
Comp Sci 704
Fall 2025 Ethan CecchettiLecture 16:

Continuations and Exceptions

When executing a program, the program is broken into two parts: the current expression being executed, and
the continuation, which refers to what we do next—how we continue the computation. For example, consider
the expression if G > 0 then G else G + 1. First we will evaluate G > 0 to obtain a boolean value 1. Only then
will we use that boolean to evaluate if 1 then G else G + 1. If we think of the if statement as a function that
takes the result of the condition, the continuation would be _1. if 1 then G else G + 1.

We have seen representations of continuations before, though we did not call them that. The evaluation
contexts we used to simplify the definition of evaluation order steps in small-step operational semantics were
fundamentally continuations. For an expression in a context � [4], the expression 4 represents the current
computation, and � [·] is a representation of the continuation.

Some languages, like Scheme and its derivatives (e.g., Racket) have ways to capture and save the current
continuation as a function (call/cc and let/cc). Saving that continuation and applying it in another context
can have highly non-intuitive behavior, as it replaces the continuation at the point of application with the
continuation that was saved. In essence, it destroys the call stack and replaces it with an old, saved one.

The most common use of continuations, however, is a transformation to continuation passing style.

1 Continuation Passing Style
Given an expression 4, it is possible to transform it into a function that takes a continuation : and applies : to
the result of evaluating 4. If we apply this transformation recursively, the result is called continuation passing
style (CPS). There are a number of advantages to CPS.

• CPS expressions have much simpler evaluation semantics. The sequence of reductions is specified
by the series of continuations, so the next operation to perform is always uniquely determined and
the continuation handles the rest of the computation. Evaluation contexts are therefore unnecessary to
specify evaluation order. In fact, the choices we made when defining evaluation contexts are instead
made in the translation to CPS.

• In practice, function calls and function returns can be handled in a uniform way. Instead of returning,
the called function simply calls the continuation.

• In recursive functions, any computation performed on the value returned by a recursive call is bundled
into a continuation that is handed to the recursive call. As a result, every recursive call becomes
tail-recursive. For example, the factorial function

fact = = if = = 0 then 1 else = ∗ fact (= − 1)

becomes
fact′ = : = if = = 0 then : 1 else fact′ (= − 1) (_G. : (= ∗ G))

It is possible to show that fact′ = : = : (fact =), and therefore fact′ = id = fact =. The transformation
essentially trades stack space for heap space in the implementation.

• Continuation-passing gives a convenient mechanism for non-local flow of control, such as goto state-
ments and exception handling, as we will see later.

As a result of these advantages, a variety of compiles perform CPS transformations to help with optimiza-
tion and analysis of programs. We will see how a simple one works now.

1

1.1 CPS Semantics

In pure _-calculus, our grammar was

4 F G | _G. 4 | 41 42
E F _G. 4.

Our grammar for CPS _-calculus will be slightly different to account for the fact that all computations must
be bundled into continuations. It is defined as follows.

4 F E | 4 E
E F G | _G. 4

This is a highly constrained syntax. Barring reductions inside of _-abstractions, the values E are all
irreducible. The only reducible expressions are of the form 4 E. Moreover, there is only one possible redex:
the inner-most 4 must be E0 E1, and both the function and argument are already fully reduced. This means
that we do not need any interesting evaluation order rules, we can get away with a simple structural one with
no choices and a single reduction rule for our small-step operationsl semantics:

4 −→ 4′

4 E −→ 4′ E (_G. 4) E −→ 4[G ↦→ E]
A proof that 4 −→∗ E only has one possible shape with this semantics, no matter what 4 is. It just applies

the same operation over and over again. This fact allows for a much simpler interpreter that can work in a
straight line rather than having to make multiple recursive calls.

Indeed, the fact that it would be so simple to implement an interpreter is an indication the CPS _-calculus
is, in a deep sense, a lower-level language than CBV _-calculus. Because it is lower-level (and actually closer
to assembly code), CPS is typically used in functional language compilers as an intermediate representation.
It also is a good code representation if one is building an interpreter.

1.2 CPS Conversion

Despite the restrictions of CPS syntax, we have not lost any expressive power. We can define a translation
È·É to take a regular _-term 4 and produce a CPS term È4É with the same meaning. This is known as CPS
conversion and was first described by John C. Reynolds (1935–2013).

