Comp Sci 704 Lecture 20:

Fall 2025 Polymorphic A-Calculus and System F Ethan Cecchetti

Last time we saw how to infer types for STLC terms, and we noticed that Robinson’s unification algorithm
would return the most general type, which sometimes had some type variables in it. For example, if we tried
to infer the type for id = Ax. x, we would end up with @ — « for the free type variable a. Using STLC with
type inference, that type means that we can type id at T — 7 for any type 7. Intuitively, that seems to mean
that we should be able to apply id to a value of any type, and we can, but only if we only ever apply it to values

of one type.
As an example, consider the following program.

let f =Ax.xin
if (f true) then (f 3) else (f 4)

The type inference algorithm will correctly infer the type @« — «a for f, but then as soon as it sees the
application f true in the condition, it will unify @ = bool. Then when it sees the applications in the branches,
it will attempt to unify bool = int, at which point it will fail; those are disparate types that cannot be unified.

To solve this problem, we need to somehow capture the fact that f doesn’t have type © — 7 for an
unspecified by specific 7, but rather f needs to be able to have a type that can behave like bool — bool in
some places and int — int in others. That is, we want the type to support polymorphism.!

1 Polymorphic 1-Calculus

To add polymorphism to our types and support the above example, we make two changes to our grammar of
types that introduce concepts we have not seen before. The first is type variables, which we will denote «
(and sometimes). Like program variables, these type variables are stand-ins for something we do not yet
have, just now that something is a type, not a program term.

The second addition is a new constructor that universally quantifies over types, denoted Ya. t. This
universal quantifier serves as a binder for type variables. In the type Ya. 7, the variable « is bound in 7. These
universal quantifiers function almost exactly as A-abstractions, but they work at the level of types; Va. T
expects to be provided with a type 7’, which it will substitute for free occurrences of the bound variable « in 7.

These variables and binders have the same notions of scope, free and bound variables, renaming, and safe
substitution as variables in A-calculus. Together, these change the type grammar as follows.

T = - | a|Va.r.

The type Va. 7 is a polymorphic type, or a type schema, which is a pattern with type variables that can be
instantiated to obtain actual types. For example, the polymorphic type of id would be

id: Va.a — a.

The language that results from adding these types is known as the polymorphic A-calculus. It has the same
terms and evaluation rules as STLC, but with these extra polymorphic types. All terms that were well-typed
before will still be well-typed, but now more terms will be typable as well.

1Greek for “many forms”

1.1 Typing Rules

In addition to the old typing rules, polymorphic A-calculus adds two new rules, called the generalization and
instantiation rules, that introduce and eliminate these quantifiers, respectively. The full type system is then as
follows.

I'rei:11—>1m

I'x)=r1 Ix:tite:n I'rey: T
[UNIT] ——— [VAR] —— [ABs] [ApP]
'+ () : unit I'kx:7 IN'tAx.e:11 > 1 I'kteier:nm
F're:7 a ¢ FV(I) 'te:Va.t
[GENERALIZE] [INSTANTIATE] y
'te:Va.t lre:tla 7]

One notable change here is that the types themselves are open—that is, they may contain free variables.
The GENERALIZE rule—which is only interesting when o € FV(1)—says that, if " + e : 7 holds and there
are no assumptions involving «, then we can safely put in any type for @ and the typing proof will still work.
The constraint that @ ¢ FV(I") says that no assumptions reference @, which is exactly what we need to ensure
it is unconstrained. We can then conclude that e has type 7 for all values of «, or, succinctly, I' + e : Va. 7.
The INSTANTIATE rule is the other side of this concept. It says that, if e has a quantified type, then anything
we put in for that type variable will work.

1.1.1 Examples

To see how this works, we can look at a couple of proof trees.
First, we see how to show that + Ax.x : Va.a — a.

[VAR]
XakFkx:a
[ABS] —8M8M8M8M8M8™
FAXx.X:a = «@
[(GENERALIZE]

FAx.x :Va.a = a

Notably, some terms are typable that were not in STLC. For example, w = Ax. x x can now have a type!

[VAR] [VAR]
x:(Va.a) Fx :Va.a x:(Va.a) Fx :Va.a
[INSTANTIATE] [INSTANTIATE]
x:Va.a)rx:y— B x:Va.a)rx:vy
[APP]
x:Va.a)rxx:B
[ABS]
FAx.xx: (Va.a) - B
[GENERALIZE]

FAx.xx:VYB. Va.a) — B

Unfortunately, this type is not particularly meaningful because, without adding extra primitives to the language,
nothing has the type VYa. a. It is said to be uninhabited, and we can give it the name void. By a nearly identical
argument, however, we could also have proven that w has type V8. (Ya.@ — @) — 8 — B, which is a
meaningful type.

