Comp Sci 704 Lecture 21:

Fall 2025 Recursive Types Ethan Cecchetti

What is the type of a cons (singly-linked) list of integers? How about a binary tree of integers? In a language
like Java, we might write

class IntList { class IntTree {

int data; int data;

IntList next; IntTree leftChild, rightChild;
} }

In OCaml, we might write

type intList = Empty | Cons of int * intList
type intTree = Leaf | Node of int * intTree * intTree
How would we write these types in a language we have seen before, such as STLcC with extra datatypes as
defined in Lecture 187 We might hope to write something like

intList = unit + (int X intList)

as this would precisely mirror the OCaml definition above. However, that is not a well-defined type in our
language; it is self-referential. Even if we take it to be an equation that intList must satisfy, we do not yet have
the constructs to build a type satisfying that equation. Indeed, we will need a new construct in our space of
types to handle it.

1 The u Constructor

As in a variety of previous contexts, to solve the equation & = unit + (int X @), we need to find a fixed point
of the function 7~ @ = unit + (int X). To handle this, we introduce a fixed point type constructor pa. T that
defines the least fixed point of the function 7~ @ = 7. Such a fixed point exists and is unique as long as 7 # «.
Note that if 7 does not reference «, then the result is simply 7.

To make this work, we use type variables, just as we did with polymorphism in Lecture 20, and the type
constructor . T functions as a binder for the variable .

Since ua. T is a solution to @ = 7, we have that

ua.t = tla - ua.t].
This construct therefore allows us to build types like the intList described above. We can define
intList £ ue. unit + (int X @).
To see why, we can unroll this one level, noting that
intList = unit + (int X (ua. unit + (int X @))) = unit + (int X intList).

Recursive types also plays nicely with polymorphism. If we wanted to define a polymorphic list type
Va. list @, we could do that simply as

Va.lista £ VYa.upB. unit+ (a x B).

This structure allows us to define classic polymorphic list operators like map, filter, and fold.

The u constructor is even sufficient to build mutually-recursive types. For example, if @) = 71 and az = 1
where both 7| and T may refer to either or both of @; and a»,, we can define the mutually-recursive types o
and o, by:

A A
o = pay. (n[az o pas. 2]) o = pay. (nfay o par.1]).

https://cecchetti.sites.cs.wisc.edu/cs704/2025fa/notes/lec18-data-types.pdf
https://cecchetti.sites.cs.wisc.edu/cs704/2025fa/notes/lec20-polymorphism.pdf

2 Recursive Types in a Language

To use the fixed point type constructor in a type system, we need rules for it. There are two approaches to
using recursive types in languages: equirecursive and isorecursive.

2.1 Equirecursive Types

With equirecursive types, we consider pa. 7 and T[a@ — ua. 7] to be the same type. A term of one may freely
be used as the other. To support this in the type system, we would include the following two rules.

F're:7[la pa. 7] F're:pa.t
[¢-INTRO] [¢-ELIM]
Fre:ua.t Ilre:tla ua.1]

This is the approach taken by languages like Haskell and OCaml. It is generally simpler and easier to
program with, but it can be more challenging to reason about formally.

2.2 Isorecursive Types

The other option is isorecursive types, where ua. T and 7[@ — ua. 7] are not considered the same type, but
merely isomorphic. That means we can convert terms of one into terms of the other in both directions, but we
must do so explicitly. The explicit conversions are known as fold and unfold, with the types:

foldyo.r : Tl = pa.7] = pa.t unfold,o.r : pa. 7 = tla = pa. 1]

We will omit the subscripts on these operations when there is no ambiguity.
To use folding and unfolding in programs, we add fold and unfold to our language syntax, where fold
serves as an introduction form for a recursive type and unfold serves as the corresponding elimination form.

e -+« | fold e | unfold e
v = .- | foldv

As always when adding new syntactic forms, we need to define their operational semantics and provide
typing rules. The typing rules follow directly from the idea that these are isomorphisms on recursive types.

