
Step in Tine: Forking Processes in Functional Choreographies

ASHLEY SAMUELSON, University of Wisconsin–Madison, USA

ANDREW K. HIRSCH, University at Buffalo, SUNY, USA

ETHAN CECCHETTI, University of Wisconsin–Madison, USA

Traditional concurrent-programming techniques require programmers to painstakingly write programs for

each participant in a concurrent system. Choreographic programming, in contrast, allows a programmer to

write one centralized program and compile it to the individual programs. This approach simplifies critical

properties like deadlock freedom, but it complicates forking new processes, a core primitive in concurrent

programming. This work addresses that gap with the choreographic fork calculus 𝜆⋔, the first functional

choreographic language with process forking. 𝜆⋔ provides a deadlock-freedom guarantee while allowing pro-

grams to dynamically determine when to spawn new processes, what they will do, and who will communicate

with them. In doing so, it supports practical algorithms like parallel divide-and-conquer.

CCS Concepts: • Theory of computation→ Functional constructs; Type structures; •Computingmethod-
ologies → Concurrent programming languages.

Additional Key Words and Phrases: Concurrency, Choreographies, Functional programming

1 Introduction
As nearly every computer system has come to rely on parallelism for efficiency, the difficulty of

writing correct concurrent code has become an increasing concern. Complex interactions between

processes can lead to subtle bugs such as deadlocks, where two or more processes are waiting on

each other, preventing the system from progressing. Choreographic programming [Montesi 2023]

has recently emerged as a promising tool to address this challenge. Instead of writing separate

programs for each process, the choreographic paradigm allows programmers to specify the behavior

and interactions of all processes in a single, top-level program called a choreography. A compiler

then produces code for each process using a procedure called endpoint projection (EPP). This global

specification allows programmers to reason about the system as a whole and leads to deadlock
freedom by design, eliminating a common source of bugs in concurrent programs.

While early works on choreographic programming built a promising foundation [Carbone

and Montesi 2013; Montesi 2013], they lacked the language features necessary for the paradigm

to be used in modern software engineering. A flurry of recent papers have been adding these

capabilities to choreographic calculi, including higher-order programming [Cruz-Filipe et al. 2022;

Giallorenzo et al. 2023; Hirsch and Garg 2022], process polymorphism [Graversen et al. 2024;

Samuelson et al. 2025], and multiply-located values [Bates et al. 2025; Samuelson et al. 2025]. While

these features have made choreographic programming more expressive, they still lack important

features, including the ability to dynamically fork processes. This ability is key to many concurrent

applications, as was recognized by early choreographic work [see e.g., Carbone and Montesi 2013;

Cruz-Filipe and Montesi 2016a,b]. These early calculi, however, focused on simpler languages

lacking important functionality needed for modern software engineering.

This work presents 𝜆⋔ (pronounced “lambda-fork”) to bridge this gap by integrating dynamic

process forking with the powerful features mentioned above. To see how these capabilities combine,

Authors’ Contact Information: Ashley Samuelson, University of Wisconsin–Madison, Madison, Wisconsin, USA, ashley.

samuelson@wisc.edu; Andrew K. Hirsch, University at Buffalo, SUNY, Buffalo, New York, USA, akhirsch@buffalo.edu;

Ethan Cecchetti, University of Wisconsin–Madison, Madison, Wisconsin, USA, cecchetti@wisc.edu.

https://orcid.org/0009-0001-8800-2590
https://orcid.org/0000-0003-2518-614X
https://orcid.org/0000-0001-7900-8328
https://orcid.org/0009-0001-8800-2590
https://orcid.org/0000-0003-2518-614X
https://orcid.org/0000-0001-7900-8328

2 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

consider the following recursive divide-and-conquer algorithm to sum a list of integers.

recursiveSum : ∀ℓ . list(int)@ℓ → int@ℓ

recursiveSum ℓ XS = if ℓ .(len XS < localMaxLen)
then ℓ .sum(XS)
else let (ℓ .xs1, ℓ .xs2) B ℓ .split(XS)

𝛼 B ℓ .fork()
𝛼.𝑠1 B recursiveSum 𝛼 (ℓ .xs1 ⇝ 𝛼)
ℓ .𝑠2 B recursiveSum ℓ ℓ .xs2
ℓ .𝑠1 B 𝛼.𝑠1 ⇝ ℓ

in ℓ .(𝑠1 + 𝑠2)
This choreography finds the sum of the list XS owned by ℓ , indicated by the type list(int)@ℓ .

The first line checks if XS is long enough to be worth parallelizing; otherwise, ℓ sums the list

locally. For longer lengths, ℓ splits XS into two halves, xs1 and xs2, recursively summing each half in

parallel. To perform this parallelism, ℓ uses the syntax ℓ .fork() to spawn a new thread 𝛼 to sum xs1
while ℓ sums xs2. Once 𝛼 is spawned, ℓ sends it the first half of XS using the notation ℓ .xs1 ⇝ 𝛼 ,

which produces a value located at 𝛼 . The new thread 𝛼 then calls recursiveSum using this value,

potentially spawning its own children to sum its half of the list.

Though they are separate processes, both ℓ and 𝛼 can call recursiveSumwith their respective lists

because it is process polymorphic—can execute with any location—as indicated by the ∀ℓ preceding
its type. After both processes have summed their halves, 𝛼 sends its sum 𝑠1 to ℓ . At this point, the

thread 𝛼 falls out of scope and (implicitly) dies. Finally, ℓ returns the sum 𝑠1 + 𝑠2.
The fork construct—a core contribution of 𝜆⋔—allows ℓ to spawn a new thread, binding a variable

to its name. This child thread is treated like any other process: while its name is in scope, it may

be asked to execute single-threaded computations, perform control flow to sequence multiple

computations, communicate with other processes, and spawn further threads. Moreover, the fork
construct eases programmers’ administrative burden. First, the programmer does not need to

explicitly state what code a thread will run when it is spawned; EPP extracts the code for the new

thread automatically. Second, because process names are scoped, new threads implicitly die when

their name is no longer in scope.

Retaining core properties like deadlock freedom in 𝜆⋔ requires careful design. Combining fork
with closures and (first-class) location polymorphism poses a particular challenge not raised by

prior work. A function 𝐹 that closes over the name 𝛼 of a spawned process could persist beyond

the scope of 𝛼 . Applying 𝐹 could then cause a live process to attempt to communicate with 𝛼 ,

immediately producing a deadlock. 𝜆⋔ prevents such situations through careful tracking of spawned

location names in the type system.

Section 2 reviews background, Section 3 defines the system model underlying 𝜆⋔. Then, the main

contributions of this work are presented as follows:

• Section 4 presents 𝜆⋔, the first functional choreographic language to allow forking and killing

child threads. 𝜆⋔ also includes first-class process names, enabling parent processes to notify

other locations when they have spawned a child.

• Section 4.3.2 formulates a type system for 𝜆⋔ that tracks which processes might participate in a

choreography to ensure that no process needs to perform computation after it dies.

• Section 6 defines endpoint projection (EPP), a procedure to compile a choreography into a

target-language program (Section 5) for each process, and characterizes EPP’s correctness with

respect to a top-level operational semantics. This result combines with the soundness of the type

system to prove that executing a projected system will never cause a deadlock.

Step in Tine: Forking Processes in Functional Choreographies 3

Finally, Section 7 reviews related work, and Section 8 concludes.

2 Background
To better situate the contributions of our work, we first review the design, features, and limitations

of prior choreographic programming languages.

2.1 Functional Choreographies
Our language primarily extends 𝜆qc [Samuelson et al. 2025], which in turn extends Pirouette [Hirsch

and Garg 2022], the first functional choreographic programming language. Like most choreographic

languages, 𝜆qc prefixes each local operation with the process that performs it. For example, to

specify that location A should compute 1+3 and send the result to B, one would write A.(1+3) ⇝ B.
To differentiate operations, wewrite source programs using a sans-serif font, with location constants
in red, local operations in green, and choreographic operations in blue. Local programs such as

“1 + 3” can be specified in nearly any language, so long as it is equipped with a substitution-based

operational semantics, a sound type system, and its values can be shared via message-passing.

Network-level constructs such as send (⇝), on the other hand, are determined by the choreographic

language.

