
Securing Smart Contracts with Information Flow

Ethan Cecchetti Siqiu Yao Haobin Ni Andrew C. Myers

Cornell University
{ethan,yaosiqiu,haobin,andru}@cs.cornell.edu

Research Short Paper

ABSTRACT
Securing blockchain smart contracts is difficult, especially
when they interact with one another. Existing tools for rea-
soning about smart contract security are limited in one of
two ways: they either cannot analyze cooperative interaction
between contracts, or they require all interacting code to
be written in a specific language. We propose an approach
based on information flow control (IFC), which supports
fine-grained, compositional security policies and rules out
dangerous vulnerabilities. However, existing IFC systems pro-
vide few guarantees on interaction with legacy contracts and
unknown code. We extend existing IFC constructs to support
these important functionalities while retaining compositional
security guarantees, including reentrancy control. We mix
static and dynamic mechanisms to achieve these goals in a
flexible manner while minimizing run-time costs.

1. INTRODUCTION
Smart contracts run in an environment of unprecedented

hostility. Attackers have full access to the code and a direct
financial incentive to find and exploit vulnerabilities, yet bugs
cannot be fixed in deployed code. Consequently, there is a
pressing need for better tools build and reason about secure
contracts. Making the problem harder, many contracts need
to interact with other contracts and off-chain functionality
that they may not trust fully.

Existing languages designed to provide strong correctness
or security in smart contracts [1, 3, 16] generally assume that
contracts interact only with other contracts also written in
the same language. This strong assumption may seem reason-
able for permissioned blockchains, but even there, contracts
might need to interact with off-chain legacy applications that
do not respect the language rules.

Other analysis tools [5, 6, 8] assume little about interacting
components, but focus on the security of the contract as a sin-
gle unit. This focus interferes with reasoning about pieces of
contracts or collaborative combinations of multiple contracts.
Analyzing two contracts independently may not translate
into meaningful guarantees about their combination.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and FAB 2020.
Third International Symposium on Foundations and Applications of
Blockchain (FAB ‘20) May 1, 2020, Santa Cruz, California, USA.

We aim to address both of these concerns by using an infor-
mation flow control (IFC) type system to track the integrity
(trustworthiness) of information. While various IFC tools
and languages protect the confidentiality of data [14, 15, 17]
and have proven highly effective [4], all blockchain data is
public. We instead use IFC similarly to protect integrity by
preventing untrustworthy data from unexpectedly influenc-
ing trusted computation. We extend existing decentralized
IFC models [11] that we find particularly well-suited to the
decentralized nature of smart contracts.

Unfortunately, prior IFC systems cannot provide provable
guarantees for most contracts that allow calls from unknown
sources—a critical smart contract functionality. The basic
rules of IFC prohibit callers from invoking code unless that
code trusts the caller. This restriction prevents common con-
tract bugs like reentrancy, but also prevents most interesting
smart contracts from operating at all. Existing systems [7, 10]
address this limitation by allowing designated entry points
where untrusted code can call into trusted code, but these
entry-point mechanisms provide few security guarantees. In
particular, they reopen reentrancy vulnerabilities.

We describe our work on adapting IFC to verification of
smart contract security. Our core technical contribution is a
design for trusted entry points that fits into an IFC system
without requiring programmers to worry about reentrancy,
even in the presence of non-IFC legacy systems and unknown
code. We retain previous IFC benefits, like the ability to
flexibly compose contracts in which trust is not constrained
by contract boundaries. We are implementing these features
in a new smart contract programming language.

2. NEED FOR IFC
Many high-profile contract vulnerabilities can be viewed

as integrity failures; untrusted inputs improperly influence
high-integrity state, leading to improper money transfers.

Example: Parity Wallet. In 2017, an Ethereum wallet
created by Parity Technologies suffered two critical attacks
exploiting the interaction of multiple contracts designed to
work together. The second attack [12], which froze $100 mil-
lion of Ether in place, is more famous, but the first attack [2],
where attackers stole over $30 million, is more illustrative.

