Bellerophon: Non-Interactive Verifier-Free Remote
Attestation

Deepak Sirone Jegan
University of Wisconsin—-Madison
dsirone @cs.wisc.edu

Abstract—Modern trusted execution environments (TEEs)
support trustworthy remote computation with untrusted system
software, but launching a job requires verifying the authenticity
of the hardware through remote attestation and provisioning
secrets after launch. Both operations incur round-trip wide-area
network communication and require complex always-available
replicated infrastructure as part of the software trusted computing
base (TCB).

We present Bellerophon, a new remote attestation mechanism
that eliminates the need for both trusted verifiers and separate
secret provisioning. Bellerophon accomplishes this feat using
encrypted binaries embedded with user secrets that can only be
decrypted using a manufacturer-provisioned key and only when
the TEE is correctly initialized. Moreover, Bellerophon seamlessly
integrates with existing approaches to accelerate confidential
serverless functions designed to reduce launch overheads.
Bellerophon uses Hierarchical Identity-Based Encryption (HIBE)
to simplify secret key management and public key distribution,
and incorporates a key rotation mechanism for forward security.
QOur evaluation shows that Bellerophon provides similar security
to existing interactive attestation mechanisms with much lower
latency.

I. INTRODUCTION

Trusted execution environments (TEEs) allow clients to run
code securely in a harsh environment: machines controlled
by an attacker running malicious system software. Their
widespread deployment in recent years has drastically reduced
the cost of secure computing in domains including banking [1],
[2], health care [3], [4], [S], and blockchains [6], [7], [8]. Major
cloud providers, including Amazon, Google and Microsoft, now
provide TEE-enabled compute resources [9] based on Intel
SGX and TDX and AMD SeV-SNP [10], [11], [12].

Such systems are extremely powerful, but with the TEE
enclave itself entirely surrounded by an untrusted operating
system, untrusted facilities, and an untrusted network, there is
more work to do. To launch an enclave, a client simply sends a
piece of code to the cloud provider, which runs it inside a TEE.
Since the code passes through the untrusted system, it cannot
contain secrets, and before sending secrets, even in encrypted
form, a client must verify that (1) the correct code is running,
and (2) it is running in a valid enclave that untrusted software
cannot pierce, lest an attacker maliciously modify the code or
attempt to run it where they can observe its data. Existing TEEs
accomplish these goals through remote attestation, a protocol
that allows a client to verify that the enclave was initialized
in the correct state and is running on a genuine TEE-enabled

Ethan Cecchetti
University of Wisconsin—-Madison
cecchetti@wisc.edu

Michael Swift
University of Wisconsin—-Madison
swift@cs.wisc.edu

CPU. There are currently two approaches to remote attestation,
both with substantial drawbacks.

Traditional attestation, defined by hardware manufacturers
like Intel [13], [14] and AMD [15], places the burden of
verification fully on the client. The client must receive an
attestation from the enclave and verify it with the hardware
manufacturer. This model provides very strong security,
guarding against an adversarial cloud provider, but clients
must run their own verifiers and implement their own secret
management, deciding when and how to transmit secrets to
a verified enclave. A commercial-grade secret management
service such as HashiCorp Vault [16] could be as large as
650K lines of code. Moreover, clients must communicate with
each enclave on launch (and to the hardware manufacturer in
some attestation schemes [13]), not only requiring them to be
online and available, but adding wide-area network latency
to the process. This extra latency alone can be prohibitive
in applications that require rapid processing of large data,
like serverless and high-performance compute workloads. Prior
work on protecting serverless functions inside TEEs rely on the
client attesting the enclave each time a function is invoked [17],
[18], [19] (including the commercial Conclave Cloud Functions
[20]). Our measurements show that with a wide-area network
latency of 10 ms, attestation increases startup latency 40-400%
compared to published AWS cold-start latencies [21].

To solve these scalability and performance problems,
commercial deployments, such as those at Microsoft [22]
and Amazon [23], place immense trust in the cloud provider.
Instead of the client performing their own verification and
secret management, the cloud provider does both. Users no
longer have to provision secrets to enclaves, and launch avoids
wide-area network communication as the cloud provider can
place all relevant servers in the same datacenter. However,
users must now completely trust the complex services of the
cloud provider, reducing the value of TEEs. Intel recently
launched a dedicated cloud-based, distributed attestation service
called Trust Authority [24] designed to reduce the burden of
verification on the users by supporting the offloading of the
user’s TEE launch policy. In this model, the user still needs to
manage secrets and transmit them to the TEE after a successful
evaluation of the launch policy by the Trust Authority, and the
Trust Authority is a large addition to the user’s TCB. Prior work
has also used verifiers running inside enclaves [25] running in
the same datacenter, removing the infrastructure provider from

mailto:dsirone@cs.wisc.edu
mailto:cecchetti@wisc.edu
mailto:swift@cs.wisc.edu

the TCB. However, managing the state of verifier enclaves
poses the same management challenges as the client running
their own verifier, increasing the overall TCB size.

Non-interactive attestation, which does not require online
verification, is a promising solution. Previous work on non-
interactive remote attestation focused on either deferring the
verification of the proof of initial state or relying on periodic
verification of the initial state by the remote verifier [26], [27],
[28] but does not consider secret provisioning. Furthermore,
launch still requires one round trip with the verifier, which
is still part of the TCB. Chancel [29] runs a loader enclave
that is attested in advance and is entrusted with the secrets
needed to decrypt the binaries input by the client. While this
approach alleviates the impact of attestation on startup latency,
the burden of managing the loader enclaves and provisioning
secrets still falls on the client, increasing the size of their TCB.

This work presents Bellerophon, an attestation scheme
with the scalability and performance of provider-managed
verification and secret management, the traditional threat model
trusting the cloud provider only to not deny service, and a
smaller trusted computing base (TCB) than prior approaches.
The key insight enabling these gains is to encrypt user
binaries such that only the TEE inside a genuine and properly-
provisioned CPU can correctly decrypt them. As a result, clients
can safely include secrets in their initial (encrypted) binary,
and be sure without interactive verification that only a secure
enclave can decrypt them. This assurance eliminates the choice
between high trust in the cloud provider and online verification
with large network latencies. In addition, it allows binaries to be
stored and executed asynchronously, even behind firewalls, at
any time at low cost. To maintain compatibility with existing
machines capable of running TEEs, Bellerophon does not
require any changes to existing cloud machine hardware capable
of running TEEs but requires the hardware manufacturer to
update their protocols. Each Bellerophon worker machine
requires a persistent and tamper-proof key store that is protected
from untrusted software, so we assume a hardware Trusted
Platform Module (TPM) in our design.

Designing an encryption-based attestation scheme presents
important challenges. First, the successful decryption of the
user’s binary must depend on the TEE being loaded correctly
on a platform with the correct firmware version, just as
today’s TEE’s rely on remote verification to run successfully.
This requires great care in the design and, as we discuss
in Section IV, is not scalable using a standard public-key
encryption scheme. Second, as with any protocol sending
encrypted secrets through an untrusted channel—in this case a
cloud provider—the scheme should be forward secure. That
is, a compromise of key material should not leak secrets from
prior to the compromise, even if the attacker stored previously
encrypted data.

We implement a Bellerophon prototype on Intel SGX
enclaves, and show that the Bellerophon’s TCB is small: just
over 1,000 lines of code for a local architectural enclave for
decryption, and 38.6K lines in total including all the other local
architectural enclaves, library code and the provisioning server.

The addition of a hardware TPM into the TCB is in line with
the usage of TPMs for VM attestation in prior academic work
and real cloud deployments [30], [31], [32]. Our experiments
compare Bellerophon’s against SGX-style interactive attestation
(also applicable to virtual machine enclaves such as Intel
TDX [11] and AMD SEV-SNP [12]) and show that Bellerophon
reduces enclave startup latency for a 40 MB TEE binary by
949% when the SGX verifier requires a 10ms network round
trip. To demonstrate the effectiveness of Bellerophon in an end-
to-end application, we integrate Bellerophon with the reusable
enclaves framework [19] to accelerate the startup performance
of confidential serverless functions.
The main contributions of the paper are:

o We describe an attestation scheme based on encryption
that is non-interactive, verifier-free, and with the same
threat model as that of interactive attestation. The core
insight is the design of a set of architectural enclaves
and efficient key management that aid in performing
decryption, in contrast to the signing architectural enclaves
used in interactive attestation.

o We design a key-management mechanism for TEEs based
on HIBE that removes communication with the hardware
manufacturer during attestation.

o We design a load balancing scheme for Bellerophon that
enables the infrastructure provider to run an encrypted
binary on any machine they own. We also design a re-
encryption scheme so that the users do not need to re-
encrypt binaries for maintaining forward secrecy.

« We implement a Bellerophon prototype on Intel SGX and
show Bellerophon’s TCB is smaller and performs better
than prior mechanisms by integrating with prior work [19]
and running microbenchmarks. Further, we describe how
Bellerophon is implemented on Intel TDX (Appendix B)
and AMD SEV-SNP (Appendix C).

II. BACKGROUND
A. TEEs and Remote Attestation

A Trusted Execution Environment (TEE) is a combination of
hardware and firmware that provides both confidentiality and
integrity protections even against malicious system software.
To ensure a specified computation runs correctly, the TEE
prevents system software from accessing the TEE'’s private
data or changing the execution flow of code running in a TEE.
These guarantees allow a user to be confident that code will
execute as intended and not leak any secrets passed in during
computation. The running code and its associated data isolated
by a TEE is termed an enclave.

For these guarantees to be useful, users need to verify that
specified code was properly loaded onto trustworthy hardware.
This process, known as remote attestation, verifies critical
properties of both the enclave state and the hardware. The
enclave state includes the entire configuration of its address
space (page contents, relative offsets, and permissions), defining
precisely what it will do if executed correctly. The hardware
state includes the security version number of the CPU, ensuring

it properly supports remote attestation and trusted execution,
and the version of the associated firmware. The firmware
consists of the CPU microcode, and a variety of architectural
enclaves—software signed by the hardware manufacturer,
allowing it to derive the keys needed in the attestation process
without external verification, that implements more complex
portions of attestation protocols. The full initial hardware and
software state is provided by a hardware measurement, which
returns a hash of all relevant values.

Existing systems perform remote attestation as an interactive
protocol. We detail the protocol for Intel SGX [13] and Intel
TDX [14] here, please refer to the Appendix for the specifics
of AMD SEV-SNP which are similar.

Provisioning. A TEE user must be able to verify that the
hardware running a TEE can be trusted to maintain its
security, which means that the user can verify that the
hardware comes from a trusted manufacturer. To facilitate
this proof, each machine running TEEs is manufactured with
an embedded secret called a provisioning key shared with its
manufacturer. The provisioning key is only accessible to a
manufacturer-provided provisioning enclave and is specific to
the current firmware version of the machine. Intel EPID [33]
has a provisioning step where an attestation specific secret
is generated by the hardware provider and sent back to the
machine being provisioned. During provisioning, the machine
proves its knowledge of the provisioning key to a provisioning
service run by the manufacturer—allowing the service to
check the validity of the hardware—and provides its local
firmware version—ensuring the CPU is not running outdated
firmware with known vulnerabilities (since the provisioning key
accessible to the provisioning enclave depends on the currently
running firmware version). For Intel SGX EPID, the secret is a
group signing key that can be used to generate signatures over a
hash of the initial state of an enclave. To store the secret across
reboots, the processor encrypts the secret key with a local
sealing key known only to the processor and only accessible
with the current firmware version, and stores the encrypted
key on local untrusted storage. At the end of provisioning, a
machine has a signing key tied to a specific manufacturer and
firmware version. Provisioning provides the opportunity for
the hardware manufacturer to check for additional attributes
of the running machine such as machine ownership which is
required for the design of Bellerophon.

In Intel ECDSA-based attestation [34] and AMD SEV-SNP
attestation [15], the hardware manufacturer provides certificates
for the provisioning certification keys (PCKs) accessible to
the provisioning certification enclave (or the AMD Platform
Security Processor (PSP) in the case of SEV-SNP) with the
hardware manufacturer as the root authority and skips the
provisioning step, rendering the provisioning certification key
unable to prove machine ownership.