While the choreographic and local operations are separate, the choreography can sequence local

computations using features such as let-expressions. For example, the output of A.(1 + 3) ⇝ B is

an integer located at B, which can then be used in a subsequent local computation at B by binding

the result to a (local) variable 𝑥 as follows: let B.𝑥 B A.(1 + 3) ⇝ B in B.(𝑥 − 2).
Choreography-level control flow is supported by the expression if 𝐶 then 𝐶1 else 𝐶2, where 𝐶

evaluates to a boolean value known to some process ℓ . As others outside of ℓ cannot see the output

of 𝐶 , they cannot determine which branch to execute. To allow other locations to participate in

this branch, 𝜆qc includes a selection statement ℓ [𝑑] ⇝ 𝜌 ; 𝐶 in which ℓ communicates the chosen

branching direction 𝑑 ∈ {L,R} of Left or Right to all locations in the set 𝜌 .

𝜆qc supports multiply-located values (MLVs) [Bates et al. 2025; Sweet et al. 2023], which are local

values known to multiple locations and ensure all parties agree. For instance, {A,B}.(3 > 1) {A}⇝ C
first instructs A and B to compute the local operation 3 > 1, and then instructs A to send the result

to C. The result is the multiply-located value {A,B,C}.true. MLVs can be used as an alternative

to synchronization messages for branching. For instance, the following choreography ensures all

three locations branch in the same direction: if {A,B,C} {A,B}.(3 > 1) {A}⇝ C then 𝐶1 else 𝐶2. Note

that when using MLVs, it often becomes necessary to annotate e.g., who is sending a value or

participating in an if expression.

Endpoint Projection. Like most choreographies, 𝜆qc defines a compilation procedure called

endpoint projection (EPP) that translates a choreography into a separate program for each participant.

EPP is a syntax-guided translation that extracts the actions that a single location needs to perform

from the choreography. The location being projected to is denoted by a subscript to the compilation

operator, as in J𝐶KA and J𝐶KB. For instance, consider the choreography

𝐶 = A.(2 ∗ 4) ⇝ C ; B.(3 + 2) ⇝ C

in which A and B each compute a value and then send it to C. The only actions that A and B need

to perform are computing the value and sending it, while C needs to receive both values:

J𝐶KA = send ret(2 ∗ 4) to C J𝐶KB = send ret(3 + 2) to C J𝐶KC =
recv from A ;

recv from B

The target (network) language is written using an orange teletype font.

4 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

𝜆qc also defines a top-level operational semantics directly on choreographies, allowing developers

to reason about the behavior of the system as a whole. This choreographic semantics allows for

out-of-order execution, so long as the order of operations for each individual location is respected.

For instance, note that if we execute the projected programs shown above concurrently, either A
or B could perform their local computation first, but C must receive the values in the specified

order. This means that A and B can compute 8 and 5, respectively, in any order in choreography 𝐶 ,

even though B’s computation is after the semicolon. C, conversely, must receive 8 before 5. The

top-level choreographic semantics allows any of these orderings.

As EPP and the top-level semantics provide two different interpretations of the same choreog-

raphy, it is important that their results are equivalent. Samuelson et al. [2025] show that these

two semantics are bisimilar for 𝜆qc, and so will always produce the same value. Besides allowing

developers to soundly reason about the execution of a system using the top-level semantics, this

property also guarantees that any concurrent execution of a projected choreography is deadlock-

free, meaning that no process will wait indefinitely for a message that will never arrive due to a

mismatch between the expected send and receive operations.

2.2 Process Polymorphism
Process polymorphism [Graversen et al. 2024] allows choreographies to abstract over their partici-

pants. Analogously to type polymorphism, process polymorphism in 𝜆qc is implemented with a

process abstraction Λℓ .𝐶 , where variable ℓ represents a generic process name bound in the scope

of 𝐶 , allowing it to be instantiated with different participants. For example, a programmer could

write a process function in which ℓ computes the sum of two numbers and sends the result to A as

𝐹 = Λℓ . ℓ .(1 + 3) ⇝ A, and later instantiate ℓ to B with the syntax 𝐹 B.
While process polymorphism allows for choreographies to be instantiated with different par-

ticipants, it does not—on its own—allow for the names of processes to be treated in a first-class

manner. First-class process names [Samuelson et al. 2025; Sweet et al. 2023] solve this problem by

allowing local computations to generate, examine, and send process names as values. For example,

the expression A.(if 𝑒 then ⌈B⌋ else ⌈C⌋) selects between the process names B and C based on the

value of the boolean 𝑒 known to A. The output of this computation can then be shared with B and C
so they are aware of who should perform the subsequent computation, and bound to a variable ℓ

using 𝜆qc’s type-let expression as follows:

let {A,B,C}.ℓ B A.(if 𝑒 then ⌈B⌋ else ⌈C⌋) ⇝ {B,C}
in ℓ .(1 + 3) ⇝ A

2.3 Process Spawning
While 𝜆⋔ is the first functional choreographic language to include the ability to spawn and kill child

threads, previous procedural and imperative choreographic languages have included this feature.

For example, the language introduced by Cruz-Filipe and Montesi [2016a] allows programmers to

write a recursive divide-and-conquer implementation of merge sort, similar to that in Section 1.

However, the features of their language are heavily restricted: each process stores a single memory

cell holding a value of a fixed type, and the value of the memory cell may only be modified by calling

a local procedure or accepting a value from another process. The early choreographic language

constructed by Carbone and Montesi [2013] includes process spawning and allows more expressive

local computations. However, their language lacks process polymorphism and higher-orderedness—

eroding modularity and precluding the recursive divide-and-conquer approach.

Step in Tine: Forking Processes in Functional Choreographies 5

3 System Model
𝜆⋔ assumes the underlying system contains a set of potential computational units (threads, processes,

etc.), which we refer to as locations, and each location has a unique name from a space L. The

number of locations executing at any given time is finite, but programs may spawn an unbounded

number of new locations and each name must be unique, so L must be infinite.

As noted in Section 2.1, 𝜆⋔ follows Pirouette [Hirsch and Garg 2022] and 𝜆qc [Samuelson et al.

2025] and allows local programs to be specified in nearly any language. This local language must

only satisfy a set of rules common tomost expression-based languages. Our assumptions on the local

language are nearly identical to those in 𝜆qc and Pirouette, although we make some generalizations.

3.1 Local Operational Semantics
We require that the local language be presented as a set of expressions coupled with a small-step

operational semantics, a distinguished set of values, and a type system. We write 𝑒1 −→ 𝑒2 to denote

that the expression 𝑒1 steps to 𝑒2 in the local language’s operational semantics. The semantics must

satisfy the following two properties.

(1) Values cannot step: if Val(𝑣), then there is no 𝑒 such that 𝑣 −→ 𝑒 .

(2) The semantics satisfies the diamond property: if 𝑒1 −→ 𝑒2 and 𝑒1 −→ 𝑒3, then either 𝑒2 = 𝑒3
or there is some 𝑒4 such that 𝑒2 −→ 𝑒4 and 𝑒3 −→ 𝑒4.

Property (1) is a standard assumption about the set of values in the language, and property (2)

ensures multiply-located computations produce the same result at each location they execute at.

While property (2) may seem restrictive, it is satisfied by any deterministic language. Thus, large

subsets of industrial-strength functional languages can be used for local computations.

3.2 Local Type System
Just as the syntax of a choreography depends on the syntax of the local language, the choreographic

type system depends on the local language specifying a type system. The local type system must

include both a kinding judgment and a typing judgement. This allows, but does not require, the local

type system to be polymorphic. The type system must also be sound with respect to the operational

semantics. Specifically, it should satisfy the standard progress and preservation properties.

We denote a local kinding judgment Γ ⊩ 𝑡 :: ∗𝑒 . We assume for simplicity there is a single

local kind ∗𝑒 , but our results generalize to languages with multiple kinds. We denote local typing

judgements Γ;Δ ⊩ 𝑒 : 𝑡 where Γ is again a kinding context and Δ is a typing context. To distinguish

these judgments from the choreographic type system, we use a green double-vertical turnstile ⊩.
To support choreographic control-flow branching, we generalize Pirouette and 𝜆qc. Instead

of requiring a local boolean type, we allow an arbitrary (user-defined) predicate isSum(𝑠, 𝑡1, 𝑡2)
indicating that every value of type 𝑠 can be interpreted as either a 𝑡1 or a 𝑡2. For instance, the local

language can specify isSum(bool, unit, unit) and interpret true as inl () and false as inr (). The only
requirement is that there is a deterministic partial function getCase called the extraction function.
We require that, if isSum(𝑠, 𝑡1, 𝑡2) and ⊩ 𝑣 : 𝑠 for a value 𝑣 , then either getCase(𝑣) = inl(𝑣1) with
⊩ 𝑣1 : 𝑡1 or getCase(𝑣) = inr(𝑣2) with ⊩ 𝑣2 : 𝑡2. On other expressions, it may be undefined.