Recall that a CPS term is a function that takes a continuation : as an argument, so we would like our
translation to satisfy

4 −−−→
cbv

∗ E ⇐⇒ È4É : −−→
cps

∗ ÈEÉ :

for any primitive value E and any variable : ∉ FV(4).
If we allow numbers as primitive values and add simple arithmetic operators, which we denote ⊗, then

the transformation is as follows. Recall that È4É : , 4′ is short-hand for È4É , _:. 4′.

È=É : , : =

ÈGÉ : , : G

È_G. 4É : , : (_G: ′. È4É : ′) =[: (_G. È4É)
È41 ⊗ 42É : , È41É (_G1. È42É (_G2. : (G1 ⊗ G2)))
È41 42É : , È41É (_ 5 . È42É (_G. 5 G :))

In this translation, we transform a _-abstraction _G. 4 that takes one input, a value G, to a _-abstraction
_G: ′. È4É : ′ that takes two inputs: the same value G and a continuation : ′. Note that : and : ′ are not the same.
The continuation : ′ is supplied to È4É at the point of the function call, while the continuation : is applied to
the translated _-abstraction itself where the function is defined.

2

1.3 An Example

In CBV _-calculus, we have
(_GH. G) 1 −→ _H. 1

The CPS translations of those two are:

È(_GH. G) 1É : = È_G. _H. GÉ (_ 5 . È1É (_E. 5 E :)) È_H. 1É : = : (_H: ′. È1É : ′)
= (_ 5 . È1É (_E. 5 E :)) (_G: ′. È_H. GÉ : ′) = : (_H: ′. : ′ 1)
= (_ 5 . (_E. 5 E :) 1) (_G: ′. : ′ (_H. ÈGÉ))
= (_ 5 . (_E. 5 E :) 1) (_G: ′. : ′ (_H: ′′. : ′′ G))

The translation of the value is itself : applied to a value, so there is nothing to do. We can, however, evaluate
the right side, producing the following sequence.

(_ 5 . (_E. 5 E :) 1) (_G: ′. : ′ (_H: ′′. : ′′ G)) −→ (_E. (_G: ′. : ′ (_H: ′′. : ′′ G)) E :) 1
−→ (_G: ′. : ′ (_H: ′′. : ′′ G)) 1 :

−→ (_: ′. : ′ (_H: ′′. : ′′ 1)) :
−→ : (_H: ′′. : ′′ 1)
=U È_H. 1É :

This is precisely the result we were hoping for. Also note that, in every step of that evaluation, the leftmost
term was already a _-abstraction, and each term in an argument position was already a value. There was never
any choice of which steps to take, it was always just applying a continuation to the value produced by the
previous operation.

2 Exceptions
Exceptions are a language feature that provide for non-local control flow in exceptional situations. They
are generally considered a double-edged sword from a software engineering and maintenance perspective:
exceptional control flow is harder to understand and reason about (and thus maintain), but factoring out
some control flow into an exceptional path often makes it easier to understand and maintain the other control
flow paths. As a result, exceptions are typically used to signify and handle abnormal, unexpected, or rarely
occurring events and simplify code for the common cases.

To add exceptions to Fl, we extend the syntax with two new constructs: raise and try–catch.

4 F · · · | raise 4 | try 41 catch (_G. 42)

Informally, raise 4 throws an exception with value 4. Meanwhile, try 41 catch (_G. 42) provides the handler
_G. 42 for any exception raised while executing 41. In other words, if 41 terminates normally with value E, the
result of try 41 catch (_G. 42) will also be E. If it raises an exception, the handler _G. 42 will be invoked and
provided the value of that exception. Note that it is relatively simple to generalize this to multiple types of
exceptions that are thrown and caught separately.

Most languages use a dynamic scoping mechanism to find the handler for a given exception. When an
exception occurs, the language walks up the runtime call stack until it finds a suitable exception handler. We
will take the same appraoch in Fl and define it both using operational semantics and a modification to the
CPS translation.

3

2.1 Operational Semantics of Exceptions

One way to formalize the definition of exceptions is to define a small-step operational semantics. Here we
will extend the semantics for Fl to define the semantics for our new exception terms.

