, variables are typically mutable, whereas in functional languages such as Fl, OCaml, and Haskell,
they are typically not.

1

2 The Fl! Language
To see how mutable references work in an otherwise-functional language, we will add them to the Fl language
we defined previously to create a new language Fl!.¹ All Fl expressions are also expressions of Fl!, and there
are a few more. Note that there is a set Loc of memory locations that we denote ℓ. The syntax is as follows.

4 F · · · | ref 4 | 41 B 42 | !4 | ℓ | 41 ; 42

The “· · · ” is used to indicate that we are extending the BNF grammar from Fl without having to write out
everything again.

2.1 Small-Step Operational Semantics

Unlike in _-calculus or functional Fl, we can no longer define our semantics entirely by substitution.
Instead we will use a store to keep track of the mappings of memory locations for our references. This store

is extremely similar to stores we saw previously in the semantics for Imp. It is a partial function f : Loc ⇀ Val
from memory locations to Fl! values, and we require that it have a finite domain (that is, only finitely many
location have mappings). We will again use the standard rebinding operator f[ℓ ↦→ E]. We now define the
small-step operational semantics on configurations, 〈4, f〉, just as we did for Imp.

We will again simplify our evaluation order rules by using evaluation contexts. Just as we extended the Fl
grammar for expressions, we extend the Fl grammar for evaluation contexts.

� F · · · | ref � | � B 4 | E B � | !� | � ; 4

Note that the hole [·] is already included with the · · · , so we do not need to write it again.
The operational semantic rule for using these contexts must change slightly. Before, our small step relation

was over Fl expressions, but now it is over entire configurations. Because of the nature of state, if the state
changes when stepping an expression 4, we need to retain that change when stepping 4 inside a larger context.
The rule is therefore

〈4, f〉 −→ 〈4′, f′〉
〈� [4], f〉 −→ 〈� [4′], f′〉

We also need to add reduction rules for these new forms. Those rules are as follows.

[New]
ℓ ∉ dom(f)

〈ref E, f〉 −→ 〈ℓ, f[ℓ ↦→ E]〉
[Assign]

ℓ ∈ dom(f)
〈ℓ B E, f〉 −→ 〈(), f[ℓ ↦→ E]〉

[Deref]
ℓ ∈ dom(f)

〈!ℓ, f〉 −→ 〈f(ℓ), f〉
[Seq]

〈E ; 4, f〉 −→ 〈4, f〉

It can be shown that it is impossible to create dangling pointers in Fl!. That is, if a program doesn’t start
with any pointers at all, then every pointer that appears will always be mapped in the store.

2.2 Fl! in Action

To see how this operational semantics works, we look at the example from Section 1 and see how it executes.

〈let G = ref 1 in let H = G in G B 2 ; !H,∅〉 −→ 〈let G = ℓ in let H = G in G B 2 ; !H, [ℓ ↦→ 1]〉
−→ 〈let H = ℓ in ℓ B 2 ; !H, [ℓ ↦→ 1]〉
−→ 〈ℓ B 2 ; !ℓ, [ℓ ↦→ 1]〉

¹Fl! is pronounced “Fl bang.” The exclamation point, or bang, is a common symbol used to indicate a stateful operation in a
primarily functional language.

2

We can now see that G and H have been substituted for the same location ℓ, and anything that happens to one
of them will therefore be reflected in the other. In particular, this configuration continues to step as follows.

〈ℓ B 2 ; !ℓ, [ℓ ↦→ 1]〉 −→ 〈() ; !ℓ, [ℓ ↦→ 2]〉 −→ 〈!ℓ, [ℓ ↦→ 2]〉 −→ 〈2, [ℓ ↦→ 2]〉

Exactly as expected, dereferncing H produced the value we assigned into G one operation earlier.
This behavior becomes particularly interesting when a function closes over a reference. For instance,

consider the following code that produces a function that will ignore its argument and return how many times
it has been called (including this one). The context of those calls is irrelevant, just the number of them.

let cnt = ref 0 in (__. (cnt B !cnt + 1) ; !cnt)

We could even do something weirder: we could build a pair of functions that each return how many times the
other has been called.

let cnt1 = ref 0 in
let cnt2 = ref 0
in

(
(__. (cnt1 B !cnt1 + 1) ; !cnt2),
(__. (cnt2 B !cnt2 + 1) ; !cnt1)

)
Mutable references—and stateful computation in general—allows for some very odd behavior.