Listing 1 shows a simplified version of the vulnerable code.
To reduce deployment costs, Parity split the contract into two
pieces: a library contract that was deployed once and defined
the wallet’s available operations, and an instance contract
which each user deployed separately. The instance contract
delegated to the library using Ethereum’s delegatecall

operation, which, in this case, executes the library contract’s

1 contract WalletLibrary {
2 address owner;
3 function __init__(address _owner) public {
4 owner = _owner;
5 }
6 ...
7 }
8

9 contract Wallet {
10 WalletLibrary walletLibrary;
11 address owner;
12 ...
13 fallback () external payable {
14 walletLibrary.delegatecall(msg.data);
15 }
16 }

Listing 1: Simplified vulnerable Parity Wallet

code in the instance contract’s state space.
Unfortunately, the interaction exposed a serious bug. The

library’s __init__ function was marked as public and set the
owner of the wallet with no validity checks, so the instance
constructor could use it. The wallet’s fallback function,
however, delegated any unknown call to the library, allowing
a carefully crafted attack to bypass the wallet’s ownership
check and change the owner using __init__.

Viewed from an integrity perspective, the bug is straight-
forward. The owner variable should be high-integrity, but
the wallet blindly sets it to a low-integrity value provided by
an unknown user. Information flow control (IFC) is designed
to identify and eliminate exactly this type of bug.

IFC Labels. IFC type systems tag data with labels. Our
labels specify the set of addresses that can influence a piece
of data, allowing us to track trustworthiness. Blockchains
provide an ideal setting for this technique, as any call can
easily check the caller’s trust level—it’s address.

In our example, we may tag owner with the label `W ,
denoting that the wallet can influence it, and the argument
to fallback as `A, denoting that an attacker may influence
it. We include an acts-for relation between labels, written
`⇒ `′, to denote that ` is at least as trusted as `′. That is,
any address that can influence ` can also influence `′ 1 If the
attacker trusts the wallet, we could include `W ⇒ `A. As the
wallet should not trust the attacker, we would not include a
relation in the other direction.

Because owner has label `W , an IFC type system only
allows an assignment owner = x if `x ⇒ `W , where `x is the
label of x. In the above example, a new address provided by
an attacker would have label `A, so an IFC system would
reject the dangerous assignment.

IFC type systems also track the integrity of computation
to prevent attackers from improperly influencing control flow.
As we will see in Section 3, control-flow attacks can be just
as damaging as data-flow attacks. To track the integrity of
control flow, we associate each instruction with a program
counter label pc. The signature of a function f also includes
the integrity pcf that f requires, and the type system requires
a calling context’s integrity to act for pcf to invoke f .

These pc labels allow us to specify the trust level of different
pieces of code within a contract. Unlike in existing tools, two
pieces of code in the same contract can have different trust

1Traditional IFC systems use flows-to, denoted ` v `′. As
we only track integrity, flows-to and acts-for carry the same
meaning and we find acts-for to be more intuitive.

A B

(a) The trust domain is
exactly one contract.

A

B
C

(b) The trust domain is
multiple contracts together.

A

(c) The trust domain is part
of a single contract.

A

B

(d) The trust domain is part
of multiple contracts.

Figure 1: Different possible configurations of trust domains
and contract boundaries we aim to express. In each example
the trust domain is highlighted in green.

levels, while code in different contracts may have the same
trust level. The Parity Wallet provides a perfect use case.
The bug resulted from an unexpected interaction between
two contracts that were written to work together, but only
partially trust each other. In the instance contract, the owner

variable must be high-integrity, but the fallback function
must be low-integrity since the attacker can control it.

By labeling the trust level of individual instructions sepa-
rately, IFC can say that some pieces of both the wallet and
the library are trustworthy, but other pieces of both are not.
Indeed, it can express trust domains entirely independently
from contract boundaries. Figure 1 depicts several configura-
tions of trust and contract boundaries. Prior smart contract
analysis tools operate almost exclusively in the configuration
of Figure 1a, but Figure 1d best represents the Parity Wallet.