IF're:7[la pa. 7] 're:pa.t
[FoLD] [UNFOLD]
'rfolde: pa.t 'k unfolde: t[a — pa. 7]

The semantic rules for these new operations consider them both evaluation contexts, and the introduction
and elimination forms cancel each other, as normal.

E == ---|foldE | unfold E
unfold (fold v) — v

3 Using Recursive Types

To see how we can use recursive types to build interesting datatypes, we will look at some examples.

3.1 Lists

Perhaps the simplest place to see the value of recursive types is in defining lists. In Section 1 we saw that we
could define the type
intList £ ua. unit + (int X @).

Using isorecursive types, this guides us in how to define the basic list operators. For instance, we want empty
to have type intList and correspond to having no elements. Using the injection functions for the sum type, we
note that

() : unit
inl () : unit + (int X pa. unit + (int X @))
fold (inl ()) : pa. unit + (int X @) = intList

Therefore, we can define
empty £ fold (inl ()).

Similarly, to define cons we will need to fold an injection of a pair.
cons ht £ fold (inr (h,1))
To access elements of the list, we need to unfold the list and then match.

isempty I £ match (unfold 1) with inl(_). true | inr(_). false
head I £ match (unfold [) with inl(_). error | inr(p). proj; p

L

tail / match (unfold /) with inl(_). error | inr(p). proj, p

3.2 Numbers as Recursive Types

The most basic types in many contexts are unit, nat, and bool. We have already seen how to encode bool
using unit and sum types. With the presence of recursive types, we no longer need a primitive type for nat.
A natural number is either O or the successor of a natural number. We can therefore define

nat £ pa.unit+a 0 £ fold (inl () 1 £ fold (inr 0) 2 £ fold (inr 1)
Using this encoding, it is straightforward to define successor and predecessor functions.

succn £ fold (inr n)

(1>

pred n match (unfold n) with inl(_).0 | inr(m). m

So all we really need as primitive types and type constructors are unit, recursive types, products, and
sums, and, of course, —. With these we can build all the other types like natural numbers, integers, lists, trees,
floating point numbers, and so on.

3.3 Self-Application and Q

Recall the infinite loop Q defined by w = Ax.x x and Q = w w.

We saw before that it was impossible to give a type to w (and therefore) in STLC. The reason for this was
we needed types 7 and 7, such that 11 = 71 — 1. In STLC that was impossible. With polymorphism, we could
give w the (very strange) type V. (Va. @) — B, but we still could not self-apply it to get an infinite loop.

However, with recursive types, there is a more straightforward way to type w: we can give x type ua. @ — 7
for any type 7! To actually apply x to something we need to unfold it, and the resulting type is

unfold x : (ua.a —» 1) - 7.

This is a function with domain ua. @ — 7, which is the type of x, so we can apply it to x. This insight lets us
define
w & Ax:pa.a — 7. (unfold x) x

which has type (ua. @ — 1) — 7. If we fold that, we get back something of the same type as the argument,
thereby allowing us to define
Q £ w (fold w).

This is a well-typed term that will never terminate. It does not immediately step to itself because of the folding
and unfolding involved, but it doesn’t take very long.

Q=w (foldw) = (Ax:pa.a — 1. (unfold x) x) (fold w)
—> (unfold (fold w)) (fold w)
— w (fold w) = Q

4 Untyped to Typed 1-Calculus

Recursive types not only allow for Q, they bring back the full expressive power of untyped A-calculus. To
prove this, it is possible to translate any untyped A-calculus term into a well-typed term with the universal
type: U = pa.a — a. This type satisfies the equation U = U — U. Since all pure A-calculus terms are
functions, we can represent them all as this type.

The translation is as follows.

Dlx]
Dle; ex]
D[ax. €]

x
(unfold D[e1]) D[ezl
fold (Ax:U. D[e])

(1>

1>

You can prove by induction that, for any untyped A-calculus term e, I' D[e] : U where I" maps all free
variables in e to U.

	The Constructor
	Recursive Types in a Language
	Equirecursive Types
	Isorecursive Types

	Using Recursive Types
	Lists
	Numbers as Recursive Types
	Self-Application and

	Untyped to Typed -Calculus