We support first-class process names identically to 𝜆qc. Specifically, the local language has two

types loc𝜌 and locset𝜌 defining first-class representations of location names and sets of locations,

respectively. As with the sum types above, the local language must be able to uniquely reify

any well-typed representation into a corresponding kind. For instance, if the set L of locations

consists of all possible strings (e.g., “Alice”, “Bob”, and “Charlie”), we could directly represent a

location by its string. We write representations using the syntax ⌈A⌋ (which here is syntactic sugar

for “Alice”) and ⌈{A,B}⌋ (which is {“Alice”, “Bob”}) to distinguish them from the actual location

6 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

A ∈ L or location set {A,B} ⊆ L. Since a spawned thread could take any name, we require each

location 𝐿 ∈ L to have at least one representation ⌈𝐿⌋ to ensure our choreographies do not become

stuck when spawning a thread. We do not require there to be any representation for a given set of

locations, however, as this is not a safety concern.

The subscript 𝜌 to the types loc𝜌 and locset𝜌 provides an upper-bound on the set of locations

to which an expression of that type might resolve to. As an example, we could assign both ⌈A⌋
and if 𝑒 then ⌈A⌋ else ⌈B⌋ to the type loc{A,B} , but ⌈C⌋ cannot be assigned this type. Different

local languages may determine different values for 𝜌 depending on the strength of their type

system and static-analysis abilities. The precision of this bound will not affect the operational

semantics of any choreography, but it may force the programmer to add additional operations to

some choreographies in order to satisfy the type system.

3.3 Example Local Languages
Many 𝜆-calculi satisfy our requirements with minor, but standard, modifications. Below we present

two example local langauges—one extending the simply-typed 𝜆-calculus, and the other System F.

Example 1 (Simply-Typed 𝜆-Calculus). Assuming that L is the set of all strings, we extend the

simply-typed, call-by-value 𝜆-calculus to obtain our first example local language. First, we extend

it with sum types, and define isSum(𝑠, 𝑡1, 𝑡2) to hold precisely when 𝑠 = 𝑡1 + 𝑡2, and define the

extraction function as

getCase(𝑒) =


inl(𝑣) 𝑒 = inl 𝑣
inr(𝑣) 𝑒 = inr 𝑣
undefined otherwise

We further include primitive strings and define ⌈𝐿⌋ as the string-primitive version of 𝐿. In

addition to the type string of all strings, we include a type loc{𝐿} containing only ⌈𝐿⌋ for every
location 𝐿. We also let locset𝜌 be empty for every 𝜌 and loc𝜌 be empty when |𝜌 | ≠ 1.

The representations defined above demonstrate that the local language need only perform a very

simple static analysis to determine the bound 𝜌 on the type loc𝜌 . While this design simplifies the

language significantly, it precludes expressions such as if 𝑒 then ⌈A⌋ else ⌈B⌋ from having interesting

types like loc{A,B} , instead forcing them to be typed with string. To address this shortcoming,

we make our final extension to STLC: a primitive function cast𝐿 : string → unit + loc{𝐿} that
dynamically checks if a primitive string argument is equal to ⌈𝐿⌋, casting it to type loc{𝐿} if so and

otherwise returning a unit. This allows dynamic analysis to replace the potentially complex static

analysis that otherwise might seem unavoidable. In this instance, by attempting to cast the result

of the if-expression above to both loc{A} and loc{B}—and chaining the output of the casts—we can

realize the type unit + loc{A} + loc{B} , allowing for this dynamically generated representation to

be used at the choreographic level by separately handling the cases when it resolves to A, B, or
another location—which will never occur.

Example 2 (System F). For an example of a more-expressive local langauge, System Fwith algebraic

and recursive data types, and primitive strings representing locations, satisfies our requirements.

Since we do not require that all local expressions terminate, there is no issue with including named

recursive functions and unrestricted recursive types. We use lists of strings (defined using recursive

data types) to represent location sets. Having multiple list permutations represent the same set of

locations is also not a concern, since we do not require representations to be unique. The syntax of

Step in Tine: Forking Processes in Functional Choreographies 7

this potential local language is shown below.

Types 𝑡 F 𝛼 | string | loc𝜌 | locset𝜌 | 𝑡1 → 𝑡2 | 𝑡1 + 𝑡2 | 𝑡1 × 𝑡2 | ∀𝛼. 𝑡 | 𝜇𝛼. 𝑡
Expressions 𝑒 F 𝑥 | 𝑠 ∈ str | fun 𝑓 (𝑥 :𝑡) B 𝑒 | 𝑒1 𝑒2 | Λ𝛼. 𝑒 | 𝑒 𝑡

| inl 𝑒 | inr 𝑒 | case 𝑒 of (inl 𝑥 ⇒ 𝑒1) (inr 𝑦 ⇒ 𝑒2)
| (𝑒1, 𝑒2) | fst 𝑒 | snd 𝑒 | fold 𝑒 | unfold 𝑒

To provide a nontrivial static upper-bound on representations of locations, this local language

includes subtyping, and allows the type loc𝜌 to be inhabited by any string in the set 𝜌—and similarly

for the locset𝜌 type—using the rules shown below.

Γ ⊩ Δ 𝑠 ∈ str

Γ;Δ ⊩ 𝑠 : loc{𝑠 }

Γ;Δ ⊩ 𝑒 : 𝑡1 𝑡1 <: 𝑡2

Γ;Δ ⊩ 𝑒 : 𝑡2

𝜌1 ⊆ 𝜌2

loc𝜌1 <: loc𝜌2

𝜌1 ⊆ 𝜌2

locset𝜌1 <: locset𝜌2

4 The 𝜆⋔ Language
We now present 𝜆⋔, the first functional choreographic programming language that can dynamically

spawn threads. As previously mentioned, we inherit the core of our language from 𝜆qc [Samuelson

et al. 2025]—including features such as algebraic and recursive data types, multiply-located local

computations, process polymorphism, and first-class process names—and retain the traditional

deadlock-freedom guarantee of choreographic languages.

4.1 𝜆⋔ Syntax
Figure 1 presents the full syntax of 𝜆⋔. As in 𝜆qc, we write choreographic program variables in

uppercase Roman characters (𝑋,𝑌, 𝐹, . . .), local program variables in lowercase Roman characters

(𝑥,𝑦, 𝑓 , . . .), and type, location, and location set variables in lowercase Greek characters (𝛼, 𝛽, . . .).

The metavariable ℓ denotes a location, 𝜌 a set of locations, 𝜏 a choreographic type, 𝑡𝑒 a local type,

and 𝜅 a kind.

Most constructs in 𝜆⋔ are standard for a functional language, consisting of operations on data

types appropriately generalized to choreographies, but there are some key differences. The ex-

pression 𝜌.𝑒 denotes a local program 𝑒 that is executed by all locations in the (non-empty) set 𝜌 .

In cases where 𝜌 = {ℓ} is a singleton, we use the shorthand ℓ .𝑒 . Local programs like 𝑒 can use

variables bound in the scope of the choreography, which are prepended with the location(s) that

bind(s) them. For instance, A.𝑥 denotes variable 𝑥 in the namespace of location A, which is distinct

from a variable B.𝑥 in the namespace of B, and this is reflected in our substitution semantics. If

a local variable is bound in the scope of multiple locations, we write 𝜌.𝑥 to mean that 𝑥 is in the

namespace of all locations in 𝜌 . Local variables (resp. type variables) can be bound to the result of a

Selection Labels 𝑑 F L | R
Choreographies 𝐶 F 𝑋 | 𝜌.𝑒

| let 𝜌.𝑥 :𝑡𝑒 B 𝐶1 in 𝐶2 | let 𝜌.𝛼 ::𝜅 B 𝐶1 in 𝐶2

| 𝐶 {ℓ }⇝ 𝜌 | ℓ [𝑑] ⇝ 𝜌 ; 𝐶

| fun𝜌 𝐹 (𝑋) B 𝐶 | 𝐶1 $𝜌 𝐶2 | tfun𝜌 𝐹 (𝛼 ::𝜅) B 𝐶 | 𝐶 $𝜌 𝑡

| localCase𝜌 𝐶 of (inl 𝑥 ⇒ 𝐶1) (inr 𝑦 ⇒ 𝐶2)
| inl𝜌 𝐶 | inr𝜌 𝐶 | case𝜌 𝐶 of (inl 𝑋 ⇒ 𝐶1) (inr 𝑌 ⇒ 𝐶2)
| fold𝜌 𝐶 | unfold𝜌 𝐶 | (𝐶1,𝐶2)𝜌 | fst𝜌 𝐶 | snd𝜌 𝐶
| let (𝛼, 𝑥) B ℓ .fork() in 𝐶 | kill 𝐿 after 𝐶

Fig. 1. Syntax of Choreographies in 𝜆⋔

8 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

choreography using a let expression let 𝜌.𝑥 :𝑡𝑒 B 𝐶1 in 𝐶2 (resp. let 𝜌.𝛼 ::𝜅 B 𝐶1 in 𝐶2). In both of

these expressions, 𝜌 may be a subset of the locations who know the output of 𝐶1.