3. ENTRY POINTS AND REENTRANCY
IFC systems constrain control flow using the pc label by

requiring a caller to be at least as trusted as the function
it is calling. The importance of this requirement is evident
from the classic “reentrancy” attack. Consider a distributed
bank with two contracts running identical code shown in
Listing 2. A user can deposit money and withdraw money
from either, and the two banks should keep their balances in
sync. While this example may seem contrived, it simplifies
the more realistic structure of an airline alliance or multi-
company reward program where customers can earn and
spend rewards with different alliance members.

As written, Listing 2 has two reentrancy vulnerabilities.
One allows an attacker A to extract funds from a single
contract. A deposits money and then calls withdraw. Line 8
returns A’s money, but also passes control of execution to
A. Because the balance is not decreased until line 9, A can
call withdraw again and extract double its original deposit.
This bug resulted in the most famous smart contract hack
to date when, in July 2016, an attacker drained $50 mil-
lion in tokens from Ethereum’s Decentralized Autonomous
Organization (DAO) [13].

Assuming sending money and modifying trustworthy state
both require high integrity, IFC requires withdraw to operate
with high integrity. The classic IFC restriction on invoking
high-integrity functions then prevents a low-integrity attacker
from invoking withdraw to execute this attack. Unfortunately,
as stated, this constraint breaks correct functionality of the

1 contract DistributedBank {
2 DistributedBank otherBank;
3 mapping(address => uint) balances;
4

5 function withdraw(uint amount) {
6 if (balances[msg.sender] >= amount
7 && this.balance >= amount) {
8 msg.sender.call{value: amount}("");
9 balances[msg.sender] -= amount;
10 otherBank.decreaseBal(msg.sender, amount);
11 }
12 }
13

14 function decreaseBal(address addr, uint amount) {
15 if (msg.sender == otherBank) {
16 balances[addr] -= amount;
17 }
18 }
19 ...
20 }

Listing 2: Multi-contract bank with two reentrancy bugs.

contract. The contract cannot distinguish honest users from
attackers, so it must consider both untrustworthy, but then
honest users would be unable to call withdraw at all!

Existing IFC systems [10] provide a mechanism to en-
dorse control flow, thereby creating an entry point into
high-integrity code. We introduce an operation endorsepc(`),
which endorses the pc label used to track the integrity of
execution to the provided label `. The DistributedBank

contract then type-checks using endorsepc as follows:

function withdraw(uint amount) {
if (balances[msg.sender] >= amount

&& this.balance >= amount) {

endorsepc(to_label(this)) {
msg.sender.call{value: amount}("");
balances[msg.sender] -= amount;
otherBank.decreaseBal(msg.sender, amount);

}
}

}

Listing 3: Well-typed withdraw function.

This endorsement allows the desired functionality, but
without further restriction, reopens the reentrancy bug we
are trying to prevent. The endorsement does, however, allow
us to precisely define reentrancy and identify critical sections
of the code. This definition is instrumental in developing
appropriate restrictions on endorsepc to regain security.

3.1 Defining Reentrancy
Existing definitions of reentrancy [6, 9] rely on contract

boundaries. The second vulnerability in the distributed bank
demonstrates the need for a more general definition. Suppose
we fixed the same-contract reentrancy bug by switching the
order of lines 8 and 9 in Listing 2. When the attacker A
acquires control after begin sent money in withdraw, it can
no longer improperly extract money from the same contract
instance. However, the other instance of DistributedBank

still has the old value of A’s balance. This allows A to call
withdraw there and extract its original deposit twice, once
from each instance.

Intuitively, the two attacks are the same; an attacker with-
drew funds from the bank while the bank was waiting for a
response. In classic reentrancy definitions [6, 9], however, the
attacker must call the same contract that passed it control.

In this view, the second attack would not even be reentrant.
Our insight is to instead define reentrancy with respect to
integrity levels. If trustworthy code retains control over exe-
cution, correctness is up to the programmer. If untrustworthy
code or data gains influence over control flow, unexpected
calls may ensue, such as dangerous withdrawals. The result
is a definition parameterized by a label `.

