
Comp Sci 704
Fall 2025 Ethan CecchettiLecture 15:

Separation Logic

In Lecture 7 we saw Hoare Logic, a program logic that gave us the ability to reason about the particular
behaviors of a program we care about without running it. Using only predicates over states, Hoare Logic
worked very nicely on Imp because Imp had only mutable variables and each variable was its own mapping.

In Fl!, however, things are a bit more complicated. Recall the following example from Lecture 14.

let G = ref 1 in
let H = G in
G B 2 ; !H

This example shows that we can alias references. That is, we can have two variables (here G and H) that both
refer to the same reference and therefore point to the same thing. When using Hoare Logic, we therefore need
to be careful about this aliasing; If we had the predicate (G ↦→ 1) ∧ (H ↦→ 1) as a precondition to G B 2, we
would need to somehow track that we are changing both with the assignment. Unfortunately, if we’re not
careful, we will just end up with the following partial correctness assertion (PCA):

{(G ↦→ 1) ∧ (H ↦→ 1)} G B 2 ; !H {%} .

But the precondition doesn’t have enough information for us to know if G and H are actually the same reference,
so we have no way to know if this returns 1 or 2!

To address this problem, we turn to separation logic. Separation logic is designed to reason about references
in a heap with knowledge about (non-)aliasing. To do so, it uses a small set of new logical constructs that we
will discuss in detail below, including formalizing the “points-to” predicate G ↦→ E.

1 Hoare Logic in _-Calculus
Before we talk about separation logic, we first need to adapt Hoare Logic as we saw it in Lecture 7 to _-calculus.
In Imp, there were no output values, only the current store, so predicates were just over the store. We will
now have predicates over the store—which will separation logic structures—but our predicates must also
talk about return values and other computations in our program. To handle that, our postconditions will be
functions of a return value. That is, a PCA will now take the form

{%} 4 {_G. &(G)} .

To get a sense of how these work in a language like _-calculus or Fl, we look at two of the core rules.

[Val]
` {%(E)} E {_G. %(G)}

[Let]
` {%} 41 {_G. &(G)} ∀E. ` {&(E)} 42 [G ↦→ E] {_H. '(H)}

` {%} let G = 41 in 42 {_H. '(H)}

Note also that we can rewrite expressions using let to avoid having complex compound expressions. For
example, we could rewrite

41 42 let 5 = 41 in let G = 42 in 5 G.

This rewriting to separate all of the interesting expressions using let is known as a translation into A-normal
form and is common in compilers. It can also help tremendously with analysis, as we no longer need to analyze
the behavior of compound expressions, just individual expressions and sequencing. We will use this strategy
for the rest of this lecture for simplicity. We could have avoided the need for an A-normal form transformation,
but the program logic rules would be considerably more complicated.

1

https://cecchetti.sites.cs.wisc.edu/cs704/2025fa/notes/lec07-hoare-logic.pdf
https://cecchetti.sites.cs.wisc.edu/cs704/2025fa/notes/lec14-state.pdf
https://cecchetti.sites.cs.wisc.edu/cs704/2025fa/notes/lec07-hoare-logic.pdf

Soundness. Soundness for this functional version of Hoare Logic is nearly the same as the Imp version. First,
we note that the definition of semantic entailment now uses the output value of the expression. Seocnd, since
there now exist stuck terms, we demand that the PCA {%} 4 {&} ensure that 4 not get stuck. Formally,

� {%} 4 {_G. &(G)} 4⇐⇒ ∀f. f � % and 〈4, f〉 −→∗ 〈4′, f′〉
=⇒ either 〈4′, f′〉 can step

or 4′ = E′ and f′ � &(E′).

Soundness then operates the same was as it did before.

Definition 1 (Soundness). The logic is sound if, whenever ` {%} 4 {_G. &(G)} then � {%} 4 {_G. &(G)}.

2 Separation Logic Propositions
To talk about locations in the heap while remaining aware of the problems of aliasing, we introduce three new
propositions into our predicate logic.

% F · · · | emp | ℓ ↦→ E | % ★&

Let’s go through each of these predicates.

• The predicate emp is true only on the empty store: ∅ � emp. This may seem like a silly predicate, but we
will see later how it is, in fact, very useful.

• The predicate ℓ ↦→ E is true on exactly one store: the store that maps ℓ to E and nothing else. That is,

f � ℓ ↦→ E
4⇐⇒ dom(f) = {ℓ} and f(ℓ) = E.

Again, the restriction that f contain only the mapping ℓ ↦→ E may seem very limiting, but we will see how
it is important soon.