Data can be shared between locations using the operation 𝐶 {ℓ }⇝ 𝜌 , in which the output of

choreography 𝐶 is sent by ℓ to all locations in the set 𝜌 via message passing. The output of 𝐶 must

be a local value known to ℓ , although it may also be known to others. For notational simplicity,

we elide the ℓ and write 𝐶 ⇝ 𝜌 when 𝐶 is known only to ℓ . Since the sender, all recipients, and

anyone else who knew the value of a message will all agree on it afterward, the semantics of

sends are collecting—the output is a value located at all relevant locations. For instance, the send

{A,B}.(4 − 2) {A}⇝ {C,D} results in the multiply-located value {A,B,C,D}.2. A separate use of

message passing is selection statements ℓ [𝑑] ⇝ 𝜌 ′ ; 𝐶 , which can be used to synchronize on the

branch 𝑑 ∈ {L,R} taken in a case expression—described below—with the locations in 𝜌 ′.
Named recursive functions are written as fun𝜌 𝐹 (𝑋) B 𝐶 , where 𝐹 is the name of the function,

𝑋 is its argument, and 𝐶 is the body of the function. The additional parameter 𝜌 is the set of

locations that may be involved in executing the body of the function and is needed to ensure that

spawned process names do not persist beyond the lifetime of the process. It also constrains who

knows the function definition and is dually reflected in the syntax for function application, written

𝐶1 $𝜌 𝐶2, which contains an annotation to convey that only those locations in 𝜌 need to perform

the application. As with message sending syntax, we elide the $𝜌 when 𝜌 is clear from context.

Polymorphism is implemented in 𝜆⋔ using type functions and type applications. Type functions,

written tfun𝜌 𝐹 (𝛼 ::𝜅) B 𝐶 , are similar to the type abstractions Λ𝛼.𝐶 found in System F and

previous chreographies [Graversen et al. 2024; Samuelson et al. 2025], but allow the function 𝐹 to

be recursively defined. All kinds 𝜅 of the language may be abstracted over in type functions, and

similarly to standard functions, the set of locations 𝜌 tracks which locations know the definition of

the type function. Type applications, written 𝐶 $𝜌 𝑡 , mirror function applications explained above.

𝜆⋔ includes two separate forms of branching: local case-expressions and choreographic case-

expressions. Local case-expressions, written localCase𝜌 𝐶 of (inl 𝑥 ⇒ 𝐶1) (inr 𝑦 ⇒ 𝐶2), generalize
the if-expressions found in prior work [e.g., Cruz-Filipe et al. 2022; Graversen et al. 2024; Hirsch and

Garg 2022; Samuelson et al. 2025], and branch the choreography on the result of a local computation.

Here 𝐶 must produce a value of local type 𝑡 known to 𝜌 where isSum(𝑡, 𝑡1, 𝑡2) holds. The local
variables 𝑥 and 𝑦 are bound for all locations in 𝜌 with types 𝑡1 and 𝑡2, respectively. To inform

additional locations 𝜌 ′ which branch is taken, a programmer has two options. First, they can share

the value of 𝐶 using the send operation 𝐶 {ℓ }⇝ 𝜌 ′ and branch on the resulting collected value.

Alternatively, they can include selection statements in the branches to inform locations in 𝜌 ′ which
branch was taken. In the second case, the value of 𝐶 is not available to the additional locations,

which may be desirable for security or performance reasons.

Choreographic case-expressions, written case𝜌 𝐶 of (inl𝑋 ⇒ 𝐶1) (inr𝑌 ⇒ 𝐶2), are conceptually
similar to local case-expressions, but instead branch the choreography on a choreographic sum—

either of the form inl𝜌 𝑉1 or inr𝜌 𝑉2. This means that 𝑉1 or 𝑉2 could be a more complex data type,

such as a choreographic pair or list containing multiple local values, rather than just a single local

value. Selection statements can also be used in the branches of choreographic case-expressions to
allow locations outside of 𝜌 to know which branch to take.

Similar to case-expressions, choreographic pairs and recursive data types act like their usual

functional-programming counterparts. but with an annotation 𝜌 describing who knows about the

data. As with other such annotations, we elide them when they are clear from context.

Fork and Kill Expressions. The key addition of 𝜆⋔ is the fork expression, which allows dynamic

spawning of new locations. Specifically, the expression let (𝛼, 𝑥) B ℓ .fork() in𝐶 instructs location ℓ

to spawn a child process and binds its name to the type variable 𝛼 , allowing the new location to

Step in Tine: Forking Processes in Functional Choreographies 9

perform computations in the body𝐶 . The variable 𝑥 is bound at locations 𝛼 and ℓ to a first-class local

representation of the name 𝛼 , allowing ℓ to notify other locations of the new child and facilitating

direct communication between 𝛼 and any other location.

We include two notational shortcuts for fork. First, if 𝑥 is not free in 𝐶 , we simplify the binding

and write let 𝛼 B ℓ .fork() in 𝐶 . Second, the notation let 𝛼 B ℓ .fork() ⇝ 𝜌 in 𝐶 is sugar for

let (_, 𝑥) B ℓ .fork() in (let 𝛼 B 𝑥 {ℓ }⇝ 𝜌 in 𝐶)

which shares the name 𝛼 of the newly spawned process with everyone in 𝜌 , as well as ℓ and 𝛼 itself.

The construct kill 𝐿 after 𝐶 serves as a dual to the fork expression, and is used to track which

threads are currently spawned and differentiate them from other non-ephemeral processes. Infor-

mally, this is not intended to be in the surface language used by programmers. Specifically, when a

new thread 𝐿 is spawned by a fork expression with body 𝐶 , the body will simply be placed within

a kill-after expression while executing to denote the fact that 𝐿 will die once 𝐶 finishes execution.

Example 3, shown below, demonstrates how the fork expression can be used in tandemwith other

language features such as case-expressions, process polymorphism, and the type-let expression.

Example 3 (Load Balancer). Consider a cloud computing application where a client C wishes to

outsource an expensive computation 𝐹 with input 𝑋 . The below function runWithWorker shows
how C can run 𝐹 on a generic worker node𝑊 using process polymorphism. Once the worker has

computed 𝐹 𝑋 , they will inform amanager processM, who will execute a callback function onFinish.

runWithWorker : ∀𝑊 . (𝑡 → 𝑡 ′)@C → 𝑡@C → (unit → unit)@M → 𝑡 ′@C

runWithWorker𝑊 𝐹 𝑋 onFinish = let𝑊 .𝑓 B 𝐹 ⇝𝑊

𝑊 .𝑥 B 𝑋 ⇝𝑊

C.res B𝑊 .(𝑓 𝑥) ⇝ C
in𝑊 .“done”⇝ M ; M.(onFinish ()) ; C.res

The above function does not actually select a worker node; that job falls toM, which maintains a

pool of permanent workers, and selects an available worker dynamically to process each request.

However, if all workers are busy,M will spawn an ephemeral worker using fork that terminates

after a single job. The handleRequest function below implements this functionality.

handleRequest : (𝑡 → 𝑡 ′)@C → 𝑡@C → 𝑡 ′@C

handleRequest 𝐹 𝑋 = localCase (M.acquireWorker() ⇝ {C} ∪ pool) of
| some(𝑤) ⇒ let𝑊 B 𝑤

in runWithWorker𝑊 𝐹 𝑋 M.(𝜆_. releaseWorker𝑤)
| none ⇒ let𝑊 B M.fork() ⇝ C

in runWithWorker𝑊 𝐹 𝑋 M.(𝜆_. ())

M uses acquireWorker, which searches for a free worker and returns some(𝑤) if it finds a free
worker𝑤 and none otherwise. After alerting all relevant parties to the result, the choreography

branches. If the job is run on a free worker,M releases that worker afterward. If not, there is nothing

to do afterward, as the newly-spawned process falls out of scope and automatically terminates.