Definition 1 (Reentrancy). An execution is reentrant with
respect to a label ` if, at some point, the stack contains
instructions with integrity levels pc1, pc2, and pc3 in that
order such that pc1 ⇒ `, pc2 ; `, and pc3 ⇒ `.

This definition generalizes reentrancy to match the fine-
grained security policies from Section 2. When the high-
integrity region is exactly a single contract, as in Figure 1a,
our definition coincides with the classic one. Definition 1
remains sensible in other cases, like our distributed bank
example that fits Figure 1b.

Definition 1 has interesting ramifications. First, it decou-
ples the definition of reentrancy from contracts. This allows
the same ideas to apply to non-blockchain systems with in-
teractions across trust boundaries, like calls between trusted
hardware and an untrusted operating system or interacting
javascript code from different sources on the same webpage.
Second, a single execution can be reentrant from the per-
spective of one trust level, but not another. This discrepancy
makes sense. If contract A trusts contract B but not vice-
versa, the contracts have different security concerns when B
calls A and then A calls back into B. From A’s perspective,
both contracts are trustworthy and this interaction is ex-
pected. From B’s perspective, however, A could be attacking,
so this execution is reentrant and potentially dangerous.

3.2 Defining Security
This definition of reentrancy allows us to define reentrancy

security. We aim to ensure that programmers can ignore
reentrancy when reasoning about their code. Reentrant calls
may not be bug-free, but reentrancy cannot be the cause of
the bugs. We express this goal by requiring that trustworthy
code not exhibit behavior in reentrant executions that it
cannot exhibit elsewhere.

To express this notion more formally, we note that pro-
gram correctness is often expressible as a set of invariants. A
property of the system is a transaction invariant if, whenever
it is true before a transaction, it is also true after. A contract
is reentrancy-secure if allowing reentrancy does not change
which properties are invariants.

To correspond to our label-based definition of reentrancy,
we parameterize the notion of invariant in terms of labels.
An `-integrity transaction invariant is one that depends only
on data of integrity at least `. An adversary not trusted by `
should be unable to affect an `-integrity invariant.

Definition 2 (Reentrancy Security). A program is `-reentran-
cy-secure if, for all I, I is an `-integrity transaction invariant
whenever I is invariant for non-reentrant transactions.

To see how Definition 2 aligns with our intuition, we look
to the distributed bank. There are two transaction invariants
that a correct distributed bank should maintain: (i) balances
contains the same value at both contracts, and (ii) the
combined funds of both DistributedBank contracts is at
least the sum of the values in any copy of the balances

map. Because Listing 2 is insecure, it should not satisfy

Definition 2. Indeed, using Definition 1, these two properties
hold at the beginning and end of each transaction for all non-
reentrant executions. However, if an attacker overdraws their
balance through either above-described reentrancy attack
their balance will underflow, violating (ii).

3.3 Enforcing Security
We enforce reentrancy security by modifying the IFC typ-

ing rules to track the integrity entry points have granted.
Within the scope of endorsepc, we lock the new, higher in-
tegrity level, and prevent the program from re-granting that
integrity while it remains locked. In the modified bank code
above, a reentrancy attack re-grants the bank’s integrity to
an attacker in the second call to withdraw while that integrity
remains locked in the first.

To ensure compositional security and allow static checking,
we track locked integrity as part of the type system. An
endorsepc statement endorsing label pcfrom to pcto respects
a lock if any integrity available at pcto but not pcfrom is
unlocked. In other words, if pcto can perform an operation
and that operation’s required integrity may already be locked,
then the lower integrity pcfrom must be sufficient. Formally if
β is the locked integrity, we check that, for any `, if pcto ⇒ `
and β ⇒ ` then pcfrom ⇒ `. More succinctly, we respect
lock β if pcfrom ⇒ pcto ∨ β, where pcto ∨ β denotes the most
trusted label that both pcto and β act for.

We enforce locks across function calls with the same tech-
nique that standard IFC uses to maintain control-flow in-
tegrity. Function signatures specify not only the integrity
required to execute the function, but also the locks that
function respects. Function calls require the calling context
to be at least as high integrity as the function—the standard
IFC rule—and the function to respect all locks in place in
the calling context.