Runtime Protocol. When a TEE launches an enclave, it
connects to the quoting enclave, an architectural enclave with
access to the provisioned secret in the case of Intel EPID or
the quoting key in the case of Intel ECDSA, to generate a

TEE-enabled
Machine

Hardware

Verifier
Manufacturer

\//>%9

Fig. 1: Structure of interactive remote attestation: (1) The TEE-
enabled machine sends the verifier a quote containing a proof
of the initial user TEE state. (2) The verifier forwards the
proof to the trusted hardware manufacturer, which (3) responds
with the proof’s validity. (4) If the proof is valid, the verifier
provisions secrets into the TEE.

proof of the hardware and initial enclave state that attests to
its correctness.

In the Intel EPID scheme, the proof consists of a
measurement of the user enclave signed with a provisioned
signing key, whereas in Inte]l ECDSA attestation, a quoting key
that is signed by the provisioning certification key is used. Since
the connection media between the quoting enclave and the user
enclave is controlled by the untrusted OS, the connection
is confidentiality, integrity and replay protected using an
authenticated ECDH key exchange protocol documented by
Intel. All enclave-to-enclave communication in Bellerophon use
this same protocol ([35] and Appendix A). This protocol also
convinces both enclaves of each other’s hardware measurements
in a trustworthy manner.

Figure 1 shows how the attestation procedure proceeds using
this proof. First, the TEE provides the proof to a verifier running
on behalf of the user, which then contacts the hardware provider
to check its validity. If the proof is valid, the verifier can send
secrets (e.g., decryption keys or access tokens) which the user
code running in the enclave needs to perform its intended
function.

This interactivity is useful for two reasons. First, it
enables fresh (ephemeral) secrets on every enclave launch to
ensure forward security, the guarantee that future compromise
of long-term key material (e.g., the provisioned secret)
cannot compromise past communications. Second, since the
provisioned key is sealed using a key associated with the
firmware version, interactive verification can detect rollback
to old key and firmware versions. However, it also imposes
significant slowdowns, as each message incurs a wide-area
network delay.

Compromise Recovery. If the manufacturer learns of a flaw
in the hardware/software TCB of a machine, it can issue
TCB updates. In Intel EPID, machines that are patched re-run
the provisioning protocol to obtain a new group signing key
corresponding to the new firmware version. In Intel ECDSA,
the hardware manufacturer issues certificates for the new PCKs
corresponding to the updated firmware version. Likewise, the
manufacturer can fail verification of any machine known to be
compromised.

B. Hierarchical Identity-Based Encryption

Bellerophon builds on Hierarchical Identity-Based Encryp-
tion (HIBE), a public key encryption scheme where each
party is assigned a hierarchical identity, any public key is
derivable from global public key material and the target
party’s identity, and private keys are derivable down the
hierarchy. More precisely, an identity ¢d is a sequence of
byte strings [ID1,...,ID,] acting as identifiers. Encrypting a
message for party id requires only ¢d and some global public
key material. The master secret decryption key for the root
identity [] is generated randomly, and the DeriveSKey() API
generates the decryption key for any of its descendants in
the identity hierarchy. That is, given decryption key sk for
identity [ID1,...,IDy], DeriveSKey(sk, [IDgi1,--.,1Dy])
will produce the decryption key for identity [ID1, ..., ID,].

This feature enables a hierarchy of key servers. A top-level
key server can delegate private key generation for a subset of
the ID space. For example, a hardware manufacturer “AMD”
could delegate key generation to a cloud provider “AWS” for
key identifiers beginning [“AMD?”, “AWS”]. Clients only need
the global public HIBE material (parameters for this specific
instantiation of HIBE) and a machine’s identity to encrypt a
message for that machine.

III. DESIGN CONSIDERATIONS

We have three primary goals for Bellerophon: (1) minimize
the amount of trusted code required for remote attestation; (2)
make enclave launch non-interactive, removing the performance
overhead of network communication and allowing clients to
be offline when enclaves launch; (3) retain the strong security
guarantees of interactive remote attestation, We first describe
the adversarial model for Bellerophon, and then specify our
security and functionality goals more precisely.

A. Adversarial Model and Compromise Recovery

The Bellerophon threat model is largely based on the
standard model from the TEE literature [36]. TEE-enabled
machines are separated into the self-contained TEE and
everything else—including the operating system, network
facilities, and storage—referred to as the “untrusted OS.” We
assume that TEEs, once properly provisioned, will execute
correctly and not leak anything—including cryptographic key
material—to the untrusted OS not explicitly passed out of the
TEE by the software. It is the job of hardware (e.g., SGX,
TDX, or SEV) to prevent the untrusted OS from interfering
with TEE execution, and Bellerophon does not change the
hardware isolation mechanisms. TEEs isolate user code so they
cannot access other TEEs or modify the untrusted OS directly.
However, the user code can attempt to escape the TEE by
utilizing software bugs.

TEE implementations may defend against additional threat
models, such as physical attackers that can snoop the memory
bus or read/write data in memory beyond the control of the
processor. By building on top of existing TEE mechanisms,
Bellerophon adopts the threat model of the TEE it builds on. For
example, when building on a TEE without memory encryption

(e.g., Keystone [37]) the system maybe vulnerable to memory
bus snooping, while still defending against an untrusted OS.
Notably, we do assume the hardware TPM on each machine
is trusted and tamper-proof.

The Bellerophon system consists of three types of parties.

1) A hardware provider (e.g., Intel or AMD) who manufactures
and distributes TEE hardware, provisions private key
material, and publishes public keys. This hardware provider
is fully trusted.

2) An infrastructure provider (cloud service) who controls
the physical machines and their untrusted OSes. The
infrastructure provider acts as an active adversary and can
deviate from all Bellerophon protocols. In particular, the
infrastructure provider is not trusted to trigger key rotations
for forward security (Section III-B). Defending against
denial of service is beyond the scope of Bellerophon

3) Clients who request jobs. Clients may attack each other and
the infrastructure provider, but will not attack themselves.

We assume that the hardware provider and the infrastructure
provider not collude to compromise user enclaves. Some
infrastructure providers manufacture their own TEE hardware
such as AWS Nitro and they are outside the scope of this work.

Compromise Recovery. In a practical context, some level of
compromise is usually inevitable.

To that end, compromise of user code running inside an
enclave or of provisioned secret keys for an individual cloud
machine must be recoverable, with the damage limited only
to the compromised job, or jobs running on the compromised
machine near in time to when the compromise occurred,
respectively. Compromise of burnt-in secrets within a CPU
are unrecoverable for that CPU, but individual CPUs can be
revoked, limiting the damage.

We do not consider the ramifications of compromises of
any aspect of the hardware provider or of the infrastructure
provider’s long-term identity keys.

Cryptographic Assumptions. We assume that the HIBE
scheme is atleast selectively identity secure against chosen
plaintext attacks, that is IND-sID-CPA [38], [39]. This assump-
tion means that without the secret key it is computationally
hard to learn information from any ciphertexts corresponding
to chosen plaintexts when the public key identifiers used for
generating the ciphertexts is limited in number (corresponding
to the number of hardware manufacturers in existence; the
name of the hardware manufacturer forms the first identifier
in all identities used in Bellerophon). In our implementation
we use the BBG HIBE scheme [40], which is IND-sID-CPA
secure. To encrypt and integrity protect long messages with
HIBE, we assume a Key Encapsulation Mechanism (KEM)
based scheme where a random element in the message space of
the HIBE scheme is used to generate a symmetric key. We rely
on a symmetric encryption scheme that provides authenticated
encryption with associated data that is assumed to be both
IND-CPA [41] and INT-CTXT [41], that is without the secret
key, it is hard to forge a tag for an attacker generated message

given polynomially many chosen plaintext-ciphertext pairs. In
our implementation we use AES-GCM.

B. Security and Functionality Goals

We categorise the objectives of Bellerophon into two classes:
security goals and functionality (or deployability) goals.

Security goals.

S1: Only enclaves initialized correctly and running on a
genuine CPU can access secrets needed for their execution.
This prevents the untrusted OS from accessing user secrets.

S2: The user TEE code and data is protected from access by
the untrusted system software. This is distinct from S1
that requires protecting secrets.

S3: Enclaves can only access secrets if the hardware and
platform software have the specified firmware version.
Clients can ensure that TCBs with known vulnerabilities
cannot access their secrets.

S4: TEE binaries encrypted in the past are not decryptable by
an adversary who compromises a newer decryption key
(forward security).

SS: Enclaves can only run in TEEs authorized by the client-
specified infrastructure provider.

These security goals correspond to the security goals of current
remote attestation mechanisms with interactive verification.
However, non-interactivity brings with it a set of unique
limitations. First, secrets are embedded inside the binaries,
so secrets are long-lived compared to the ephemeral secrets
provided by regular attestation that last only as long as the
enclave runs. All the secrets that the enclave has access to are
part of the encrypted TEE binary. Second, any policies that
decide whether or where an enclave can be launched must
be encoded in the encryption mechanism when the TEE is
prepared, as there is no longer an interactive service that can
enforce policy in real time.

Functionality Goals.

F1: Remote machines can load and run enclaves using only
local information, with no communication to external
services. This reduces the launch latency and reduces
the TCB by removing the code to run a highly available
verifier service.

F2: The infrastructure provider can run an enclave on a group
of machines, not just one. This ensures TEE execution
can be a scalable cloud service offering.

F3: The public encryption key for an individual machine must
be accessible in a trustworthy way without contacting the
hardware provider. This requirement avoids the need for
the hardware manufacturer to run a publicly accessible,
high volume key server. Ideally, anyone requiring the
public key should be able to compute it using public
information it read once from the hardware manufacturer.

F4: After a recoverable TCB compromise (see Section III-A)
or patchable flaw discovery, it is possible to patch and
reprovision a machine, allowing the machine to safely
continue operation.

C. Intel EPID Deprecation

The Bellerophon provisioning design is based on In-
tel EPID [33], which has been deprecated [42] in favor of
a certificate-based attestation. The change was made to remove
the need to contact Intel for each verification operation, which
hinders operation in (R1) client networks that are not connected
to the Internet, (R2) entities that are risk-averse in outsourcing
trust decisions to 3rd parties, (R3) distributed systems (such as
P2P systems) where a single point of verification is suboptimal
or a scalability limit, and (R4) environments that conflict with
EPID’s privacy properties [43]. While Bellerophon uses a
similar provisioning protocol for key distribution to achieve
forward security (see Section IV-C), Bellerophon avoids the
concerns that led to EPID’s deprecation: Bellerophon is non-
interactive and verifier free (R1 and R2), it only requires
one-time communication between clients and the hardware
manufacturer, making is scalable (R3), and it follows certificate-
based attestation in making machine identifiers public (R4).

IV. BELLEROPHON DESIGN

Bellerophon provides non-interactivity by embedding user
secrets in binaries and encrypting those binaries such that only
a valid TEE is able to decrypt them. This approach eliminates
interactive attestation and secret management, and even allows
for storing binaries and executing them later when the client
may be offline.

A. Preparing and Running a Binary

To deploy a computation in a TEE, a user packages their
code and secrets into a single self-contained binary bin and
prepares it for execution using the protocol in Figure 2.
They encrypt bin into an encrypted blob using a freshly
generated symmetric key «. They prepend an decryption stub
to this encrypted blob that, when loaded in a TEE correctly,
decrypts the blob and starts executing the TEE binary with its
secrets. The user generates a hash H of the encrypted blob
and decryption stub to form an authenticator by optionally
computing additional data ¢ of the same size as H and
encrypting « || H || ¢ with a public encryption key whose
corresponding decryption key is known only to the remote
machine. In our implementation on Intel SGX, we modify the
Intel Protected Code Loader (PCL) [44] package to perform the
encryption of each section of the binary (except the decryption
stub), adding write permissions to enable in-place decryption
and storing the original permissions in a table in the binary. We

Binary Preparation
On input (bin, stub, pk, ¢):
K < SymKGen(1*)
blob + SymEnc(k, bin)
H «+ Hash(stub || blob)
auth < PkEnc(pk, s || H || ¢)
output (stub, blob, auth)

Fig. 2: Binary preparation protocol

Decryption Enclave
On input (auth, @) from enclave E:
sk <+ LoadKey()
k|| H || ¢ + PkDec(sk, auth)
H' + verifyMeasurement (&, H)
if H= H' and ¢ = ¢/ output x to &
else abort

Fig. 3: Decryption enclave protocol

modify the provided decryption stub to restore the original page
permissions after decryption using the SGX Enclave Memory
Manager [45]. See the Appendix (B and C) for how this is
implemented in Intel TDX and AMD SEV-SNP.