Note that this example critically relies on the ability, inherited from 𝜆qc [Samuelson et al. 2025],

to send and receive first-class location name representations and reify them into type-level location

names. Both the output of acquireWorker and the spawned location name are sent as messages,

and the final worker identity is bound to a type-level location.

10 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

Redices 𝑅 F 𝜌.(𝑒1 → 𝑒2) | App𝜌 | CaseInl𝜌 | 𝐿.𝑚⇝ 𝜌 | 𝐿1.fork(𝐿2,𝐶)

rloc(𝑅) cloc(𝐶)

rloc(𝜌.(𝑒1 → 𝑒2)) ≜ 𝜌

rloc(App𝜌) ≜ 𝜌

rloc(CaseInl𝜌) ≜ 𝜌

rloc(𝐿.𝑚⇝ 𝜌) ≜ {𝐿} ∪ 𝜌

rloc(𝐿.fork(𝐿′,𝐶)) ≜ {𝐿}

cloc(𝑋) ≜ ∅
cloc(𝜌.𝑒) ≜ 𝜌

cloc(fun𝜌 𝐹 (𝑋) B 𝐶) ≜ ∅
cloc(𝐶1 $𝜌 𝐶2) ≜ cloc(𝐶1) ∪ cloc(𝐶2) ∪ 𝜌

cloc(let 𝜌.𝛼 ::∗loc B 𝐶1 in 𝐶2) ≜ cloc(𝐶1) ∪ (cloc(𝐶2) \ {𝛼}) ∪ 𝜌

cloc(let (𝛼, 𝑥) B ℓ .fork() in 𝐶) ≜ {ℓ} ∪ (cloc(𝐶) \ {𝛼})

Fig. 2. Selected Redices and Location Function Rules. Here𝑚 is either a local value 𝑣 or a selection label 𝑑 .

4.2 Operational Semantics
The operational semantics of 𝜆⋔ consists of a small-step relation using a labeled-transition system

of the form ⟨𝐶1,Ω1⟩
𝑅
=⇒𝑐 ⟨𝐶2,Ω2⟩. The label 𝑅 represents a redex that tracks the specific reduction

occurring. The parameters Ω1 and Ω2 track the locations who are executing the choreography

before and after the step, respectively, and are used to track which locations remain alive.

Choreographies describe concurrent computation, so the operational semantics includes out-
of-order reductions to reflect the ability of locations to execute independently. These steps allow

unrelated actions to occur in different orders, so long as the order of operations for each individual

location is respected. The redices in the step relation specify the step taken and the locations

involved, and a step may only be reordered when any computations it is jumping ahead of involve

a disjoint set of locations.

We compute the locations involved in a step using the redex locations function rloc(𝑅), and
the locations (possibly) involved in an entire choreography using the choreography locations
function cloc(𝐶). For example, the redex A.𝑣 ⇝ B denotes that A sends 𝑣 to B. Since pre-

cisely A and B participate in this step, rloc(A.𝑣 ⇝ B) = {A,B}. The function cloc(𝐶), on the

other hand, captures all locations that may eventually participate in a step made by 𝐶 . Thus

cloc(let A.𝑥 B A.2 in (A.(2 + 𝑥) ⇝ B)) = {A,B}, even though A must take multiple steps before B
gets involved. Figure 2 shows selected redices and definitions for both location functions.

These two functions together determine when it is safe to reorder steps. Specifically, a step 𝑅

can execute before an entire computation 𝐶 if the set of participants in the two are disjoint—

cloc(𝐶) ∩ rloc(𝑅) = ∅—even if a standard in-order semantics would execute 𝐶 to completion

before 𝑅. The following out-of-order rule for let-expressions is an example of such a step.

[C-LetI]

⟨𝐶2,Ω⟩
𝑅
=⇒𝑐

〈
𝐶′
2
,Ω′〉

cloc(𝐶1) ∩ rloc(𝑅) = ∅ 𝜌 ∩ rloc(𝑅) = ∅ fv(𝜌) = ∅

⟨let 𝜌.𝑥 :𝑡𝑒 B 𝐶1 in 𝐶2,Ω⟩
𝑅
=⇒𝑐

〈
let 𝜌.𝑥 :𝑡𝑒 B 𝐶1 in 𝐶′

2
,Ω′〉

This rule also prohibits the out-of-order step 𝑅 in the body from including locations binding a

variable in the let, and ensures that all locations binding the let have been resolved by requir-

ing fv(𝜌) = ∅. The second requirement prevents a situation where a location variable later resolves

to a location appearing in the step, meaning C-LetI would have rearranged their operations.

Out-of-order execution can similarly occur in branches of case- and localCase-expressions before
fully evaluating the scrutinee, with some extra requirements on the steps. Specifically, stepping

in the branches is safe when both (1) the locations involved in the step are disjoint from those

computing the scrutinee (similarly to C-LetI), and (2) the step will occur regardless of the branch

Step in Tine: Forking Processes in Functional Choreographies 11

[C-Done]

𝑒1 −→ 𝑒2 𝜌 ⊆ Ω

⟨𝜌.𝑒1,Ω⟩
𝜌.(𝑒1→𝑒2)
==========⇒𝑐 ⟨𝜌.𝑒2,Ω⟩

[C-App]

𝑓 = fun𝜌 𝐹 (𝑋) B 𝐶 Val(𝑉) 𝜌 ⊆ Ω〈
𝑓 $𝜌 𝑉 ,Ω

〉 App𝜌
=====⇒𝑐 ⟨𝐶 [𝐹 ↦→ 𝑓 , 𝑋 ↦→ 𝑉],Ω⟩

[C-SendV]

Val(𝑣) 𝐿1 ∈ 𝜌1 𝐿1 ∈ Ω 𝜌2 ⊆ Ω

⟨𝜌1 .𝑣 {𝐿1 }⇝ 𝜌2,Ω⟩
𝐿1 .𝑣⇝𝜌2
========⇒𝑐 ⟨(𝜌1 ∪ 𝜌2) .𝑣,Ω⟩

[C-Fork]

𝐿′ globally fresh fv(𝐶′) = ∅ 𝐿 ∈ Ω
𝐶′ = 𝐶

[
𝛼 ↦→ 𝐿′, 𝑥 ↦→ ⌈𝐿′⌋

]
⟨let (𝛼, 𝑥) B 𝐿.fork() in 𝐶,Ω⟩

𝐿.fork(𝐿′,𝐶 ′)
============⇒𝑐

〈
kill 𝐿′ after 𝐶′,Ω ∪ {𝐿′}

〉 [C-Kill]

Val(𝑉) 𝐿 ∈ Ω

⟨kill 𝐿 after 𝑉 ,Ω⟩
kill(𝐿)
======⇒𝑐 ⟨𝑉 ,Ω \ {𝐿}⟩

Fig. 3. Selected 𝜆⋔Operational Semantics

taken. The latter point is enforced by requiring identical redices and updates to the set of executing

locations in the step in both branches. The result is the following C-LocalCaseI rule, with an

analogous rule for choreographic case expressions.