Returning to Listing 3, the endorsepc statement in with-

draw grants high integrity, so it only respects low locks. The
type system then disallows calls to withdraw from contexts
with the bank’s integrity already locked, and only allows calls
out of the endorsepc block to functions known to respect this
lock. Reentrant calls to withdraw are therefore impossible.

4. OPEN-WORLD SECURITY
This purely type-based solution successfully prevents reen-

trancy attacks while allowing required entry points, but it
is still extremely restrictive. For example, withdraw must
ensure that the code invoked when the user receives money
respects high locks. While this may be possible in some lim-
ited cases or in a system where every contract is written with
these IFC types, it prevents most interesting interaction with
legacy code or arbitrary unknown contracts. For example,
the call instruction on line 8 of Listing 2 would not type
check even if we included an endorsepc block.

We enable such interaction via dynamic locks, enforced at
the same place as the static locks: endorsepc entry points.
Before, endorsepc had no run-time effect, but it now checks
dynamic locks. Though locks do add some performance cost,
they increase flexibility. Code can statically respect a lock
either by performing only operations that respect that lock or
by converting it to a dynamic lock before executing operations
that might violate it. We cannot assume legacy systems or
unknown code will respect any locks, but dynamic locks allow
secure interaction with them from high-integrity contexts.

For example, we can finish securing our distributed bank

by including lock(to_label(this)) {...} around the call
instruction to acquire a dynamic lock. This lock removes the
need to assume that the unknown user does not attempt a
reentrant call; it ensures that any such call will fail.

Developers can also assign a trusted label and IFC signa-
ture to legacy or off-chain systems. This trust allows simple
and efficient interaction with the specified legacy code. Such
trust is also risky, as the entire system may be insecure if the
legacy code does not properly enforce the claimed guarantees.

5. IN PROGRESS
In addition to providing proofs of security, two key com-

ponents remain incomplete.

Removing Unneeded Locks. Astute readers may notice
that dynamic locks are unnecessary to secure the distributed
bank. Moving the call instruction that sends money after
both the balance update and contract-synchronization oper-
ations in withdraw is sufficient. Control flow would pass to
untrusted code only after high-integrity code has completed
all other operations. A reentrant call would then produce the
same result as two sequential calls, meaning it cannot cause
a bug, and is therefore safe. We are working to allow such
secure calls without dynamic locks.

Implementation. We are designing a language and associ-
ated compiler that includes the features we have described.
The dynamic locks poses two challenges. First, we need to
record locks in a manner that spans multiple calls to a con-
tract, but not multiple transactions. Using persistent storage
for locks is extremely expensive on systems like Ethereum,
but we do not need truly persistent storage. A session vari-
able that remains in scope across multiple calls but resets
each transaction would be ideal.

Second, because we are locking labels, we need to represent
and compare them dynamically. Other systems implement
dynamic label checking [7, 10], but they are not always
efficient in space or computation. The high cost of blockchain
computation makes it important to keep these checks fast. We
are optimistic that blockchain applications will, in practice,
use simple labels that are easy to represent and compare.

6. CONCLUSION
Securing smart contracts is a difficult but important chal-

lenge. Information flow control (IFC) provides a means to
express and enforce powerful fine-grained, compositional se-
curity policies. We adapted these techniques to guarantee
smart contract security at a fine-grained level. In the process
we generalized the concept of reentrancy to describe a wider
range of vulnerabilities. We described how to eliminate these
vulnerabilities while retaining the assurance of IFC by re-
stricting designated entry points. Finally, we expanded our
approach to support an open world with legacy systems and
contracts. This work forms a strong foundation for building
a smart contract language with strong security guarantees.

Acknowledgments
We would like to thank our anonymous reviewers for their
insightful and comments as well as Maximilian Algehed, Tom
Magrino, and Drew Zagieboylo for help editing. Funding for
this work was provided by a National Defense Science and
Engineering Graduate Fellowship, NSF grants 1704615 and
1704788, and a gift from Ripple.