The additional data ¢ allows the enclave code at runtime
to specify the purpose of this decryption request, such as
decrypting the initial enclave code or interpreting a specific

encrypted request. By doing so, it supports chained verification.

See Section VI for an example.

To ensure the CPU is genuine, the user must obtain the public
key for the target machine from the hardware manufacturer in
advance. The hash H authenticates the material prepared by
the user, and the public key ensures that only a specific, trusted
machine can decrypt and execute the code. The decryption
stub, encrypted TEE binary with user secrets, additional data
¢ and authenticator comprise a TEE package.

The TEE platform on a remote machine ensures that only
a correct TEE package can execute correctly. Inauthentic
hardware or corrupted packages lead to decryption failures,
so code and user secrets in the package are inaccessible.
The platform provides an architectural decryption enclave
that has access to the decryption key corresponding to the
public key used by the user. As mentioned in Section II,
the decryption enclave is architectural and does not have
to be attested by the user. The untrusted OS on the remote
machine loads the decryption stub and encrypted blob into
an enclave and starts the enclave. After finalizing the initial
memory state of the enclave, the untrusted OS executes
the decryption stub with the authenticator as an argument.
The stub connects to the decryption enclave, passing the
authenticator and enclave-generated data ¢ as arguments. Note
that all the communication between the decryption stub and
the decryption enclave is encrypted with integrity and replay
protection through the use of the authenticated ECDH key
exchange protocol documented by Intel where the decryption
stub can verify the measurement of the decryption enclave
it is connecting to ([35] and Appendix A). This protocol
also lets the decryption enclave access the measurement of
the enclave connecting to it in a trustworthy manner. As
shown in Figure 3, the decryption enclave loads its secret
decryption key, decrypts the authenticator, and verifies that
the caller’s measurement (obtained from its attestation report
during the channel setup) and the enclave-generated data match
the respective values in the authenticator. Matching hashes

(H = H’) indicates the expected decryption stub and encrypted
blob were properly loaded into memory. Matching additional
data (¢p = ¢') indicates the running enclave code and the
user agree on the purpose of this request. When both match,
the decryption enclave returns the symmetric key from the
authenticator to the decryption stub, which can then decrypt
and run the encrypted blob containing TEE code and secrets.
If any of these conditions do not hold or if the decryption of
the authenticator fails, then the protocol is aborted.

This basic functionality is sufficient to accomplish four of our
goals. Both S1 and S2 are satisfied since (a) the authenticator
can only be decrypted by a trusted CPU, and (b) the full
TEE code and data, including any secrets, remain encrypted
until they are correctly loaded into an enclave in an isolated
TEE environment. Hence, neither an untrusted machine nor the
untrusted OS on a trusted CPU can access user code and secrets.
We also ensure S3, because a machine with the wrong firmware
version will not have the decryption key for the authenticator.
Finally, because a TEE package contains its own authenticator,
it can be stored and executed later, even if the client is offline or
the machine is disconnected from the network, accomplishing
goal F1.

B. Scalable Key Management

With a classic asymmetric cryptosystem like RSA, the
keys for different machines are unrelated to each other. As
a result, users must query the trusted hardware manufacturer
every time they wish to run a job on a different machine,
violating goal F3. Perhaps even worse, Intel SXG EPID [33]
required users to contact the hardware provider for each remote
attestation. Certificate-based schemes, like Intel ECDSA [34]
and AMD SEV-SNP [15] allow infrastructure providers to
cache certificates for specific machines, removing the need to
contact the hardware provider directly. However, they offer no
forward security—keys rotate only when the firmware version
is updated.

Bellerophon avoids this trade-off using Hierarchical Identity-
Based Encryption (HIBE), with the hardware manufacturer
controlling the root master keys. Each machine receives a
unique identity and associated HIBE private decryption key,
making compromise recovery simpler and easier. The key
material needed to encrypt an authenticator for machine (pk in
Figure 2) is simply the global HIBE public key material and the
identity of the target machine. Public key distribution is also
extremely straightforward: the hardware manufacturer makes
the global HIBE public parameters available. Clients use the
same global HIBE public parameters for every machine, so
they only ever need to retrieve them once to derive public keys
for any machine. They do have to ask the cloud provider for
the identity of a target machine.

An identity id consists of the hardware manufacturer’s name,
a firmware version, the unique hardware identifier for a CPU,!
and a public signature verification key vkp identifying the cloud

IIntel combines the firmware version and hardware identifier into one value
that changes when the TCB updates. Bellerophon can support this behavior,
but it limits clients’ ability to noninteractively require up-to-date TCBs.

provider P. A machine’s ¢d specifies its security attributes The
cloud provider can lie about a machine’s id to the client,
however the provisioning step ensures that only machines
satisfying the attributes in the id have the corresponding HIBE
private key.

Each of these components serves a critical function for
accomplishing our security goals. Including the firmware
version directly in id accomplishes goal S3: a TEE with an
out-of-date TCB will only be provisioned (see below) with the
decryption key for some id’ with the old version number, so it
cannot decrypt authenticators encrypted using an id with the
current version number. The CPU hardware identifier ensures
that each physical machine operates with a different decryption
key, limiting the damage from compromise and aiding goal F4
(see Section IV-C). Finally, as we will see below, including vkp
allows Bellerophon to require P to sign off on provisioning
any machine with this identity. The provider can thus ensure
that only machines it controls have identities that include its
verification key, supporting goal S5.

Provisioning. The main goal of provisioning in Bellerophon
is to ensure that only the decryption enclaves running in
machines satisfying the attributes in its id get access to its
corresponding private key. Recall that all the attributes in id
except the machine ownership can be proved by proving the
knowledge of the provisioning key. Similar to Intel EPID [33],
we assume that the public key of the hardware manufacturer is
hardcoded in the provisioning enclave. First, the provisioning
enclave establishes a TLS channel with the provisioning service
using the hardcoded public key. It then proves knowledge of
the provisioning key corresponding to its claimed attributes
using Salted Challenge Response Authentication Mechanism
(SCRAM), a standard authentication protocol [46]. To verify
that a cloud provider P authorizes provisioning of any machine
with vkp in its identity, the hardware manufacturer interactively
requests a signature on a randomly generated nonce from P as
part of the provisioning process. This achieves goal S5. Refer
to Section IV-C for storage of the provisioned private key.

C. Forward Security

Forward security ensures that a compromise of a private
key at a particular time does not allow an attacker to decrypt
objects encrypted at an earlier time [47]. If a single long-term
private key were used for a remote machine, compromise of that
one key would allow decryption of all binaries ever encrypted
for that machine. Bellerophon addresses this problem (S4) by
dividing time into epochs and rotating keys and destroying old
keys every epoch [38]. With key rotation, a key currently in
use is unhelpful for decrypting older binaries, greatly limiting
the damage from a compromise.

Bellerophon leverages HIBE for two types of time-based key
rotations: major and minor. Major epochs define the granularity
at which forward security is guaranteed in Bellerophon; a
compromised key can, in the worse case, decrypt all binaries
encrypted in the same major epoch, but no others. The hardware
manufacturer inserts a major epoch counter after the unique

hardware identifier for a CPU into the HIBE id for a machine.

The manufacturer can efficiently generate new decryption keys
by changing the major epoch number in an ID, but machines—
and attackers in possession of compromised keys—cannot, as
they only have a decryption key for the entire ID. The same
provisioning protocol described above is used for major epoch
rotations.

Each major epoch is further divided into minor epochs.
Minor epochs further limit the damage that can be caused by
an adversary other than the infrastructure provider within a
major epoch; a compromise of a remote machine’s key at a
particular minor epoch does not allow the adversary to decrypt
binaries that were encrypted before it, on average cutting in
half the window of compromise. We discuss how major and
minor epochs are triggered under the corresponding heading
in Section IV-C. For minor epochs, the new key is derived
from the existing key using HIBE by appending an epoch
counter to the identifier sequence. This enables every machine
to independently and without communication update its key and
destroy its old key; the prefix property of HIBE ensures that
the new decryption key cannot be used to derive the decryption
key for an older epoch [38].

Since epochs are time-based, a user can compute major and
minor epoch values independently.

The period of major epochs is configurable by the hardware
provider and minor epochs by the cloud provider. If these
periods are provided to users, they can independently calculate
the current epoch from wall-clock time when preparing a binary
for execution. We discuss how to estimate the major and minor
epochs based on performance iformation in Section VIII.

Key rotations present several challenges and opportunities.

Transitions. An entire fleet of machines cannot simultaneously
transition from one epoch to the next. Bellerophon solves this
by storing two in each machine, one for the current epoch
and one for the previous epoch. When it stores a new key,
Bellerophon permanently deletes an old key.

Efficient representation of epochs As described, each minor
epoch lengthens the HIBE identifer sequence. Bellerophon
reduces this cost using the HIBE forward security scheme
from Canetti et al. [38], that reduces the depth of the HIBE
hierarchy to be logarithmic in the total number of minor epochs.
Any forward secure HIBE scheme can be used here and we
chose this scheme for ease of implementation.

Binary preparation. With epochs, users must include the
epoch numbers in the id they use for key generation. Users
should encrypt binaries with the last minor epoch when the
binary can run. As long as that epoch has not passed, the
decryption enclave can derive the associated decryption key
from the current epoch’s decryption key, allowing the binary
to run any time up to the specified epoch.

Re-encrypting binaries. Encrypting with a future epoch
number does not work across major epoch boundaries, because
the corresponding key is not derivable on the remote machine.
As a result, any binary stored for future execution will fail to
decrypt after a major epoch rotation.

Bellerophon addresses this with an architectural reencryption
enclave running on each machine. This enclave has access to
the current epoch decryption key and the global public key
material. When invoked by the untrusted OS, the reencryption
enclave will decrypt the authenticator of a TEE package with
the current decryption key and produce a new authenticator
encrypted for the next major epoch. The untrusted OS can
invoke this service during every major rotation. The system
must update all stored binaries before they can run and before
the next major epoch, when the old key will be deleted. The
Bellerophon authenticator could be extended with a maximum
major epoch to limit re-encryptions. In essence, the maximum
major epoch is a limit on when the user should provide fresh
binaries with updated secrets, and provides a tradeoff between
security and functionality.

Provisioning: The hardware manufacturer provisions a new

machine using the current major epoch and minor epoch of zero.

This allows a machine to advance its minor epoch to the current
time since the minor epoch can be computed from the current
time. Major epochs will increase the load on the hardware
manufacturer, as they now must re-provision machines on every
major epoch rather than once at machine installation. This cost

can be reduced by increasing the length of a major epoch.

Alternatively, the HIBE hierarchy enables delegation of major
epoch rotations to an intermediate node, such as the cloud
provider, at the cost of trusting that intermediary.

Triggering rotations. A correctly behaving infrastructure

provider will periodically trigger minor and major epochs.

However, a faulty or malicious infrastructure provider is not

guaranteed to enforce minor or major rotations on each machine.

A TEE, if it has access to a trusted time source, can perform
minor rotations autonomously. An external secure time source
could also generate certificates with the current time, allowing
the untrusted OS to prove to the TEE that it should rotate its
minor epoch forward.

If a provider fails to perform major rotations, the machines
will be unable to run new enclaves encrypted with the new
major epoch, simply denying service. Users can calculate the
major and minor epochs from the current wallclock time. Even
if a machine does not advance its major or minor epoch , the
users will always rotate to the correct epoch and generate new
binaries with the keys for the correct epoch.

A malicious provider can also freeze a machine, taking
it offline and stopping key rotations. This attack allows the
provider more time to break the decryption key and decrypt any
TEE packages with the same major epoch, but is not helpful
across major epoch boundaries, as a frozen machine cannot
be re-provisioned with the next major epoch key. The secrets
obtained from the decrypted binaries could be, in the worst

case, the same as that of a binary from a prior major epoch.

We discuss this more in Section V.

This forward secrecy mechanism address goal S4, that
breaking a current key does not allow decrypting binaries
encrypted in the past beyond the current major epoch.