[C-LocalCaseI]

⟨𝐶1,Ω⟩
𝑅
=⇒𝑐

〈
𝐶′
1
,Ω′〉 ⟨𝐶2,Ω⟩

𝑅
=⇒𝑐

〈
𝐶′
2
,Ω′〉

cloc(𝐶) ∩ rloc(𝑅) = ∅ 𝜌 ∩ rloc(𝑅) = ∅ fv(𝜌) = ∅〈 localCase𝜌 𝐶 of
| inl 𝑥 ⇒ 𝐶1

| inr 𝑦 ⇒ 𝐶2

,Ω

〉
𝑅
=⇒𝑐

〈 localCase𝜌 𝐶 of
| inl 𝑥 ⇒ 𝐶′

1

| inr 𝑦 ⇒ 𝐶′
2

,Ω′
〉

To see this rule in action, consider the following out-of-order step.

localCase{A,B}
(
A.𝑒 ⇝ B

)
of

| inl 𝑥 ⇒ B.(1 + 𝑥) ⇝ A ; C.(3 + 2)
| inr 𝑦 ⇒ C.(3 + 2)

=⇒𝑐

localCase{A,B}
(
A.𝑒 ⇝ B

)
of

| inl 𝑥 ⇒ B.(1 + 𝑥) ⇝ A ; C.5
| inr 𝑦 ⇒ C.5

Although the scrutinee A.𝑒 ⇝ B is not yet evaluated, C will run the same program 3 + 2 on either

branch, and C is neither involved in computing the scrutinee nor will their control flow branch. It

is thus safe to reduce C.(3 + 2) to C.5 in both branches. However, no out-of-order step is available

in the following choreography.

localCaseA
(
let A.𝑥 B (B.6⇝ A) in A.(inl (𝑥 − 3))

)
of

| inl _ ⇒ B.(3 + 2)
| inr _ ⇒ B.(3 + 2)

Although B executes identical expressions in both branches and will not branch, executing the

computation in the branches before the send B.6⇝ A in the condition would reorder B’s local
operations, which is disallowed.

Figure 3 contains a selection of additional rules (the rest can be found in Appendix A). C-Done

lifts the local-language semantics to choreographies, C-App applies a function to its argument,

and C-SendV formalizes the multiply-located semantics of message-passing. These steps require

𝜌 ⊆ Ω which ensures that all participants are known and running, meaning everyone who needs

to perform this action is able to do so now.

The final two rules formalize how 𝜆⋔ spawns and kills new locations. To spawn a location, C-Fork

selects a globally fresh location name 𝐿′ and binds 𝛼 to 𝐿′ and 𝑥 to its representation ⌈𝐿′⌋ in the

12 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

body of the fork expression. It checks that the substituted body𝐶′
is closed to ensure that 𝐿′—which

has no access to any enclosing scope—does not attempt to execute a program with free variables.

Finally, it wraps 𝐶′
in a kill-after term to denote that 𝐿′ should be killed after the computation

completes and adds 𝐿′ to the set Ω of executing locations. Once the computation completes, C-Kill

kills the spawned location by removing it from Ω and returning the output of the computation.

There is also an out-of-order version of C-Kill that allows a spawned thread 𝐿 to terminate early

when its part of the inner computation 𝐶 is complete; that is, when 𝐿 ∉ cloc(𝐶).

4.3 Static Semantics
The static semantics of our language is defined by a kinding judgment and a typing judgment.

4.3.1 𝜆⋔Kinding System. To support polymorphism, we define a kinding judgment Γ ⊢ 𝑡 :: 𝜅 , where
Γ is a kinding context, 𝑡 is a type, and 𝜅 is a kind. The kind 𝜅 classifies 𝑡 as either a location (∗loc),
a set of locations (∗locset), a local program type (∗𝑒), or a program type (∗𝜌). Figure 4 presents the
syntax for these types and kinds.

The kind ∗loc represents location names, which can refer to either concrete locations L ∈ L or

in-context location variables, while the kind ∗locset classifies (non-empty) finite sets of location

names, which can be either a type variable, a singleton set ({ℓ}), or a union of sets (𝜌1 ∪ 𝜌2). Types

of kind ∗𝑒 are precisely the types included in the local language under a given type variable context.

The kind ∗𝜌 of program types is similar to the standard program type ∗ of System F and 𝜆qc, but

is parameterized over a set of locations 𝜌 bounding the locations referenced in a type of that kind.

For instance, the type 𝑡𝑒@𝜌 has kind ∗𝜌 , as any value of this type is known by all of the locations

in 𝜌 . The idea for other types is similar: if 𝜏 has kind ∗𝜌 , then only locations in 𝜌 may know any

part of a value of this type. The K-Prod and K-Sum rules give two examples of this principle.

[K-Prod]

Γ ⊢ 𝜏1 :: ∗𝜌1 Γ ⊢ 𝜏2 :: ∗𝜌2
Γ ⊢ 𝜏1 × 𝜏2 :: ∗𝜌1∪𝜌2

[K-Sum]

Γ ⊢ 𝜏1 :: ∗𝜌1 Γ ⊢ 𝜏2 :: ∗𝜌2
Γ ⊢ 𝜌 :: ∗locset 𝜌1 ∪ 𝜌2 ⊆ 𝜌

Γ ⊢ 𝜏1 +𝜌 𝜏2 :: ∗𝜌
In K-Prod, if a location knows (part of) either side of a pair, then they know part of the entire pair.

One may expect K-Sum to follow a similar rule: collect the annotations on each side. However,

sums carry information beyond the underlying types; they also convey if the value is an inl or an inr.
The 𝜌 on the plus describes who knows which side the value is on, which may include more people

than know the data on each side. For instance, a value of type (int@A +{A,B,C} int@B) :: ∗{A,B,C}
could be an int at either A or B, but all of A, B, and C know which. Requiring 𝜌1 ∪ 𝜌2 ⊆ 𝜌 ensures

that everyone who might hold data knows whether or not they need to hold that data.

For types including location (set) variables, it is impossible to know which location(s) will

be involved. We thus introduce a special value ⊤ that may appear as part of 𝜌 denoting as-yet-

unresolved locations. For instance, in the rule K-AllLoc for forall types, variable 𝛼 may appear

free in the set of latent participants 𝜌 (described in Section 4.3.2) and the kind ∗𝜌𝜏 of the type 𝜏 . To

Kinds 𝜅 F ∗loc | ∗locset | ∗𝑒 | ∗𝜌
Local Program Types 𝑡𝑒 F 𝛼 | loc𝜌 | locset𝜌 | . . .
Locations L,A,B, . . . ∈ L
Choreography Types ℓ, 𝜌, 𝜏, 𝑡 F 𝛼 | 𝑡𝑒@𝜌 | 𝜏1

𝜌
−→ 𝜏2 | ∀𝛼 ::𝜅 [𝜌] . 𝜏

| 𝜏1 × 𝜏2 | 𝜏1 +𝜌 𝜏2 | 𝜇𝜌𝛼. 𝜏 | L | {ℓ} | 𝜌1 ∪ 𝜌2

Fig. 4. Syntax of Types and Kinds. Here 𝛼 is a type variable.

Step in Tine: Forking Processes in Functional Choreographies 13

assign a kind to the forall type which captures all referenced locations, we collect the locations

in 𝜌 and 𝜌𝜏 and replace the bound variable 𝛼 with ⊤. Since 𝛼 could resolve to any variable, this

matches our intuition for ⊤.

[K-AllLoc]

𝜅ℓ ∈ {∗loc, ∗locset} Γ, 𝛼 ::𝜅ℓ ⊢ 𝜏 :: ∗𝜌𝜏
Γ, 𝛼 ::𝜅ℓ ⊢ 𝜌 :: ∗locset 𝜌 ′ = ((𝜌 ∪ 𝜌𝜏) \ 𝛼) ∪ ⊤

Γ ⊢ ∀𝛼 ::𝜅ℓ [𝜌] . 𝜏 :: ∗𝜌 ′

This parameterized kind means 𝜆⋔ supports a form of bounded polymorphism. If 𝛼 :: ∗𝜌 , then 𝛼

is restricted in what types it may take on to only those whose participants are in 𝜌 . These bounds

make it possible to precisely track the locations that may be involved in a computation, even in

the presence of polymorphism. As we will see in Section 4.3.2 below, this tracking is critical to

ensuring deadlock freedom with 𝜆⋔’s combination of closures and thread spawning.

4.3.2 𝜆⋔ Type System. Typing judgments in 𝜆⋔ take the form Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 , where Θ = Γ;Δ𝑒 ;Δ is

a three-part context of type, local, and choreographic variables,𝐶 is a choreography, 𝜏 is a program

type, and 𝜌 is a set of participants who may be involved in computing 𝐶 .

Participant Tracking. Just as the participant parameter 𝜌 on the kind ∗𝜌 bounds the types of that

kind, the participant parameter 𝜌 in the typing judgment bounds the locations actively participating

in the choreography 𝐶 . This information is used to ensure that a thread, once killed, will not be

asked to perform further computation. To see the challenge in enforcing this guarantee, consider

the following program:

let 𝐹 B
(
let 𝛼 B A.fork()
in (𝜆_. let A.𝑥 B (𝛼.(1 + 2) ⇝ A) in A.𝑥)

)
in 𝐹 A.()

Here A spawns a thread 𝛼 who then immediately dies, as the body of the fork expression—the

𝜆-abstraction—is a value. However, the returned abstraction closes over 𝛼 and, when applied,

asks 𝛼—which is now dead—to send a message to A, causing deadlock.