References
[1] S. Blackshear, E. Cheng, D. L. Dill, V. Gao, B. Mau-

rer, T. Nowacki, A. Pott, S. Qadeer, Rain, D. Russi,
S. Sezer, T. Zakian, and R. Zhou. Move: A language
with programmable resources. https://developers.libra.
org/docs/move-paper, Sept. 2019. Accessed February
2020.

[2] L. Breidenbach, P. Daian, A. Juels, and E. G.
Sirer. An in-depth look at the parity multi-
sig bug. http://hackingdistributed.com/2017/07/22/
deep-dive-parity-bug/, 22 July 2017. Accessed February
2020.

[3] M. Coblenz. Obsidian: a safer blockchain programming
language. In 2017 IEEE/ACM 39th International Con-
ference on Software Engineering Companion (ICSE-C),
pages 97–99. IEEE, 2017.

[4] M. D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pern-
steiner, F. Roesner, K. Koscher, P. Barros, R. Bhoraskar,
S. Han, P. Vines, and E. X. Wu. Collaborative verifica-
tion of information flow for a high-assurance app store.
In 21st ACM Conf. on Computer and Communications
Security (CCS), pages 1092–1104, Nov. 2014.

[5] I. Grishchenko, M. Maffei, and C. Schneidewind. Foun-
dations and tools for the static analysis of ethereum
smart contracts. In International Conference on Com-
puter Aided Verification (CAV), pages 51–78. Springer,
2018.

[6] S. Grossman, I. Abraham, G. Golan-Gueta,
Y. Michalevsky, N. Rinetzky, M. Sagiv, and Y. Zohar.
Online detection of effectively callback free objects
with applications to smart contracts. Proc. ACM on
Programming Languages, 2(POPL):1–28, Dec. 2017.

[7] J. Liu, O. Arden, M. D. George, and A. C. Myers. Fabric:
Building open distributed systems securely by construc-
tion. J. Computer Security, 25(4–5):319–321, May 2017.

[8] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor.
Making smart contracts smarter. In ACM Conf. on
Computer and Communications Security (CCS), pages
254–269, 2016.

[9] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert,
and P. Saxena. A secure sharding protocol for open
blockchains. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’16, pages 17–30, New York, NY, USA, 2016. ACM.

[10] T. Magrino, J. Liu, O. Arden, C. Isradisaikul, and A. C.
Myers. Jif 3.5: Java information flow. Software release,
https://www.cs.cornell.edu/jif, June 2016.

[11] A. C. Myers and B. Liskov. A decentralized model
for information flow control. In 16th ACM Symp. on
Operating System Principles (SOSP), pages 129–142,
Oct. 1997.

[12] Parity Technologies. A postmortem on the parity
multi-sig library self-destruct. https://www.parity.io/
a-postmortem-on-the-parity-multi-sig-library-self-destruct/,
15 Nov. 2017. Accessed February 2020.

[13] N. Popper. A hacking of more than $50 million dashes
hopes in the world of virtual currency. The New York
Times, 17 June 2016.

[14] A. Rastogi, M. A. Hammer, and M. Hicks. Wysteria: A
programming language for generic, mixed-mode multi-
party computations. In IEEE Symp. on Security and
Privacy, pages 655–670, May 2014.

[15] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE Journal on Selected
Areas in Communications, 21(1):5–19, Jan. 2003.

[16] I. Sergey, V. Nagaraj, J. Johannsen, A. Kumar,
A. Trunov, and K. C. G. Hao. Safer smart contract
programming with scilla. Proc. ACM on Programming
Languages, 3(OOPSLA):1–30, Oct. 2019.

[17] J. Yang, K. Yessenov, and A. Solar-Lezama. A language
for automatically enforcing privacy policies. In 39th

ACM Symp. on Principles of Programming Languages
(POPL), pages 85–96, 2012.

https://developers.libra.org/docs/move-paper
https://developers.libra.org/docs/move-paper
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://www.cs.cornell.edu/jif
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/

	Introduction
	Need for IFC
	Entry Points and Reentrancy
	Defining Reentrancy
	Defining Security
	Enforcing Security

	Open-World Security
	In Progress
	Conclusion