TPM-Based Key Storage. In some TEE systems, like Intel
SGX, provisioned secrets are stored encrypted on untrusted
storage. This approach poses a serious challenge for forward
security. Untrusted software can store copies of old ciphertexts,
allowing it to roll back the decryption key to an earlier epoch or
and decrypt the old keys later if they compromise a core TEE
key. Bellerophon addresses this concern by storing provisioned
HIBE decryption keys, encrypted under a hardware-derived
long term key, in erasable storage provided by a TPM, which
we assume is trustworthy. By overwriting this TPM memory
on key rotation, Bellerophon can ensure that old keys are not
captured, even in encrypted form.

Notably, the communication between the provisioning and
key rotation enclaves and the TPM passes through the untrusted
system software. We therefore employ a standard forward-secret
protocol for TPM communication with an active attacker [48].
The provisioning key is used as a password to access the index
in the TPM’s non-volatile memory where the provisioned HIBE
private key is stored.

Compromise recovery. If an attack on the hardware/software
TCB of the machine is known, the hardware manufacturer can
issue TCB patches. To ensure old firmware versions are not in
use (goal S3), the manufacturer and infrastructure provider must
re-provision all patched CPUs and publish the new firmware
version to users, who use it to encrypt TEE packages. Such
updates cover all the firmware components, even if all of them
do not have vulnerabilities. The secrets in binaries stored using
a key with the old firmware version should be assumed to be
compromised. For non-critical bugs, this re-provisioning can
occur as part of the next major epoch rotation, limiting the
expense. For critical bugs, however, it may need to happen
“off-cycle,” making recovery very expensive.

If the hardware manufacturer learns that a single machine
is compromised, for example its provisioning secret leaks,
the manufacturer can refuse to issue decryption keys to this
machine during provisioning at the next major epoch. This
prevents the compromised machine from decrypting TEE
packages for future major epochs.

D. Load-Balancing

As described, Bellerophon requires users to prepare a
binary for a specific machine. This is a poor match for a
cloud environment, where a binary may be run on any of
a cluster of machines, and the set of machines may change
over time. We address this with a load balancer. This is an
architectural enclave that accepts a TEE package encrypted
for one machine and the identity of a second, and re-encrypts
the authenticator using the public key of the second machine.
Like the decryption enclave and re-encryption enclave, the load
balancer is implemented as an enclave, and is authenticated
using the same firmware versioning as the other two enclaves.
Note that the implementation of the load-balancing enclave
is almost identical to the re-encryption enclave. The cloud
provider can invoke the load-balancing enclave for any machine
satisfying goal F2.

Load balancing is possible within an architectural enclave
because HIBE removes the need to know the public key for
every machine; the load balancer can use stored global public

HIBE key material to generate the public key for re-encryption.

To ensure that the target machine is owned by the same provider
and is not being redirected to on old, vulnerable machine, the
load balancing enclave verifies that only the hardware identifier
changes between ids, not the firmware version or provider
public key.

Under this design, the user encrypts a TEE package for
a specific load balancer instance. Bellerophon could support
multiple load balancers transparently by issuing them all the
same (virtual) machine ID so they share the same decryption
key. While this slightly cuts against our compromise recovery
goals, load balancers never run user-specified code, reducing
the concern.

V. SECURITY ANALYSIS

We analyze Bellerophon’s security to see how it satisfies the
security goals in Section III-B with a focus on two primary
concerns:

(1) Security with a malicious infrastructure provider.
(ii) Security with a malicious user.

Recall that the compromise of burnt-in CPU secrets is outside

the scope of Bellerophon.

A. Malicious Infrastructure Providers

Recall from Section III-A that Bellerophon assumes the
infrastructure provider will not deny service, but otherwise
treats it as an active adversary, meaning that it might arbitrarily
deviate from the Bellerophon protocols.

S1 and S2 (Confidentiality of User Code and Secrets).

Without interactive verification, Bellerophon relies on the
confidentiality of user code and data to ensure it only executes
on valid TEEs, so the same mechanisms accomplish goals S1
and S2. Recall from Section IV-A that each user workload is
encrypted under a fresh secret key « included in the encrypted
authenticator, so these goals reduce to keeping ~ secure.

The channel between the user enclave and the decryption
enclave is confidential and replay protected using the
authenticated ECDH key exchange protocol documented by
Intel ([35] and Appendix A) so any leak of x must stem
from the user enclave, a leaky load balancer, or leak of the
decryption enclave’s HIBE decryption key. A correct user
enclave is assumed to not leak its own key or secrets. The
decryption enclave verifies the initial measurement of the user
enclave—the encrypted blob and decryption stub—against the
hash provided in the authenticator, thus guaranteeing that & is
only released to correct user enclave code. The load balancer
will only ever re-encrypt the authenticator under the identity of
a different machine, so that simply reduces to compromising
the HIBE key of the target machine.

The security of the provisioned HIBE encryption key stems
directly from the security of the TEE hardware and provisioning
protocol. The genuineness of the CPU and the firmware version

is verified by proving knowledge of the provisioning key.

The provisioning key a machine uses can only be derived
by a provisioning enclave (i) if it runs on a CPU having
a genuine burnt-in root provisioning key and (ii) if the
provisioning enclave (with the claimed firmware version) is
signed by the hardware provider. The provisioning enclave
will not intentionally leak the provisioning key. Therefore the
provisioned key accurately reflects the current firmware version.

Intel EPID sealed provisioned keys using a key associated
with the firmware version, and interactive verification can detect
rollback to previous key and firmware versions. Bellerophon
stores the provisioned key in a TPM to avoid downgrade attacks
without interactive verification.

The decryption enclave never leaks the output of an incorrect
decryption of a HIBE authenticator to the cloud provider,
thereby ruling out chosen ciphertext attacks. The security
assumption of IND-sID-CPA on the HIBE scheme rules
out chosen plaintext attacks for all the identifiers used in
Bellerophon.

A malicious infrastructure provider cannot recover x without
violating one of Bellerophon’s security assumptions. It therefore
cannot decipher the encrypted blob provided by a user, and
is unable to extract any user secrets or the code necessary to
improperly run the job.

S3 (Correct Firmware Version). This goal stems directly
from including the firmware version in the HIBE identity. The
user encrypts their authenticator under an identity that includes
a specific firmware version, and the decryption enclave only
has access to the provisioned key corresponding to its current
firmware version. If those versions do not match, the decryption
enclave will be unable to decrypt the user’s authenticator,
preventing the job from running.

S4 (Forward Security). Forward security is accomplished
through the key rotation and the epoch mechanism. As noted
in Section IV-C, the infrastructure provider can freeze enclaves
to prevent them from rotating keys every minor or major
epoch. This gives the attacker time to launch attacks on
the TEE hardware and firmware guarding the underlying
cryptographic keys. If the HIBE decryption key is compromised,
the infrastructure provider can decrypt any binaries encrypted
for the major epoch in place when the freeze occurred. This
violates goal S2 for any binaries encrypted for those minor
epochs, and goals S1 and S3 for any remaining time in
that major epoch. However, such a compromise of a HIBE
key provides no benefit across major epoch boundaries. By
refreshing application secrets once per re-encryption limit,
users can force the breaking of a new machine every re-
encryption limit many major epochs. The secrets obtained
from the decrypted binaries at a major epoch, could be in the
worst case, be the same as those of a binary from a major
epoch, re-encryption limit many epochs ago.

Compromise of a TEE’s current provisioning key enables the
infrastructure provider to run the provisioning protocol outside
the provisioning enclave, as well as access the stored HIBE
private key, leading to compromise of the HIBE decryption keys
for all major epochs from the initial point of compromise until

that provisioning key is revoked by the hardware manufacturer—
which will occur upon detection—or there is a firmware
version update. Such a compromise, while damaging, does
not violate forward security, since all binaries encrypted for
prior major epochs remain secure. Session establishment with
the TPM uses the burnt-in TPM endorsement key for the session
establishment with freshly generated session keys, ensuring
forward security of the TPM communication and provisioning
key based HIBE private key access protects against TPM de-
soldering attacks [48].

S5 (Correct Infrastructure Provider). Similar to goal S3,
this security stems from including the infrastructure provider’s
signature verification key in the HIBE identity, ensuring the
binary only runs on hardware provisioned for that provider.
Additionally, the hardware manufacturer verifies that key during
provisioning (see Section IV-B), preventing one infrastructure
provider (or a malicious third party) from impersonating another
at provisioning.

B. Fully Malicious Users

A user will not intentionally leak their application secrets.
The user can submit malicious code attempting to break free
of the enclave and take control of the infrastructure provider’s
system software. However, this is subsumed by the fact that
the infrastructure provider is an active adversary. The user can
provide a malformed or invalid authenticator. If the hash of
the binary or the symmetric decryption key is incorrect, the
enclave will fail to decrypt, leading to a denial of service.

VI. CASE STUDY: REUSABLE SERVERLESS ENCLAVES

Bellerophon is flexible enough to support reusable
enclaves [19], a state-of-the-art framework for confidential
execution of serverless functions. Reusable enclaves reduce cold
starts by running a “function enclave” containing a hardened
interpreter in each enclave and reusing the enclave across
multiple serverless function executions. The first execution
requires standard enclave initialization, but each subsequent
invocation resets the function enclave to its initial state before
executing the user-supplied operation.This optimization reduces
a 2-3 second cold start to around 25 ms for state reset, but
the existing implementation still requires interactive enclave
attestation with users at startup, incurring all problems of
interactive attestation including WAN network latencies.

To integrate reusable enclaves with Bellerophon and
eliminate the need for interactive attestation, we slightly modify
the function enclave to execute the Bellerophon Decryption
Enclave protocol and hash user workloads. To prepare a
serverless workload, the user encrypts it as described in
Section IV-A, but uses the hash of the encrypted workload
as ¢ and the hash of the correct function enclave as H in the
authenticator. On receiving an encrypted workload, the function
enclave hashes it, and executes the Bellerophon Decryption
Enclave protocol, sending the hash of the workload to the
decryption enclave as ¢. The decryption enclave decrypts the
authenticator, verifies H and ¢ match, and sends back the key

x, which the function enclave can use to decrypt and run the
workload.

If H in the authenticator matches the hash of the function
enclave, then it must be running the correct code, and that
code will correctly hash the encrypted workload and send it
to the Bellerophon Decryption Enclave as ¢. Therefore, if H
and ¢ both match, both the function enclave and the encrypted
workload must be unmodified from what the user intended,
preventing improper release of «. This chained verification
can extend to multiple layers, with each hashing the previous
layer and the decryption enclave ensuring the chain of hashes
produces the expected value. We evaluate the performance of
this approach in Section VII.

VII. PERFORMANCE EVALUATION

We evaluate the TCB size and the performance of
Bellerophon along four criteria:

1) Latency of verification: how long does it take to load and
verify a new enclave?

2) Latency of load balancing: as load balancing may be done
before launch, its cost is on the critical path.

3) Latency of minor epoch rotation: this is an overhead that
reduces the ability to run enclaves.

4) End-to-end performance impact of Bellerophon when
running serverless functions with the reusable enclaves
Jramework.

Implementation Notes. We implement a prototype of
Bellerophon on top of Intel SGX enclaves. Our prototype
prepares user binaries with a decryption stub and symmetric
encryption of user code/data. At the remote machine,
our prototype implements the full decryption protocol for
attestation, the decryption enclave including support for minor
epochs, the re-encryption enclave for major epochs, the load
balancing enclave, and TPM storage of keys. We implement
the provisioning protocol as a server application written in
Rust and a provisioning enclave for each machine.

We use Intel SGX SDK v2.23 and the hohibe HIBE
library [49], a Rust implementation of Boneh et. al.’s HIBE
scheme with a constant size ciphertext [40]. We modified
the library to run inside an SGX enclave by removing all
dependencies on the standard library and replacing them
with the enclave runtime components from the Apache
Teaclave Project [50]. The system uses the authenticated ECDH
protocol to protect communication from the decryption stub to
architectural enclaves [51]. The Bellerophon enclaves access
the TPM via the WolfTPM library [52]. We use the protocol
described in the CPU to TPM Bus Protection Guide [48]
to provide replay protection, confidentiality and integrity of
messages sent to the TPM. We encrypt TEE binaries using
AES-GCM with the PCL loader encryption tool that is a part of
the Inte]l SGX SDK [44]. The tool encrypts each section after
setting the write permission and inserts a table consisting of the
offsets of all the encrypted sections including their respective
IVs, tags and the original permissions. The decryption stub
uses this table to decrypt all the encrypted sections in-place

Component Lines of code
Encryption libraries 17,179
WolfTPM 14,424
Teaclave 1,034
Provisioning Server 1,107
Decryption enclave 1,257

Re-encryption and
Load-balancing enclaves 1,129
(same logic)

Provisioning enclave 1,555

TABLE 4: Implementation size

and restores the permissions using the SGX Enclave Memory
Manager [45].