The 𝜆⋔ type system has two key features to prevent this scenario. First, it uses 𝜌 to track which

locations might participate in a choreography. For instance, the body of the 𝜆-abstraction above

types as

𝛼 ::∗loc ⊢ (let A.𝑥 B (𝛼.(1 + 2) ⇝ A) in A.𝑥) : int@A ▷ {𝛼,A}.
indicating that 𝛼 and A might participate in the function body, but nobody else will.

Second, we augment function types to include the set of locations who might participate in the

body—the function’s latent participants. Here, for instance, the full 𝜆-abstraction is typed as

𝛼 ::∗loc ⊢ (𝜆_. let A.𝑥 B (𝛼.(1 + 2) ⇝ A) in A.𝑥) : unit@A
{𝛼,A}
−−−−→ int@A ▷ ∅

with latent participants {𝛼,A} located above the function arrow. Note that 𝜌 = ∅ here since an

abstraction is a value so no locations are involved in computing it. Because the type variable 𝛼 is

free in the function type, the type system can rule out the enclosing fork expression.

By contrast, the program below is valid, since the type unit@A
{A,B}
−−−−→ int@A of the fork’s body

does not contain 𝛼 , indicating that it is safe to use the value after 𝛼 is killed.

⊢ let 𝐹 B ©­«
let 𝛼 B A.fork() ⇝ B

B.𝑦 B 𝛼.(1 + 2) ⇝ B
in (𝜆_. let A.𝑥 B (B.𝑦 ⇝ A) in A.𝑥)

ª®¬ in 𝐹 A.() : int@A ▷ {A,B}

Type abstractions binding location (set) variables complicate tracking, leading to the use of ⊤
described above. However, such bindings create no deadlock concerns as the type system can

guarantee that, when the abstraction is applied, the resolved location(s) are alive.

14 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

Typing Rules. The rules T-Fun and T-App formalize the intuition above.

[T-Fun]

Θ, 𝐹 :𝜏1
𝜌
−→ 𝜏2, 𝑋 :𝜏1 ⊢ 𝐶 : 𝜏2 ▷ 𝜌

Θ ⊢ 𝜏1 :: ∗𝜌𝑎 Θ ⊢ 𝜏2 :: ∗𝜌𝑏
𝜌′ = 𝜌𝑎 ∪ 𝜌𝑏 ∪ 𝜌

Θ ⊢ fun𝜌 ′ 𝐹 (𝑋) B 𝐶 : 𝜏1
𝜌
−→ 𝜏2 ▷ ∅

[T-App]

Θ ⊢ 𝐶1 : 𝜏1
𝜌
−→ 𝜏2 ▷ 𝜌1 Θ ⊢ 𝐶2 : 𝜏1 ▷ 𝜌2

Θ ⊢ 𝜏1 :: ∗𝜌𝑎 Θ ⊢ 𝜏2 :: ∗𝜌𝑏
𝜌′ = 𝜌𝑎 ∪ 𝜌𝑏 ∪ 𝜌

Θ ⊢ 𝐶1 $𝜌 ′ 𝐶2 : 𝜏2 ▷ 𝜌1 ∪ 𝜌2 ∪ 𝜌′

To type a function, we check that the body 𝐶 is well-typed with both the function’s name 𝐹 and

argument 𝑋 in scope, and require the participants in the body of the function be the same as

the latent participants in the function type. The other three premises of T-Fun ensure that every

location who might know the input or the output, or who might participate in the function body,

knows the definition of the function.

The application rule T-App ensures that the function is well-typed, and that its argument has

the required input type. Similarly to the T-Fun rule, we must ensure that every location who is

involved with its body, input, or output performs the application. Lastly, the locations involved in

the entire expression are collected from those who are involved in computing𝐶1 or𝐶2, and anyone

else who performs the application.

T-Fork types the new fork expression. The first two premises are straightforward: the body of the

expression must be well-typed with the new location variable 𝛼 and its first-class representation 𝑥

in scope, and the parent location ℓ must be well-kinded as a location.

[T-Fork]

Θ, 𝛼 ::∗loc, {ℓ, 𝛼}.𝑥 : loc𝛼 ⊢ 𝐶 : 𝜏 ▷ 𝜌

Θ ⊢ ℓ :: ∗loc Θ ⊢ 𝜏 :: ∗𝜌𝜏
Θ ⊢ let (𝛼, 𝑥) B ℓ .fork() in 𝐶 : 𝜏 ▷ {ℓ} ∪ (𝜌 \ 𝛼)

[T-Kill]

Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌

Θ ⊢ kill 𝐿 after 𝐶 : 𝜏 ▷ 𝜌 ∪ {𝐿}

The third requirement—that the type 𝜏 of the body is well-kinded without 𝛼 in scope—serves
two purposes. First, it prevents type dependency. As the name of the spawned thread is chosen at

runtime, we cannot know a-priori which name 𝛼 will resolve to, so we cannot assign a coherent

type to the overall fork expression if that type may depend on the thread’s name. Second, it prevents

spawned threads from being asked to perform computation after they are killed. Because our type

system tracks latent participants, the kinding judgement ensures that the type does not refer to

any out-of-scope locations even in pending computations inside (type) functions. The rule T-Kill is
comparatively straightforward, and simply adds the spawned thread to the set of participants.

The T-TFunLoc and T-TAppLoc rules show how the type system uses ⊤ in tracking when

abstracting over locations.

[T-TFunLoc]

𝜅ℓ ∈ {∗loc, ∗locset} 𝜌′ = (𝜌 \ 𝛼) ∪ ⊤
Θ, 𝐹 :∀𝛼 ::𝜅ℓ [𝜌] . 𝜏, 𝛼 ::𝜅ℓ ⊢ 𝐶 : 𝜏 ▷ 𝜌

Θ ⊢ tfun𝜌 ′ 𝐹 (𝛼 ::𝜅ℓ) B 𝐶 : ∀𝛼 ::𝜅ℓ [𝜌] . 𝜏 ▷ ∅

[T-TAppLoc]

𝜅ℓ ∈ {∗loc, ∗locset}
Θ ⊢ 𝐶 : ∀𝛼 ::𝜅ℓ [𝜌] . 𝜏 ▷ 𝜌1 Θ ⊢ 𝑡 :: 𝜅ℓ

Θ ⊢ 𝜏 [𝛼 ↦→ 𝑡] :: ∗𝜌𝜏 𝜌′ = 𝜌𝜏 ∪ 𝜌 [𝛼 ↦→ 𝑡]
Θ ⊢ 𝐶 $𝜌 ′ 𝑡 : 𝜏 [𝛼 ↦→ 𝑡] ▷ 𝜌1 ∪ 𝜌′

In T-Fun above, the location annotation on the function had to identically match the latent par-

ticipants in the body. When abstracting over (sets of) locations, however, the latent participants

can include 𝛼 , which is free outside the body of the abstraction. We therefore replace 𝛼 in the

annotation on tfun with ⊤ to indicate an unresolved location (set). The rest of the rule is standard.

The type application rule T-TAppLoc is similar to the standard application rule, but since 𝛼 may

be free in type 𝜏 and the latent participants 𝜌 of 𝐶 , we substitute it for the now-resolved variable.

The remaining typing rules can be found in Appendix B.

Example 4 (Fork Bomb). Althought it will run forever and generate an exponentially large number

of spawned threads as it runs, a fork bomb does not produce any deadlocks, so the example shown

Step in Tine: Forking Processes in Functional Choreographies 15

below is well-typed in our language.

forkBomb = tfun⊤ 𝐹 (ℓ ::∗loc) B let 𝛼 B ℓ .fork()
𝛽 B ℓ .fork()

in 𝐹 $𝛼 𝛼 ; 𝐹 $𝛽 𝛽

Specifically, it types as ⊢ forkBomb : ∀ℓ ::∗loc [ℓ] . unit@ℓ ▷ ∅. Applying the type function to A
starts the fork bomb and results in a choreography with the type ⊢ forkBomb $A A : unit@A ▷ {A}.
Here A is the only participant because no other location has yet been spawned.

4.3.3 Type Soundness. The type system described above enjoys two important notions of soundness:

the parameter 𝜌 in the typing judgment captures all locations who may take a step, and the standard

guarantee that a well-typed choreography does not get stuck.