• The last proposition is the separating conjunction ★. The proposition % ★&, read “% and separately &”
or simply “% star &,” is similar to a normal logical conjunction in that it requires both % and & to hold.
However, it requires them to do so disjointly, meaning there are two disjoint parts of the store, one where %

holds and the other where & holds.
Formally, two stores f1 and f2 are disjoint if their domains are disjoint. For simplicity, we write f1 ⊥ f2
when dom(f1) ∩ dom(f2) = ∅. The separating conjunction is then defined by

f � % ★&
4⇐⇒ ∃f1, f2. (f = f1 ∪ f2) and (f1 ⊥ f2) and f1 � % and f2 � &.

Notably, the separating conjunction rules unexpected aliasing. The predicate ℓ ↦→ E ★ ℓ ↦→ E is false for all
stores! As a result, unlike with regular ∧, if (ℓ1 ↦→ E)★ (ℓ2 ↦→ E) (f) holds, we know that ℓ1 and ℓ2 must be
different, so changing one cannot impact the other.

Pure Predicates. We also have a notion of pure predicates, which are predicates that are true about the
program we are working in and do not interact with the store. For instance, we might record the value of a
variable G = 0, which does not care about what locations point to what in a store. We denote these predicates
die to indicate their purity, and note that, as heap predicates, they are equivalent to emp. That is, for any pure
predicate i, the heap predicate die ★ % holds over any heap where % holds.

The combination of pure predicates and separation logic connectives is immensely useful for building
Hoare Logic deduction rules for stateful operations. We will discuss what are know as the “small rules” here,
which assume the simplest form of expressions. We can get to those using A-normal form or by proving that
the subterms reduce in the way we expect.

2

[H-Ref]
` {emp} ref E {_G. ∃ℓ. dG = ℓe ★ ℓ ↦→ E}

[H-Store]
` {ℓ ↦→ E0} ℓ B E {__. ℓ ↦→ E}

[H-Deref]
` {ℓ ↦→ E} !ℓ {_G. dG = Ee ★ ℓ ↦→ E}

By only considering the minimal possible stores, these rules remain small, simple, and self-contained.
However, we need more to use them in real programs where they are likely other locations in the store.

3 Using Separation Logic: The Frame Rule
To handle stores with more locations, we need a rule that allows us to combine the small rules above with
larger stores. Rather than gluing an additional arbitrary predicate to all of these rules, we capture the ability to
do so in a uniform way using the frame rule, which forms the heart of separation logic.

[H-Frame]
` {%} 4 {_G. &(G)}

` {% ★ �} 4 {_G. &(G) ★ �}

Frame is critical. It not only allows the small rules to be used in larger contexts with more locations in the heap,
it supports separation logic’s ownership reasoning. The idea is that having an assertion in the precondition
expresses “ownership.”

For example, the precondition ℓ ↦→ E means the function starts out owning the location ℓ, meaning no
other part of the program can read from it or write to it. In the triple {ℓ ↦→ 0} 5 (ℓ, ℓ′) {__. ℓ ↦→ 42}, the
function 5 owns the location ℓ for the duration of its execution and we can be sure that nothing interferes with
it. Moreover, because the pre- and post-conditions do not reference ℓ′, we know that 5 cannot access it at all.
The frame rule coupled with the separating nature of ★ captures these requirements.

As an example, consider using separation logic to prove that the following expression returns true

4own = let G = ref 0 in
let H = ref 42 in
5 (G, H) ; (!G = !H)

where 5 satisfies the PCA {ℓ ↦→ 0} 5 (ℓ, ℓ′) {__. ℓ ↦→ 42}.
We might accomplish this by proving {>} 4own {_E. dE = truee ★>} where > is the trivial predicate that

3

holds on all stores. The following sketches out the proof.

{>} = {>★ emp}
{emp} (H-Frame)

let G = ref 0 in (H-Ref)
{G ↦→ 0} = {G ↦→ 0★ emp}

{emp} (H-Frame)
let H = ref 42 in (H-Ref)

{H ↦→ 42}
{G ↦→ 0★ H ↦→ 42}

{G ↦→ 0} (H-Frame)
5 (G, H) (5 as shown above)

{G ↦→ 42}
{G ↦→ 42★ H ↦→ 42}

!G = !H (H-Frame and H-Deref twice)
{_E. dEG = 42 ∧ EH = 42 ∧ E = (EG = EH)e

★ G ↦→ 42★ H ↦→ 42}
⇒ {_E. dE = truee ★ G ↦→ 42★ H ↦→ 42} (H-Weaken)

{_E. dE = truee ★ G ↦→ 42★ H ↦→ 42★>}
⇒ {_E. dE = truee ★>} (H-Weaken)

Note that every step in this proof using H-Frame in some way or another! This example shows how core
the H-Frame rule is and how we can combine its ownership reasoning to produce a useful result.

4

	Hoare Logic in -Calculus
	Separation Logic Propositions
	Using Separation Logic: The Frame Rule