TCB Size. Table 4 shows the components of Bellerophon and
their size. The enclave logic is dominated by HIBE encryption
code. In contrast, Intel’s SGX Software TCB including the
verifier and the local architectural enclaves is 74,418 lines
of code, not including any code for secret management
or replication for high availability. Hashicorp’s Vault secret
manager [16], a reliable replicated service for managing user
secrets, is over 450,000 lines of code, similar to what is needed
to implement a verifier or secret provisioning service in the
cloud.The addition of a hardware TPM into the TCB is in line
with the usage of TPMs for VM attestation in prior academic
work and real cloud deployments [30], [31], [32]

Testbeds. Our prototype is built on Intel SGX and we test
criteria 1-3 (microbenchmarks) on an SGX enabled Intel NUC
with an i7-10710U CPU running at 1.6 Ghz with 32 GB of
RAM. The NUC is equipped with a TPM v2.0. Note that we
are not using server CPUs. The NUC runs Linux 5.10 installed
with the Intel SGX PSW and SDK v2.23.

To evaluate the end-to-end impact of Bellerophon on server-
less functions, we use an Intel NUC (model NUC7PJYHN1)
with an Intel Pentium Silver J5040 processor running at 2 Ghz
and with 8 GB of RAM, since it has the Flexible Launch
Control (DCAP) feature that is required by the reusable
enclaves artifact. The i7-10710U outperforms the Pentium
Silver J5040 by 1.91X on average [53]. This NUC runs Linux
6.8.0-52 with the Intel SGX PSW and SDK v2.23.

To simulate network delays between the user enclave and
verifier, we use the tc tool to add delay to the loopback
network device.

A. Verification Latency

We separately measure the time taken for enclave creation
(load and perform measurement) and to complete the attestation
process.

For Intel SGX remote attestation, we run the modified sample
code from the Intel SGX SDK which implements the EPID
attestation flow [54] with the verifier running as a separate
process on the same machine accessed over a TCP/IP socket.
Even though Intel EPID is deprecated, the primary outcome of

27400 — T T T T T
—e— EPID Attestation
2,000 |-

- - - Bellerophon Launch
1,600 |-

1,200
800
400 F - o o oo .

Time (ms)

0 20 40 60 80
One-way Link Latency (ms)

Fig. 5: Intel EPID remote attestation time increases linearly with link
latency. Bellerophon’s non-interactive nature means launch does not
depend on the link latency. Even for 40 MB binaries, Bellerophon’s
entire launch process (which comprises Intel SGX enclave creation and
the Bellerophon Decryption Protocol) is faster than EPID attestation
(including the enclave creation time).

the experiment depends on the number of network messages
sent and the respective network latencies during the attestation
process. The number of WAN network messages in Intel EPID
is at most double that of ECDSA attestation based on Intel
Trust Authority [24], resulting in the experiment estimating
roughly twice the latency of ECDSA attestation in the best
case. This implementation does not count the latency between
the verifier and the hardware provider as they are implemented
within the same process. To simulate the latency of a system
with a low TCB where the users runs their own verifier outside
the cloud datacenter, we use the zc tool to inject delays into the
loopback network interface. The time to create an enclave is the
running time of sgx_create_enclave () which includes
time taken to hash the enclave content - this scales with the
enclave size. Interactive remote attestation or the Bellerophon
Decryption Protocol is executed after enclave creation.

Figure 5 shows the total latency of completing the interactive
attestation process (including the enclave creation time) for
various simulated link latencies. All the data points were
obtained by computing the average time over 100 runs of
the remote attestation protocol. The protocol takes 580 ms
(including the enclave creation time) with a latency of 0 ms,
and for every 10ms increase in link latency, the protocol latency
increases by approximately 160ms. This is because there are
roughly 8 messages sent in each direction owing to the usage
of TCP/IP. The EPID protocol running time is independent of
enclave size, as it only sends fixed-size messages.

For Bellerophon, the decryption protocol replaces the
interactive remote attestation protocol of SGX. Recall that
Bellerophon does not require a trusted verifier for its decryption
protocol, removing the TCB of the interactive verifier. To
measure the latency of the Bellerophon decryption protocol,
we use a single enclave and vary the number of user data pages
in the TEE binary. Since the Bellerophon Decryption Enclave
is using a pre-computed HIBE decryption key with [40], the
decryption time of the symmetric key blob does not depend
on the depth of the HIBE hierarchy. We also measure the time
taken for SGX to create the enclave as a comparison. Note

350
300 |-
250
200
150
100

—e— Decrypt —— Create

Latency (ms)

- —0
f e I | |

4 6 8 10
Encrypted Pages (thousands)

o
[\oR 3

Fig. 6: Bellerophon Decryption Protocol and Intel SGX enclave
creation latency. Note that the Bellerophon Decryption Protocol
is executed after Intel SGX enclave creation.

that this creation time is the stock SGX enclave creation time
dependent on the size of the enclave, and is present for both
Bellerophon and SGX attested enclaves.

Figure 6 shows the latency of completing the Bellerophon
decryption protocol along with the time taken to create the
enclave. The decryption of the symmetric key blob takes a
constant 4ms while the majority of the decryption time goes in
the decryption of the encrypted binary using AES-GCM. An
enclave with 10,000 encrypted pages (40 MB) takes 25 ms to
decrypt completely. This is 216 ms faster than SGX with zero
network latency, and 18x faster than with a link latency of
10 ms. Including the creation latency, a 40 MB enclaves takes
only 365 ms to launch, still faster than SGX EPID excluding
the creation time with a link latency of 0 ms.

B. Re-encryption and Rotation Latency

Bellerophon provides three architectural enclaves. The re-
encryption enclave and load-balancing enclave decrypt an
authenticator, derive a new HIBE key and then encrypt the
authenticator under the new key. In both cases the data size, an
authenticator, is fixed, and the performance variability comes
from HIBE key derivation; a longer id sequence leads to longer
key derivations. The decryption enclave performs minor epoch
rotations where it derives a key for the next epoch and writes
it to the TPM. For all three operations, the majority of the
computation is spent in a single DeriveSKey operation. We
vary the depth of the HIBE hierarchy (i.e., depth of minor epoch
IDs) used for re-encryption and rotation with each identifier
being a 64 byte string. The expected depth in depth in practice
is not expected to exceed 30; at most 5 for the machine and
infrastructure-related identifiers including the major epoch and
25 for the minor epoch. For each depth, we compute the average
over 100 runs of the operation. As load balancing is almost
identical to re-encryption, we do not report its performance.

Figure 7 shows mean re-encryption and minor epoch
rotation computation time, which are nearly identical. For short
hierarchies, re-encryption takes only 12 ms, and increases by 1—
1.5 ms for each level. This time is minor compared to enclave
decryption (Figure 3). Writing HIBE keys to the TPM takes

[—e— Re-encryption]

. 45 | | —— Key Rotation]
;éi L i
5 30 =
E |]
TS |
0 L | | | | | | L

5 10 15 20 25 30 35 40
Identity Hierarchy Depth

Fig. 7: Impact of identity hierarchy depth on authenticator
reencryption and minor epoch key rotation.

Execution | Intel ECDSA | Bellerophon
Benchmark ‘ Time (ms) ‘ (ms) (ms)
add 38 132 + 8xWAN 27
hash 42 132 + 8xWAN 27
prime 10,716 132 + 8xWAN 27
clock 38 132 + 8xWAN 27

TABLE 8: Warm start performance of reusable serverless
functions. The times for Intel ECDSA are in terms of the
single-hop wide-area network latency, WAN.

on average 22 ms. Overall, the computational overhead of all
three enclaves is minimal.

The provisioning protocol takes 0.97 seconds with no
network latency (Oms) and 1.12 seconds with a network latency
of 10ms.

C. End-to-End Performance

The reusable enclaves framework [19] runs WASM binaries
inside an enclave with a WASM interpreter. We integrate
Bellerophon into the execution path by encrypting the WASM
binaries, generating authenticators as in Section VI and
decrypting the binaries by the Bellerophon Decryption Protocol
before loading into the WASM interpreter. We measure the
time it takes to execute the Bellerophon Decryption Protcol
and decrypt the WASM binary before execution. We use the
same benchmark functions used by [19]:

¢ add: adds two input numbers

e prime: computes the 20,000,000th prime number

e hash: hashes a string of length 10, 100 times

e clock: measures the granularity of the interpreter’s

internal clock implementation

Recall from Section VI that the reusable enclaves framework
requires that the function enclave be attested per invocation
of the serverless function. To compare with Bellerophon, we
measure the time it takes to perform ECDSA attestation (that
is part of the reusable enclaves implementation) of the function
enclave. The sizes of the WASM binaries are in the range of
34-36 4K pages.

Table 8 shows the mean function execution time in
comparison with the time taken for remote attestation as
well as for Bellerophon (standard deviation under 5Sms for
all measurements). For Intel ECDSA attestation, the time is

the same for each function since each uses the same function
encalve. The measured time of 132ms includes no network
delays, but ECDSA attestation incurs 8 wide-area network
hops. By contrast, Bellerophon takes only 27ms to run in all
of the functions, since the sizes of the WASM binaries are
all similar. Bellerophon outperforms ECDSA attestation even
with no network delays, and remains independent of the wide
area latency. For long running functions, like prime which
takes nearly 11 seconds, the performance gains of Bellerophon
becomes less significant.

VIII. DISCUSSION AND LIMITATIONS

Real-time launch policies and session-based forward secrecy.
Due to non-interactivity, Bellerophon does not support dynamic
decision making of whether a particular TEE instance should
be run or not, such as based on the time of day, as supported by
Intel Trust Authority [55]. Static launch policies can be baked
into the decryption stub with careful consideration of their
dependency on the untrusted system software returning correct
data. Dynamic changes to launch policies are not supported
and a change to a policy requires the user to generate a new
binary and invalidate old secrets. Further, non-interactivity
does not support session-based ephemeral secrets in the TEE
computation that provide forward secrecy.

Applications requiring these features can implement logic
in the enclave code to perform interactive checks or request
ephemeral secrets. One can always add interactivity to a non-
interactive system.

Enforcing policy in architectural enclaves. The architectural
enclaves in Bellerophon could be extended to enforce
additional policies. For example, the load balancer described
in Section IV-D will re-encrypt any authenticator with a new
machine ID. This could be restricted by, for example, adding an
Allow Load Balance bit in the authenticator which can be set by
users and cleared by a load balancer when re-encrypting. This
could prevent the output authenticator from being re-encrypted
again for a new machine.

Customizing the Duration of Epochs Epoch lengths in
Bellerophon can be estimated based on the performance of
provisioning, minor rotations and re-encryptions.

According to our measurements, if the provisioning protocol
takes 1 second, then 3600 machines can be reprovisioned in
an hour on a single core, or 2.7 million/day on a 64-core
machine. Likewise, if minor key rotation and re-encryption
of an authenticator takes 30ms, then a single machine can
rotate 30 stored authenticators/second/core. Then it takes 30
seconds for a single minor epoch rotation for a machine with
1000 binaries. Ideally major epochs would be frequent for
maximum security, but they do impose a cost of rerunning the
provisioning protocol. They also place a requirement on time
synchronization, as clients use the current time to derive the
current epoch, so epochs should not be too close in length
to possible clock skew. We recommend major epochs last 1
day and minor epochs last 10 minutes as a resonable balance
between the overhead, so a core can handle reprovisioning of a

large cloud service, and a single machine can do re-encryption
for 1000 TEEs with only 5% overhead.

IX. RELATED WORK

Non-interactive attestation. PodArch [56] proposed an idea
almost identical to that described in Section IV-A. However,
it did not address scalable key management or forward
security. Chancel [29] uses an attested program loader that
can decrypt encrypted binaries. The user still has to maintain
secrets in loader enclaves in different machines depending
on where the user enclave is going to run in the future.
Bellerophon eliminates the complexity associated with this
secret management.