First, we extend our evaluation contexts as follows:

� F · · · | raise �.

Note that we do not include try–catch statements in our evaluation contexts. This is because we want to
use our evaluation contexts to succinctly define how exceptions propagate. In particular, we can define the
following exception propagation rule.

[Raise]
� ≠ [·]

� [raise E] −→ raise E

This rule is what creates the non-local control flow described earlier. Any evaluation context surrounding an
exception is simply destroyed without executing any pending computations it specifies. The side condition
that � ≠ [·] is a technical requirement to prevent and infinite sequence of reduction steps that do nothing by
reducing raise B E to itself.

Note that, if we included the body of a try–catch statement as an evaluation context, Raise would bypass
the handlers and propagate exceptions in ways it should not. Instead, we include an explicit evaluation order
rule along with the other semantic rules for try–catch.

[TryE]
41 −→ 4′1

try 41 catch (_G. 42) −→ try 4′1 catch (_G. 42)
[TryV]

try E catch (_G. 4) −→ E

[Catch]
try (raise E) catch (_G. 4) −→ 4[G ↦→ E]

The first rule (TryE) is a simple evaluation order rule. The second rule (TryV) says that if the body of
the try–catch block terminates normally with a value, there is no catching to be done and the block should
return the same value. The other two rules address the case where the body 41 raises an uncaught exception.
The third rule (Catch) handles exceptions. If the body raises an exception, it will apply the handler function
the value of the exception and execute that.

There is a slightly subtle decision hiding in the Catch rule. Because Catch discards the try–catch and
steps to only the body of the handler, if the handler body itself throws an exception, it will not recursively
handle itself (though a different handler in a larger try–catch block might).

Note also that we did not change our definition of values, so, in particular raise E is not a value. However,
there is no semantic rule for what to do with a top-level raise expression. These globally uncaught exceptions
are considered errors, so the semantics simply gets stuck.

2.2 CPS and Exception Handlers

Another way to cleanly define the semantics of raise and try–catch is to extend the CPS conversion in
Section 1.2 with an exception handler ℎ. We write this extended translation EÈ4É, and note that it takes both
a continuation, as before, and a new exception handler. For most of the expressions in Fl, this new translation
looks the same as standard CPS conversion, but with ℎ being passed in to nearly everything. Here are the cases

4

for some representative expressions. Changes from the CPS conversion in Section 1.2 are highlighted in red.

EÈ=É : ℎ , : =

EÈGÉ : ℎ , : G

EÈ_G. 4É : ℎ , : (_G. EÈ4É)
=[: (_G: ′ℎ′. EÈ4É : ′ ℎ′)

EÈ41 ⊗ 42É : ℎ , EÈ41É (_G1. EÈ42É (_G2. : (G1 ⊗ G2)) ℎ) ℎ
EÈ41 42É : ℎ , EÈ41É (_ 5 . EÈ42É (_G. 5 G : ℎ) ℎ) ℎ

The cases for raise and try–catch make interesting use of ℎ.

EÈraise 4É : ℎ , EÈ4É ℎ ℎ

EÈtry 41 catch (_G. 42)É : ℎ , EÈ41É : (_G. EÈ42É : ℎ)

The translation of raise 4 simply evaluates 4 and passes the result as an argument to the handler ℎ. The
translation of try 41 catch (_G. 42) makes a new continuation by translating the handler _G. 42 with the current
continuation : and outer handler ℎ, and then updates ℎ to map the specified name B to that new continuation. It
then runs the body 41 with the same continuation passed to the try–catch block and this new updated handler
environment.

There are some subtle decisions captured by this translation. First, in the translation of try 41 catch (_G. 42),
we match the decision we made in the operational semantics in Section 2.1 and do not allow the try–catch to
recursively handle exceptions thrown in 42. Second, in the translation of raise 4, the continuation : disappears
completely. That means that whatever computation is pending will simply be ignored and we will instead
execute the exception handler—which will include the continuation from outside of the corresponding
try–catch block. This behavior also matches something we saw in Section 2.1: the Raise rule destroyed the
evaluation context � [·], which corresponds to the continuation : .

5

	Continuation Passing Style
	CPS Semantics
	CPS Conversion
	An Example

	Exceptions
	Operational Semantics of Exceptions
	CPS and Exception Handlers