Interestingly, while w is typable, polymorphism is not enough by itself to allow us to type Q = w w.
Indeed, polymorphic A-calculus on its own (without something more powerful like recursive functions) still
has the same property of STLC that every well-typed program terminates. The proof of that fact, however, is
very complicated and is beyond the scope of this course.

2 Using Polymorphism

While polymorphic A-calculus allows for reuse of programs in very convenient ways, it has a major downside:
type inference is now undecidable. A compiler could try its best and ask programmers to insert type annotations
when it fails, but we can also restrict the use of polymorphism to regain decidability.

2.1 Let-Polymorphism

A simple approach taken by languages like Haskell and OCaml is two restrict polymorphism in two ways.

1. Type quantification can only appear at the top level of a type. That is, we only allow polymorphic
expressions of the form Vaq, . .., Va,. 7 where 7 is quantifier-free.

2. Polymorphism can only be introduced in the context of a let expression, not arbitrary variable bindings.

Together, these restrictions result in the following modifications to the language.

Quantifier-Free Terms 7 unit | e | 1 &

Primitive let e == --- | letx=ejine;

I'kte :1 I',x:Vay,...,Va,. 11 +er :

I'tletx=ejiney:m

[POLYLET]

Note that we retain the INSTANTIATE rule from Section 1.1, but we remove that GENERALIZE rule.

We previously considered the term let x = ¢ in e; to be syntactic sugar for (Ax. e;) e;. While the two
still have the same semantic rules, they are no longer equivalent in the type system. Some terms are well-typed
using let, but not using function application, including the example from the beginning of this lecture.

The fact that polymorphism can only be introduced with let expressions is why this is known as let-
polymorphism. Both Haskell and OCaml use let-polymorphism. In theory, this could cause the type checker
to require exponential time, but in practice it is not a problem.

2.2 System F

When we first introduced StLc, we used Church-style terms with types explicitly annotated on function
arguments. The corresponding version of polymorphic A-calculus is called System F. In System F, we explicitly
abstract terms with respect to types and explicitly instantiate those types before using the term. We therefore
augment the syntax of STLC with new types and terms as follows.

T == ---|a]|Var

o | Aa.e | et

These new terms are known as type abstraction and type application, respectively. Operationally, we can add
the following semantic rule

(Aa.e) T — e[a— 1]
This just gives a rule for instantiating a polymorphic type. Since these reductions only involve types, they can
be performed at compile time.
Unlike in polymorphic A-calculus, in System F we only want to introduce new type variables if they
are going to be bound by a A-expression. To check this, the type system needs to keep track of which type
variables are bound, and make sure that any type that appears in a type application is well-formed, meaning all

of its free variables have been bound in the surrounding context. To do this, we introduce a new type variable
context A to keep track of these variables, in addition to the existing typing (regular variable) context I'. In
more complicated type systems, A would be a partial map from variables to kinds, that tell us the space a type
lives in (kinds are to types as types are to terms), so it is sometimes called a kinding context. Right now we
only have one kind, so we will simply consider A to be a set.

The type system then has two classes of judgements:

ArT ATTvre: T

The first says that 7 is well-formed in type variable context A, while the second says that we can prove e
has type 7 in type variable context A and (regular) variable context I'. The rules for the well-formed type
judgment are as follows.

a €A A+T A+1 AabrT

A F unit A+ a ArT—> 1 ArVa.1

Right now, since these rules do nothing more than keep track of the type variables bound in the surrounding
context, one can show that A + 7 if and only if FV (1) C A.

The typing rules for terms are as follows, with differences from the Curry-style polymorphic A-calculus
defined above highlighted in red.

ATTkrer:11 > 1

F'x)=r ArT AT, x:Tire:1 AF Ty AT ey T

AT F () @ unit AT rx:T ATrAx:TI.e:T] > T AT rFerer:m
Aa:Tre:T a ¢ FV(I) ATre:Va. 1 ArT
AT+ Aa.e:Va.T ATret :tlam 7]

The first four rules are the same as the rules for STLC, but with A included and a requirement that any types
that appear be well-formed. The last two rules specify the types for type abstractions and applications, also
requiring that types be well-formed. In fact, one can show that if A;T" I e : 7, then 7 and all type annotations
occurring in e must be well-formed in A. In particular + e : 7 is only possible when e and 7 are both closed.

To see how to use this, we can look at the polymorphic identity function: Aa. Ax:a.x which has type
Va.a — «a according to the following proof.

atka

a;x:akx:a ata

a,-FAxa.xia > «a

FAax. Ax:a.x :Ya.a > «a

To apply this function, we must specify what type we are applying it to. So, the correct version of our original
example written in System F (with booleans and integers) would be:

let f=Aa.Ax:a.x

in if (f bool true)
then (f int 3)
else (f int4)

	Polymorphic -Calculus
	Typing Rules
	Examples

	Using Polymorphism
	Let-Polymorphism
	System F