Other works have focused on non-interactive attestation
in the context of IoT devices, but there is no notion of a
user submitting a binary to an IoT device for outsourcing
computation. zZRA [26] achieves non-interactivity of attestation
in IoT devices where the measurement of the trusted firmware is
assumed to be known only to the trusted hardware provider. The
device publishes a zero knowledge proof of its current firmware
state on a permissionless blockchain, which is then verified
against the commitment of the measurement at a later time.
SCRAPS [27] achieves scalability of the attestation verifier by
doing verification in a smart contract on the blockchain for
Pub-Sub Iot networks. Similar work on scalable attestation [57],
[58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69]
for Pub-Sub IoT networks provide a subset of the systems and
security properties that are provided by SCRAPS. However,
a trusted verifier is still required to verify the evidence of
attestation generated by the IoT devices, making it unsuitable
for achieving the goals that Bellerophon targets (goal F1).

X. CONCLUSION

Remote attestation is critical for the security of Trusted
Execution Environments. However, existing remote attestation
schemes rely on an interactive protocol with a verifier that either
the user must manage, requiring long-latency communication
paths, or is managed by the cloud provider, which greatly
increase the trust required of the provider. Bellerophon provides
non-interactive attestation by encrypting binaries in a key
known only to secure hardware on a trusted machine. It removes
all communication during enclave launch as well as trust in a
cloud provided verifier. Our evaluation shows that Bellerophon
provides comparable security to existing interactive attestation
mechanisms at much lower latency.

REFERENCES

[1] Microsoft, “Announcing: Microsoft moves $25 Billion in credit card

transactions to Azure confidential computing,” https://techcommunity.mi

crosoft.com/blog/azureconfidentialcomputingblog/announcing-microso

ft-moves-25-billion-in-credit-card- transactions-to-azure-confi/3981180,

2023.

Fortanix, “Preventing Money Laundering in a Confidential Computing

Way,” https://www.fortanix.com/blog/preventing-money-laundering-in-a

-confidential-computing-way, 2023.

[3] Intel, “Intel SGX Helps UCSF Propel Medical Device Innovations,”
https://www.intel.com/content/www/us/en/newsroom/news/ucsf-prope
I-medical-device-innovations.html#gs.i6buxf, 2020.

[2

—

https://techcommunity.microsoft.com/blog/azureconfidentialcomputingblog/announcing-microsoft-moves-25-billion-in-credit-card-transactions-to-azure-confi/3981180
https://techcommunity.microsoft.com/blog/azureconfidentialcomputingblog/announcing-microsoft-moves-25-billion-in-credit-card-transactions-to-azure-confi/3981180
https://techcommunity.microsoft.com/blog/azureconfidentialcomputingblog/announcing-microsoft-moves-25-billion-in-credit-card-transactions-to-azure-confi/3981180
https://www.fortanix.com/blog/preventing-money-laundering-in-a-confidential-computing-way
https://www.fortanix.com/blog/preventing-money-laundering-in-a-confidential-computing-way
https://www.intel.com/content/www/us/en/newsroom/news/ucsf-propel-medical-device-innovations.html#gs.i6buxf
https://www.intel.com/content/www/us/en/newsroom/news/ucsf-propel-medical-device-innovations.html#gs.i6buxf

[4]

[5

=

[6

=

[7

—

[8

=

[9

—

[10]
[11]
[12]
[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
(23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Intel, “Maximum Security at the Processor Level: Intel SGX Protects
Electronic Patient Record,” https://www.intel.com/content/www/us/en/co
ntent-details/826053/maximum-security- at- the- processor-level-intel-s
gx-protects-electronic-patient-record.html, 2020.

intc.com, “Intel and Penn Medicine Announce Results of Largest Medical
Federated Learning Study,” https://www.intc.com/news-events/press-rel
eases/detail/1593/intel- and- penn-medicine- announce-results- of- largest
-medical, 2020.

S. Network, “Secret network overview - private smart con- tracts on the
blockchain.” https://scrt.network/about/about-secret-network/, 2022.

P. Network, “Phala Network Overview,” https://docs.phala.network/ove
rview/phala-network, 2022.

Crust, “Crust Overview,” https://wiki.crust.network/docs/en/crustOvervi
ew, 2022.

Microsoft, “Azure Confidential Computing,” https://azure.microsoft.com/
en-us/solutions/confidential-compute, 2020.

Intel, “Intel SGX,” https://www.intel.com/content/www/us/en/developer/
tools/software- guard-extensions/overview.html, 2015.

Intel, “Intel TDX White Paper,” https://www.intel.com/content/www/us
/en/developer/tools/trust-domain-extensions/overview.html, 2021.
AMD, “AMD SEV,” https://www.amd.com/en/developer/sev.html, 2021.
Intel, “Intel SGX Remote Attestation,” https://www.intel.com/content/
www/us/en/developer/tools/software-guard-extensions/attestation-servi
ces.html, 2018, accessed April 2025.

Intel, “Intel TDX white paper,” https://cdrdv2-public.intel.com/690419/T
DX-Whitepaper-February2022.pdf, 2022, accessed April 2025.

AMD, “AMD SEV-SNP Remote Attestation,” https://cdrdv2-public.intel.

com/690419/TDX-Whitepaper-February2022.pdf, 2022.

HashiCorp, “hashicorp/vault: A tool for secrets management, encryption
as a service, and privileged access management,” https://github.com/has
hicorp/vault, 2015, accessed April 2025.

W. Qiang, Z. Dong, and H. Jin, “Se-Lambda: Securing privacy-sensitive
serverless applications using SGX enclave,” in SecureComm, 2018.

D. Goltzsche, M. Nieke, T. Knauth, and R. Kapitza, “AccTEE:
A WebAssembly-based Two-way Sandbox for Trusted Resource
Accounting,” in Middleware, 2019.

S. Zhao, P. Xu, G. Chen, M. Zhang, Y. Zhang, and Z. Lin, “Reusable
enclaves for confidential serverless computing,” in USENIX Security,
2023.

R. G. Brown, “Conclave Cloud Whitepaper,” https://uploads-ssl.webflo
w.com/62e0881a72ba0c74c831c6£8/631a090677613438d726bd70_Con
clave_Introductory_Whitepaper.pdf, Dec. 2021, accessed April 2025.
AWS, “AWS Lambda Cold Start,” https://aws.amazon.com/blogs/compu
te/operating-lambda- performance-optimization-part- 1/, 2022.
Microsoft, “Microsoft Azure Attestation,” https://learn.microsoft.com/en
-us/azure/attestation/overview, 2024.

AWS, “AWS Attestation,” https://docs.aws.amazon.com/enclaves/latest/
user/set-up-attestation.html, 2023.

Intel, “Intel Trust Authority,” https://docs.trustauthority.intel.com/main/a
rticles/introduction.html, 2023.

F. Alder, N. Asokan, A. Kurnikov, A. Paverd, and M. Steiner, “S-FaaS:
Trustworthy and accountable function-as-a-service using Intel SGX,” in
CCSW, 2019.

S. Ebrahimi and P. Hassanizadeh, “From interaction to independence:
zkSNARKSs for transparent and non-interactive remote attestation,” in
NDSS, 2024.

L. Petzi, A. E. B. Yahya, A. Dmitrienko, G. Tsudik, T. Prantl, and
S. Kounev, “SCRAPS: Scalable collective remote attestation for Pub-Sub
IoT networks with untrusted proxy verifier,” in USENIX Security, 2022.
J. Neureither, A. Dmitrienko, D. Koisser, F. Brasser, and A.-R. Sadeghi,
“LegloT: Ledgered trust management platform for IoT,” in ESORICS,
2020.

A. Ahmad, J. Kim, J. Seo, I. Shin, P. Fonseca, and B. Lee, “CHANCEL:
Efficient multi-client isolation under adversarial programs,” in NDSS,
2021.

V. Narayanan, C. Carvalho, A. Ruocco, G. Almasi, J. Bottomley, M. Ye,
T. Feldman-Fitzthum, D. Buono, H. Franke, and A. Burtsev, “Remote
attestation of confidential VMs using ephemeral VIPMSs,” in Proceedings

of the 39th Annual Computer Security Applications Conference, ser.

ACSAC "23. Association for Computing Machinery, 2023, p. 732743.
Microsoft, “TPM attestation in Azure,” https://learn.microsoft.com/en-u
s/azure/attestation/tpm-attestation-concepts.

[33]

[34]

(35]
[36]

[37]

(38]
[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Trusted Computing Group, “TPM as an API for attestation in big,
distributed environments,” https://trustedcomputinggroup.org/tpm-a
s-an-api-for-attestation-in-big-distributed-environments/.

J. Li and E. Brickell, “Enhanced privacy ID from bilinear pairing for
hardware authentication and attestation,” in Social Computing / IEEE
International Conference on Privacy, Security, Risk and Trust, 2010,
2010.

Intel, “Intel SGX Data Center Attestation Primitives (Intel SGX DCAP),”
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/DCAP_E
CDSA_Orientation.pdf, 2022.

——, “SGX Local Attestation Flow,” https://github.com/intel/linux-sgx/t
ree/main/SampleCode/LocalAttestation, 2025, accessed July 2025.

V. Costan and S. Devadas, “Intel SGX explained,” JACR Cryptol. ePrint
Arch., 2016.

D. Lee, D. Kohlbrenner, S. Shinde, K. Asanovic, and D. Song, “Keystone:
An Open Framework for Architecting Trusted Execution Environments,”
in Proceedings of the Fifteenth European Conference on Computer
Systems, ser. EuroSys, 2020.

R. Canetti, S. Halevi, and J. Katz, “A Forward-Secure Public-Key
Encryption Scheme,” J. Cryptol., 2007.

Canetti, Ran and Halevi, Shai and Katz, Jonathan, “Chosen-ciphertext
security from identity-based encryption,” in EUROCRYPT, 2004.

D. Boneh, X. Boyen, and E.-J. Goh, “Hierarchical identity based
encryption with constant size ciphertext,” in EUROCRYPT, 2005.

M. Bellare and C. Namprempre, “Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm,” in
ASIACRYPT 2000, 2000.

Intel, “Intel EPID EOL Notice,” https://www.intel.com/content/www/us
/en/developer/articles/technical/software-security- guidance/resources/sg
x-ias-using-epid-eol-timeline.html, 2023.

V. Scarlata, S. Johnson, J. Beaney, and P. mijewski, “Supporting third
party attestation for intel® sgx with intel® data center attestation
primitives,” 2018. [Online]. Available: https://api.semanticscholar.org/Co
rpusID:221506554

Intel, “Intel SGX protected code loader,” https://github.com/intel/linux-s
gx-pcl.

F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson,
R. Leslie-Hurd, and C. Rozas, “Intel software guard extensions (intel
sgx) support for dynamic memory management inside an enclave,”
in Proceedings of the Hardware and Architectural Support for
Security and Privacy 2016, ser. HASP ’16, 2016. [Online]. Available:
https://doi.org/10.1145/2948618.2954331

“Salted Challenge Response Authentication Mechanism (SCRAM) SASL
and GSS-API Mechanisms,” https://datatracker.ietf.org/doc/html/rfc5802,
2010, accessed July 2025.

R. Anderson, “Two remarks on public key cryptology,” http://www.cl.c
am.ac.uk/ftp/users/rjal4/forwardsecure.pdf, 1997.

Trusted Computing Group, “CPU to TPM bus protection guidance —
active attack mitigations,” https://trustedcomputinggroup.org/wp-content
/uploads/TCG_-CPU_-TPM_Bus_Protection_Guidance_Active_Attac
k_Mitigations-V1-R30_PUB-1.pdf, 2023.

D. Schadt, “hohibe.rs - Hierarchical Identity Based Encryption,” https:
/lcrates.io/crates/hohibe, 2021, accessed April 2025.

H. Wang, P. Wang, Y. Ding, M. Sun, Y. Jing, R. Duan, L. Li, Y. Zhang,
T. Wei, and Z. Lin, “Towards Memory Safe Enclave Programming with
Rust-SGX,” in CCS, 2019.

Intel, “Innovative Technology for CPU Based Attestation and Sealing,”
https://www.intel.com/content/www/us/en/developer/articles/technical/i
nnovative-technology-for-cpu-based-attestation-and-sealing.html, 2013.
wolftpm, “wolfTPM: Portable TPM 2.0 project designed for embedded
use,” https://github.com/wolfSSL/wolfTPM.