3 Translating Fl! to Fl
Even though we had to modify the structure of the small step operational semantic relation, this addition did
not fundamentally add any computational power to the language. To show this, we will build an adequate
translation from Fl! to Fl (though we will not prove its adequacy here).

To track the mutable state within the Fl code, we construct an explicit representation of the heap that we
call an environment, with the same type as a heap: a partial function with a finite domain from locations to
values. We need a way to represent this environment in the target language of our transaltion, here Fl. To
do this, we will encode locations in the environment into values of the target language. We will write pℓq to
denote the encoding of location ℓ into Fl. The exact details of the encoding don’t really matter as long as we
can look up the value of a location given its encoding and update an environment with a new or modified
binding. For instance, any structure that allows us to encode differet locations differently and check equality
of encoded variable names would work. Numbers are generally a good choice, but they are not the only one.

We do three things with heaps: allocate new locations, update existing locations, and loop up values, so
we demand that if (is a representation of heap f, the following three operations must exist.

1. alloc (E = (pℓq, (′) where ℓ ∉ dom(f) and (′ is a representation of f[ℓ ↦→ E]).
2. update (pℓq E is a representation of f[ℓ ↦→ E]

3. lookup (pℓq =

{
f(ℓ) if ℓ ∈ dom(f)
error if ℓ ∉ dom(f)

To simplify notation, despite a slight risk of confusion, we will use f to represent both the heap and the
representation of that heap in Fl, so we will write alloc f E, update f pℓq E, and lookup f pℓq.

The following translation maps Fl! expressions to Fl expression. Note that È4É represents a function that
takes a store f and produces an Fl pair (E, f′) where E is an Fl value and f′ is a store. These represent the
output value (translated) and final store (representation) obtained by evaluating 4. To simplify notation, we

3

will use the expression let (G, f′) = È4Éf in 4′ as syntactic sugar for

let ? = È4Éf in
let G = #1 ? in
let f′ = #2 ?

in 4′

where ? ∉ FV(4′). Here is the translation for simple expressions. For simplicity of exposition, we skip tuples,
and multi-argument functions, though those cases are not conceptually complicated.

ÈGÉ f , (G, f)
È=É f , (=, f)

ÈtrueÉ f , (true, f)
ÈfalseÉ f , (false, f)

Èif 40 then 41 else 42É f , let (1, f′) = È40Éf in
if 1 then È41Éf′ else È42Éf′

È_G. 4É f , (_Gg. È4É g, f)
Èrec 5 (G) = 4É f , (rec 5 (G) = _g. È4É g, f)

È41 42É f , let (5 , f1) = È41Éf in
let (G, f2) = È42Éf1 in
5 G f2

Èref 4É f , let (G, f′) = È4Éf in (alloc f′ G)
È41 B 42É f , let (;, f1) = È41Éf in

let (G, f2) = È42Éf1 in
((), update f2 ; G)

È!4É f , let (;, f′) = È4Éf in ((lookup f′ ;), f′)
È41 ; 42É f , let (_, f′) = È41Éf in È42Éf′

Note that the translations of _G. 4 and rec 5 (G) = 4 now take an extra argument for the new store that is
current at the time of the call. That is because stores do not follow lexical scoping like variables, instead they
follow a dynamic scope discipline whereby a location cares about the value of the store when it is used, not
when it is defined. That is also why we need to track the store explicitly in the operational semantics, rather
than doing using substitutions like we do for lexically-scoped variables.

4

	Mutable References
	The Fl! Language
	Small-Step Operational Semantics
	Fl! in Action

	Translating Fl! to Fl