Technical City, “Pentium Silver J5040 vs i7-10710U - Technical City,”
https://technical.city/en/cpu/Core-i7-10710U-vs-Pentium- Silver-J5040,
2019, accessed April 2025.

Intel, “Code Sample: Intel Software Guard Extensions Remote Attestation
End-to-End Example,” https://www.intel.com/content/www/us/en/develo
per/tools/software- guard-extensions/get-started.html, 2023.

——, “Intel Trust Authority,” https://www.intel.com/content/www/us/en/
developer/tools/software- guard-extensions/linux-overview.html, 2023.
Shweta Shinde and Shruti Tople and Deepak Kathayat and Prateek Saxena,
“PodArch: Protecting Legacy Applications with a Purely Hardware TCB,”
School of Computing, National University of Singapore, Tech. Rep.
NUS-SL-TR-15-01, February 2015.

https://www.intel.com/content/www/us/en/content-details/826053/maximum-security-at-the-processor-level-intel-sgx-protects-electronic-patient-record.html
https://www.intel.com/content/www/us/en/content-details/826053/maximum-security-at-the-processor-level-intel-sgx-protects-electronic-patient-record.html
https://www.intel.com/content/www/us/en/content-details/826053/maximum-security-at-the-processor-level-intel-sgx-protects-electronic-patient-record.html
https://www.intc.com/news-events/press-releases/detail/1593/intel-and-penn-medicine-announce-results-of-largest-medical
https://www.intc.com/news-events/press-releases/detail/1593/intel-and-penn-medicine-announce-results-of-largest-medical
https://www.intc.com/news-events/press-releases/detail/1593/intel-and-penn-medicine-announce-results-of-largest-medical
https://scrt.network/about/about-secret-network/
https://docs.phala.network/overview/phala-network
https://docs.phala.network/overview/phala-network
https://wiki.crust.network/docs/en/crustOverview
https://wiki.crust.network/docs/en/crustOverview
https://azure.microsoft.com/en-us/solutions/confidential-compute
https://azure.microsoft.com/en-us/solutions/confidential-compute
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://www.amd.com/en/developer/sev.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://cdrdv2-public.intel.com/690419/TDX-Whitepaper-February2022.pdf
https://cdrdv2-public.intel.com/690419/TDX-Whitepaper-February2022.pdf
https://cdrdv2-public.intel.com/690419/TDX-Whitepaper-February2022.pdf
https://cdrdv2-public.intel.com/690419/TDX-Whitepaper-February2022.pdf
https://github.com/hashicorp/vault
https://github.com/hashicorp/vault
https://uploads-ssl.webflow.com/62e0881a72ba0c74c831c6f8/631a090677613438d726bd70_Conclave_Introductory_Whitepaper.pdf
https://uploads-ssl.webflow.com/62e0881a72ba0c74c831c6f8/631a090677613438d726bd70_Conclave_Introductory_Whitepaper.pdf
https://uploads-ssl.webflow.com/62e0881a72ba0c74c831c6f8/631a090677613438d726bd70_Conclave_Introductory_Whitepaper.pdf
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-1/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-1/
https://learn.microsoft.com/en-us/azure/attestation/overview
https://learn.microsoft.com/en-us/azure/attestation/overview
https://docs.aws.amazon.com/enclaves/latest/user/set-up-attestation.html
https://docs.aws.amazon.com/enclaves/latest/user/set-up-attestation.html
https://docs.trustauthority.intel.com/main/articles/introduction.html
https://docs.trustauthority.intel.com/main/articles/introduction.html
https://learn.microsoft.com/en-us/azure/attestation/tpm-attestation-concepts
https://learn.microsoft.com/en-us/azure/attestation/tpm-attestation-concepts
https://trustedcomputinggroup.org/tpm-as-an-api-for-attestation-in-big-distributed-environments/
https://trustedcomputinggroup.org/tpm-as-an-api-for-attestation-in-big-distributed-environments/
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/DCAP_ECDSA_Orientation.pdf
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/DCAP_ECDSA_Orientation.pdf
https://github.com/intel/linux-sgx/tree/main/SampleCode/LocalAttestation
https://github.com/intel/linux-sgx/tree/main/SampleCode/LocalAttestation
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/sgx-ias-using-epid-eol-timeline.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/sgx-ias-using-epid-eol-timeline.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/sgx-ias-using-epid-eol-timeline.html
https://api.semanticscholar.org/CorpusID:221506554
https://api.semanticscholar.org/CorpusID:221506554
https://github.com/intel/linux-sgx-pcl
https://github.com/intel/linux-sgx-pcl
https://doi.org/10.1145/2948618.2954331
https://datatracker.ietf.org/doc/html/rfc5802
http://www.cl.cam.ac.uk/ftp/users/rja14/forwardsecure.pdf
http://www.cl.cam.ac.uk/ftp/users/rja14/forwardsecure.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_-CPU_-TPM_Bus_Protection_Guidance_Active_Attack_Mitigations-V1-R30_PUB-1.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_-CPU_-TPM_Bus_Protection_Guidance_Active_Attack_Mitigations-V1-R30_PUB-1.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_-CPU_-TPM_Bus_Protection_Guidance_Active_Attack_Mitigations-V1-R30_PUB-1.pdf
https://crates.io/crates/hohibe
https://crates.io/crates/hohibe
https://www.intel.com/content/www/us/en/developer/articles/technical/innovative-technology-for-cpu-based-attestation-and-sealing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/innovative-technology-for-cpu-based-attestation-and-sealing.html
https://github.com/wolfSSL/wolfTPM
https://technical.city/en/cpu/Core-i7-10710U-vs-Pentium-Silver-J5040
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/get-started.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/get-started.html
 https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/linux-overview.html
 https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/linux-overview.html

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

(74

[75

[76]

(771

[78]

[79]
[80]

[81]

[82]

N. Asokan, F. Brasser, A. Ibrahim, A.-R. Sadeghi, M. Schunter, G. Tsudik,
and C. Wachsmann, “SEDA: Scalable Embedded Device Attestation,” in
CCS, 2015.

X. Carpent, K. ElDefrawy, N. Rattanavipanon, and G. Tsudik,
“Lightweight Swarm Attestation: A Tale of Two LISA-s,” in CCS, 2017.
A. Ibrahim, A.-R. Sadeghi, and S. Zeitouni, “SeED: secure non-interactive
attestation for embedded devices,” in Proceedings of the 10th ACM
Conference on Security and Privacy in Wireless and Mobile Networks,
ser. WiSec ’17, 2017.

A. Ibrahim, A.-R. Sadeghi, G. Tsudik, and S. Zeitouni, “DARPA: Device
Attestation Resilient to Physical Attacks,” in Proceedings of the 9th ACM
Conference on Security & Privacy in Wireless and Mobile Networks,
2016.

F. Kohnhauser, N. Buscher, S. Gabmeyer, and S. Katzenbeisser, “SCAPI:
A Scalable Attestation Protocol to Detect Software and Physical attacks,”
in WiSec, 2017.

E. Dushku, M. M. Rabbani, M. Conti, L. V. Mancini, and S. Ranise,
“SARA: Secure Asynchronous Remote Attestation for IoT Systems,”
TIFS, 2020.

F. Stumpf, A. Fuchs, S. Katzenbeisser, and C. Eckert, “Improving the
Scalability of Platform Attestation,” in STC, 2008.

F. Kohnhiuser, N. Biischer, and S. Katzenbeisser, “SALAD: Secure and
Lightweight Attestation of Highly Dynamic and Disruptive Networks,”
in ASIACCS, 2018.

M. M. Rabbani, J. Vliegen, J. Winderickx, M. Conti, and N. Mentens,
“SHeLA: Scalable Heterogeneous Layered Attestation,” IEEE Internet of
Things Journal, 2019.

M. Bampatsikos, C. Ntantogian, C. Xenakis, and S. C. A. Thomopoulos,
“BARRETT BlockchAin Regulated REmote aTTestation,” in WI
Companion, 2019.

M. Ambrosin, M. Conti, A. Ibrahim, G. Neven, A.-R. Sadeghi,
and M. Schunter, “SANA: Secure and Scalable Aggregate Network
Attestation,” in CCS, 2016.

B. Kuang, A. Fu, S. Yu, G. Yang, M. Su, and Y. Zhang, “ESDRA:
An efficient and secure distributed remote attestation scheme for IoT
swarms,” IEEE Internet of Things Journal, 2019.

F. Kohnhauser, N. Buscher, S. Gabmeyer, and S. Katzenbeisser, “A
practical attestation protocol for autonomous embedded systems,” in
EuroS&P, 2019.

AMD, “AMD SEV-SNP Attestation,” https://www.amd.com/content/da
m/amd/en/documents/developer/Iss-snp-attestation.pdf, 2022.

C. Fruhwirth, “LUKS1 On-Disk Format Specification Version 1.2.3,”
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/LUKS-standard/on-dis
k-format.pdf, 2018, accessed July 2025.

AMD, “SEV Secure Nested Paging Firmware ABI Specification,” https:
/Iwww.amd.com/content/dam/amd/en/documents/epyc-technical-docs/sp
ecifications/56860.pdf, 2025, accessed July 2025.

Chris Lott, “Which Intel Platforms Can Be Used to Play Ultra HD
Blue-Ray Discs?” https://www.intel.com/content/www/us/en/support/arti
cles/000089271/intel-nuc.html, 2022.

Intel, “Which Intel Platforms Can Be Used to Play Ultra HD Blue-Ray
Discs?” https://hackaday.com/2022/01/18/sgx-deprecation-prevents-pc-p
layback-of-4k-blu-ray-discs/, 2022.

Google, “Confidential VM Attestation,” https://learn.microsoft.com/en-u
s/azure/attestation/overview, 2024.

AWS, “AWS Nitro Enclaves,” https://docs.aws.amazon.com/enclaves/lat
est/user/nitro-enclave.html, 2020, accessed April 2025.

Microsoft, “TPM Key Attestation - Microsoft,” https://learn.microsoft.co
m/en-us/windows-server/identity/ad-ds/manage/component-updates/tpm
-key-attestation, May 2023, accessed April 2025.

J. Ménétrey, C. Gottel, A. Khurshid, M. Pasin, P. Felber, V. Schiavoni, and
S. Raza, “Attestation Mechanisms for Trusted Execution Environments
Demystified,” in DAIS, 2022.

S. Zhao, Q. Zhang, Y. Qin, W. Feng, and D. Feng, “SecTEE: A software-
based approach to secure enclave architecture using TEE,” in CCS, 2019.
W. Li, H. Li, H. Chen, and Y. Xia, “AdAttester: Secure online mobile
advertisement attestation using TrustZone,” in MobiSys, 2015.

Z. Ling, H. Yan, X. Shao, J. Luo, Y. Xu, B. Pearson, and X. Fu, “Secure
boot, trusted boot and remote attestation for ARM TrustZone-based IoT
nodes,” Journal of Systems Architecture, 2021.

C. Shepherd, K. Markantonakis, and G.-A. Jaloyan, “LIRA-V:
Lightweight Remote Attestation for Constrained RISC-V Devices,” in
SPW, 2021.

[83] G. Chen, Y. Zhang, and T.-H. Lai, “OPERA: Open remote attestation
for Intel’s secure enclaves,” in CCS, 2019.

APPENDIX
A. Session Establishment Between Enclaves

We describe the Intel SGX ECDH based secure
channel establishment protocol [35] between two enclaves
A (decryption stub) and B (decryption enclave) over a channel
controlled by the untrusted OS for completeness. The key idea
here is that the Diffie-Hellman key exchange messages are
authenticated using the attestation reports that can only be
generated in the intended enclaves with their corresponding
measurements, preventing man-in-the-middle attacks. Also,
note that the hash identity of the decryption enclave is
hardcoded in the decryption stub. The exact details of the
report generation and verification varies between different TEE
implementation:

1) Session Initialization: Enclave A sends a session
initialization message to enclave B

Message 1 (B to A): B generates an ECDSA key pair
(gfub, g5.;,) and requests its own attestation report 7 5([])
without any additional data (indicated by []). It then sends
g, and rp([]) to A.

Message 2 (A to B): On receiving message 1 from enclave
B, A verifies the identity of B using the hash in r(]])
and the hardcoded identity of B. It then generates an
ECDSA key pair (g;:‘ub, gg‘”»v). It then computes the shared
secret (g%)) from g/, and gZ,. A then generates
an attestation report with SH A256(gBub||g;)4ub) as the
additional data (rA([SHA256(gfub||gpub)]). Finally, A
generates message 2 as a struct consisting of g;‘ub,
ra([SHA256(g7 ,l9:,,;)]) and a CMAC computed over
the message using the shared key ¢g*'?). It then sends
message 2 to B.

Message 3 (B to A): On receiving message 2 from
A, B verifies the report and verifies the report data by
computing SH A256(gfub||gp’4ub). It then computes the
shared secret (g*7)) from g, and g7,. The CMAC
on the message is verified using the shared secret g45).
B then computes message 3 by computing the report
r5([SHA256(g5n||95)]) along with its CMAC using
the shared secret g*'7). Message 3 is then sent to A
Process Message 3 (A): On receipt of message 3, A
verifies the report, its sender hash, the additional data
and its CMAC using the shared secret g-7). Using the
shared secret g*B) both A and B can compute a shared
session key which can be used for encrypted and replay-
protected communication. One such way (as in TLS) is
to use AES-GCM to encrypt each message and have the
sequence number of each message as part of the message
header, which is passed in as additional data to generate
a tag.

2)

3)

4)

5)

Note that message 2 and 3 cannot be This protocol can be
adapted to work with Intel TDX and AMD SEV-SNP. All that is

https://www.amd.com/content/dam/amd/en/documents/developer/lss-snp-attestation.pdf
https://www.amd.com/content/dam/amd/en/documents/developer/lss-snp-attestation.pdf
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/LUKS-standard/on-disk-format.pdf
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/LUKS-standard/on-disk-format.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://www.intel.com/content/www/us/en/support/articles/000089271/intel-nuc.html
https://www.intel.com/content/www/us/en/support/articles/000089271/intel-nuc.html
https://hackaday.com/2022/01/18/sgx-deprecation-prevents-pc-playback-of-4k-blu-ray-discs/
https://hackaday.com/2022/01/18/sgx-deprecation-prevents-pc-playback-of-4k-blu-ray-discs/
https://learn.microsoft.com/en-us/azure/attestation/overview
https://learn.microsoft.com/en-us/azure/attestation/overview
https://docs.aws.amazon.com/enclaves/latest/user/nitro-enclave.html
https://docs.aws.amazon.com/enclaves/latest/user/nitro-enclave.html
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/component-updates/tpm-key-attestation
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/component-updates/tpm-key-attestation
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/component-updates/tpm-key-attestation

required is a way to generate attestation reports with additional
data that can be verified at each of the communicating enclaves.

In Intel TDX, the platform also supports SGX enclaves. The
decryption enclave is an SGX enclave, and the user enclave is a
TD VM. Attestation reports for TD VMs can be requested from
the TDX module running in SEAM mode. The TDX module
issues SEAMREPORT instruction to get a hardware generated
attestation report, which can be verified in an SGX enclave
using the EVERIFYREPORT? instruction. However, there is
no instruction to verify the report generated by an SGX enclave
inside a TD VM. Therefore, the SGX enclave must generate
a quote using the quoting enclave and then send it to the TD
for verification using Intel ECDSA attestation [14]. This does
not require external communication, as the certificates needed
for verification can be cached by the cloud provider.

In AMD SEV-SNP, the attestation report is requested from
the AMD Platform Security Processor (PSP) firmware. The
AMD SEV-SNP VM sends and receives commands from
the firmware using a confidentiality, integrity, and replay
protected channel using a shared secret that is shared using a
private page mapping with the VM. The decryption enclave,
as well as the user enclav,e is an SEV-SNP VM. They both
verify each other’s attestation reports using AMD’s certificate-
based attestation [70], and this does not require external
communication, as the certificates needed for verification can
be cached by the cloud provider.

B. Bellerophon on Intel TDX

Porting Bellerophon to another platform requires support for
(i) enclaves with session establishment capabilities described
above (ii) a provisioning enclave with access to a provisioning
key whose knowledge proves the firmware version, CPU
manufacturer, and individual machine ID of the CPU, (iii)
to support Bellerophon architectural enclaves, a hardware key
derivation mechanism that implicitly takes the enclave author’s
public key as input and an enclave launch mechanism that
verifies the signature on the enclave’s metadata block (that
also includes its expected measurement), (iv) enclave binaries
that can be encrypted and execute the Bellerophon decryption
protocol.

Since all Intel TDX platforms also support Intel SGX, all
steps for running Bellerophon are the same except for the
session establishment (discussed in the previous subsection) and
the binary preparation. The VM image consists of an OS image
along with a filesystem that contains the userspace applications.
The entire filesystem containing the user secrets can be
encrypted with a symmetric key, such as using LUKS [71] with
the decryption stub being a userspace process which executes
the Bellerophon decryption protocol to obtain the key needed
to decrypt and mount the LUKS filesystem.

C. Bellerophon on AMD SEV-SNP

AMD SEV-SNP provides support for VM based enclaves
with session establishment capabilities. The provisioning
enclave in this case is a VM with access to the provisioning key

derived based on the public key of the hardware manufacturer,
which was used to sign the identity block of the VM [72]. All
the architectural enclaves in Bellerophon are VMs in SEV-SNP
since each VM has support for a key derivation mechanism
(provided by the AMD Platform Security Processor (PSP)
firmware) that implicitly takes the enclave author’s public key
as input and an enclave launch mechanism that verifies the
signature on the enclave’s metadata block (that also includes
its expected measurement). Similar to Intel TDX, an encrypted
filesystem containing user secrets and applications can be part
of the initial image which can be decrypted and mounted
follwoing the execution of the Bellerophon decryption protocol.

D. Other Use-Cases of TEEs

Intel SGX has been used to enforce DRM for copyrighted
media such as Blu-Ray discs by decrypting media inside an
SGX enclave [73]. Bellerophon does not support this use
case since since the DRM protected media would need to be
encrypted for each individual Blu-Ray player; without group
decryption keys, each player has a unique public key. Even
with the same decryption key provisioned into the Blu-Ray
players, it is impossible to enforce a particular firmware version
without interactivity. However, Intel has phased out SGX for
consumer CPUs (including PCs and Blu-Ray Players) and SGX
is currently only available on server-class Xeon processors [74].

E. Remote attestation in cloud environments.

Remote attestation in cloud environments is performed
based on infrastructure built on top of the attestation schemes
supported by the hardware manufacturers of the CPUs running
in the cloud datacenter. At the time of writing, Microsoft
provides a unified attestation service for all the TEE-based
services [22] that it provides, namely AMD SEV-SNP VMs
and containers, Intel SGX enclaves, Intel TDX VMs and TPM
based systems. The service follows an interactive protocol with
a user-facing secret manager that is in charge of verifying
the generated attestation result followed by provisioning the
secrets into the TEE. Although the attestation service runs
inside a TEE, the source code is available only to government
customers. Google Cloud provides similar services [75]. AWS
provides a custom hypervisor-based TEE solution called Nitro
Enclaves [76]. The root of trust is the hypervisor which provides
measurements similar to the registers in a TPM, which are
then endorsed using a signing key along with a certificate
chain provided by AWS [23]. All of these solutions require
interactivity and a large trusted verifier and hence do not satisfy
all the functionality goals of Bellerophon.

F. Remote attestation in commodity hardware.

Intel SGX supports attestation using the EPID protocol,
which preserves the privacy of the CPU being attested, as
well as attestation based on ECDSA certificates. With ECDSA
certificates, each CPU has a unique asymmetric key pair called
the Provisioning Certification Key (PCK) that is derivable by
the Provisioning Certification Enclave (PCE), an architectural
enclave (i.e. signed by Intel). Intel publishes the certificate for

each unique PCK public key and the PCK private key is in turn
used to sign a fresh attestation key generated by the Quoting
Enclave, thereby completing a certificate chain. The certificate
chain can be cached by the infrastructure provider with the user
verifying the chain. AMD SEV [12], Intel TDX [11] and TPM
based systems [77], [75] have a similar scheme for attestation
where a certificate chain is established from the hardware
manufacturer to a device specific attestation key. ARM has not
published a remote attestation protocol for its TrustZone based
architectures [78], however previous works [79], [80], [81] have
proposed several interactive remote attestation schemes for the
same. Similar to ARM, the RISC-V specification does not
include a remote attestation scheme. LIRA-V [82] proposes an
interactive remote attestation protocol for low-powered RISC-
V devices and does not satisfy all the functionality goals of
Bellerophon.

G. Delegated Attestation

A line of work has explored replacing the hardware
manufacturer in the interactive attestation flow with a trusted
set of enclaves. OPERA [83] replaces the Intel Attestation
and Provisioning services by running the same protocols as
Intel in a set of trusted SGX enclaves. Trust in these delegated
enclaves is established by periodically running the standard
EPID attestation protocol against the Intel Attestation Service.
The servers are provisioned and the user enclaves are attested
using these delegated enclaves, thereby preventing Intel from
learning about the identity of the enclave being attested as well
as the machine on which the enclave is running. This work is
orthogonal to Bellerophon in that it does not solve the problem
of verifier scalability and interactivity.

H. Key Compromises

The provisioning key and the provisioned HIBE decryption
key are two recoverable keys critical for the security of
Bellerophon. Recall that the provisioning key is used in the
provisioning protocol to prove the current firmware version of
the hardware/software TCB on the machine and is the shared
secret between a genuine CPU and the hardware provider. A
compromise of the provisioning key enables the adversary to
run the provisioning protocol outside the provisioning enclave
and gain access to the decryption key for the current firmware
version and major epoch. With a decryption key at minor epoch
0, all the binaries encrypted for the current major epoch for the
particular machine can be decrypted. With a load balancer, any
binary encrypted for the load balancer could be re-encrypted
for the compromised machine and then decrypted.

A compromise of a decryption key at a specific minor epoch
renders all the binaries encrypted for the current and future
minor epochs up to the next major epoch vulnerable. Note that
compromising the decryption key in a major epoch does not
necessarily mean that the decryption key of the next major
epoch is compromised since the key for the next major epoch
cannot be derived from a decryption key of the current major
epoch.

A compromise of a machine’s hardware/software TCB,
required to compromise the provisioning key or the provisioned
decryption key may persist until it is disclosed to the
manufacturer and patched. Similar to Intel SGX and other
commercial TEEs, it is difficult for the user to ascertain the
exact time (major epoch) when the attack vector was discovered,
and hence the user must assume that all the binaries encrypted
with a lower firmware version have been compromised.

Compromise of burnt-in provisioning key within a CPU
is unrecoverable for that CPU, but individual CPUs can be
revoked by the hardware provider. The hardware provider
can keep track of the machines that are unrecoverable using
the hardware identifier in the machine identity, and refuse
to provision those machines with new private keys during
provisioning.

A compromise of any aspect of the infrastructure provider’s
identity is beyond the scope of this work.

1. Ownership changes or stolen machines.

When a machine is sold, the new owner has to re-provision
keys using their public key fingerprint. If a machine is
stolen, the adversary can run stored binaries encrypted for the
infrastructure provider. However, the hardware manufacturer
will not re-provision it at the next major epoch, limiting which
TEE packages it can run. Moreover, the machine loses power
at least once as it is stolen, the decryption enclave could be
augmented to require a signature check similar to that in the
provisioning protocol, at start-up to verify its current operator.

	Introduction
	Background
	TEEs and Remote Attestation
	Hierarchical Identity-Based Encryption

	Design Considerations
	Adversarial Model and Compromise Recovery
	Security and Functionality Goals
	Intel EPID Deprecation

	Bellerophon Design
	Preparing and Running a Binary
	Scalable Key Management
	Forward Security
	Load-Balancing

	Security Analysis
	Malicious Infrastructure Providers
	Fully Malicious Users

	Case Study: Reusable Serverless Enclaves
	Performance Evaluation
	Verification Latency
	Re-encryption and Rotation Latency
	End-to-End Performance

	Discussion and Limitations
	Related Work
	Conclusion
	References
	Appendix
	Session Establishment Between Enclaves
	Bellerophon on Intel TDX
	Bellerophon on AMD SEV-SNP
	Other Use-Cases of TEEs
	Remote attestation in cloud environments.
	Remote attestation in commodity hardware.
	Delegated Attestation
	Key Compromises
	Ownership changes or stolen machines.