To formalize the first notion, recall from Section 4.2 that each step includes a redex 𝑅 and

the rloc(𝑅) function computes the set of locations involved in 𝑅. We therefore show that 𝜌 \ ⊤
contains all locations in 𝑅 for any step. Removing ⊤ is a technical detail to make the theorem

meaningful, as all locations are considered to be in 𝜌 if it includes ⊤.

Theorem 1 (Sound Participant Sets). IfΘ ⊢ 𝐶 : 𝜏 ▷ 𝜌 and ⟨𝐶,Ω⟩ 𝑅
=⇒𝑐 ⟨𝐶′,Ω′⟩, then rloc(𝑅) ⊆ 𝜌\⊤.

Note that the soundness of 𝜌 does not extend to multiple steps; if the step spawns a thread, then

the participants in the choreography may increase. Our full type preservation theorem, found in

Appendix E.2, ensures that 𝐶′
can always be typed at some set 𝜌 ′, meaning our type system will

always yield a sound set of participants at any given moment in time.

Standard type soundness requires two simple additional premises. First, all locations mentioned

in the initial choreography must be running. Second, since kill-after expressions are not intended
to be available at the surface level, we only consider choreographies that start without them. The

execution may generate kill-after statements without losing any guarantees.

Theorem 2 (Type Soundness). If ⊢ 𝐶 : 𝜏 ▷ 𝜌 , every location literal in 𝐶 is in Ω, and 𝐶 contains no
kill-after expressions, then whenever ⟨𝐶,Ω⟩ =⇒∗

𝑐 ⟨𝐶′,Ω′⟩, either 𝐶′ is a value, or ⟨𝐶′,Ω′⟩ can step.

Note that in Appendix E.2, we have more-traditional progress and preservation theorems. How-

ever, our preservation theorem needs significant technical machinery to account for kill-after
expressions, so we present only full type soundness here.

5 Network Language
To compile a choreography into multiple programs that a system can execute concurrently, we need

to specify the target language that nodes of this system will run. This network language proscribes
the actions of each individual location in the system, and gives a concurrent operational semantics

to describe the execution of the entire system.

5.1 Network Language Syntax
The network language is a concurrent 𝜆-calculus with messages from the same space as in

choreographies—local language values and selection messages. The syntax, given in Figure 5,

closely mirrors our choreographic syntax, except we split message sends—including selection

messages—into two separate constructs to account for the sender and recipient(s).

The return expression ret(𝑒) is used to execute and yield the output of a local expression 𝑒 ,

mirroring the choreographic MLV 𝜌.𝑒 . To account for a location 𝐿 ∉ 𝜌—who should not execute 𝑒—

and other scenarios where a location is not involved in part of the overall choreography, we include

a unit value () which does nothing.

16 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

To model message-passing, we need two separate constructs for the sender and recipient(s) of

a message. Specifically, the send expression send 𝐸 to 𝜌 multicasts the result of program 𝐸 to

every location in 𝜌 (and also has the sender yield the output of 𝐸), and the dual receive expres-

sion recv from ℓ waits to receive a local value from ℓ . Since only local values can be sent, send
may only send a value ret(𝑣), while other forms such as send () to 𝜌 will be stuck.

(Type) let-expressions, (type) functions, case, localCase, and algebraic and recursive data types
are included in the network language identically to in choreographies, less some un-needed location

(set) annotations. The sequencing construct 𝐸1 ; 𝐸2 is standard.

On top of these relatively familiar expressions, there are a two (groups of) constructions that

are standard in (process-polymorphic) choreographies. Recall that a location can participate in a

case or localCase expression if it either knows the data being branched on or synchronization
messages are inserted telling it which way to go. In the second case, we need some way to represent

that location branching on the result of waiting for a synchronization message. We do this using

allow-choice expressions. Specifically, allow ℓ choice (L ⇒ 𝐸1) (R ⇒ 𝐸2) is the program that

waits for a synchronization message from ℓ . If it is L, then it continues as 𝐸1; otherwise, it continues

as 𝐸2. Note that if a synchronization message in a choreography is used outside of a branch, then we

statically know what message will be received. In this case, we allow an allow-choice expression

to only have one branch. Such a term receiving the wrong synchronization message becomes stuck.

Next, “AmI-In” expressions were introduced by 𝜆qc as a generalization of a similar “AmI” con-

struct found in PolyChor𝜆 [Graversen et al. 2024]. Intuitively, it represents a process’s knowledge of

its own name, and is used to implement process polymorphism. In particular, AmI∈ 𝜌 then 𝐸1 else 𝐸2
continues as 𝐸1 if the process running it is in 𝜌 , and as 𝐸2 otherwise.

Finally, we implement process forking using fork and exit expressions. The network-level fork
expression let (𝛼, 𝑥) B fork(𝐸1) in 𝐸2 spawns a new thread with the network code 𝐸1, called the

thread task. The name of this thread is then bound to 𝛼 while a local representation of this name is

bound to 𝑥 , similar to fork expressions in choreographies. Note that, unlike in a choreography, the

thread task is explicitly specified in the term, rather than being implicit from scoping. Dually, the

exit command halts execution, removing the location from the system.

5.2 Network Language Operational Semantics
The labeled transition system 𝐿 ⊲𝐸1

𝑙
=⇒ 𝐸2 gives the operational semantics of the network language,

where 𝐿 is the location executing the program and 𝑙 is the label on the step. Selected transition

labels and rules are shown in Figure 6.

Network Program 𝐸 F 𝑋 | ret(𝑒) | () | send 𝐸 to 𝜌 | recv from ℓ
| 𝐸1 ; 𝐸2 | fun 𝐹 (𝑋) B 𝐸 | 𝐸1 𝐸2 | tfun 𝐹 (𝛼) B 𝐸 | 𝐸 𝑡

| let 𝑥 B 𝐸1 in 𝐸2 | let 𝛼 ::𝜅 B 𝐸1 in 𝐸2
| fold 𝐸 | unfold 𝐸 | (𝐸1, 𝐸2) | fst 𝐸 | snd 𝐸
| inl 𝐸 | inr 𝐸 | case 𝐸 of (inl 𝑋 ⇒ 𝐸1) (inr 𝑌 ⇒ 𝐸2)
| localCase 𝐸 of (inl 𝑥 ⇒ 𝐸1) (inr 𝑦 ⇒ 𝐸2)
| allow ℓ choice (𝑑 ⇒ 𝐸) | allow ℓ choice (L ⇒ 𝐸1) (R ⇒ 𝐸2)
| choose 𝑑 for 𝜌 ; 𝐸 | AmI∈ 𝜌 then 𝐸1 else 𝐸2
| let (𝛼, 𝑥) B fork(𝐸1) in 𝐸2 | exit

Systems Π F 𝐿1 ⊲ 𝐸1 ∥ . . . ∥ 𝐿𝑛 ⊲ 𝐸𝑛

Fig. 5. Selected Network Program Syntax. Here 𝐿 ∈ L is a concrete location name.

Step in Tine: Forking Processes in Functional Choreographies 17

Transition Labels 𝑙 F 𝜄 | 𝑚⇝ 𝜌 | 𝐿.𝑚⇝ | fork(𝐿, 𝐸) | exit

[N-Ret]

𝑒1 −→ 𝑒2

𝐿 ⊲ ret(𝑒1)
𝜄

=⇒ ret(𝑒2)
[N-App]

𝑓 = fun 𝐹 (𝑋) B 𝐸 Val(𝑉)

𝐿 ⊲ 𝑓 𝑉
𝜄

=⇒ 𝐸 [𝐹 ↦→ 𝑓 , 𝑋 ↦→ 𝑉]

[N-Send]

Val(𝑣) fv(𝜌) = ∅

𝐿 ⊲ send ret(𝑣) to 𝜌
𝑣⇝𝜌\{𝐿}
==========⇒ ret(𝑣)

[N-Recv]

Val(𝑣) 𝐿′ ≠ 𝐿

𝐿 ⊲ recv from 𝐿′
𝐿′ .𝑣⇝
======⇒ ret(𝑣)

[N-Choose]

fv(𝜌) = ∅

𝐿 ⊲ choose 𝑑 for 𝜌 ; 𝐸
𝑑⇝𝜌\{𝐿}
==========⇒ 𝐸

[N-AllowL]

𝐿′ ≠ 𝐿

𝐿 ⊲

allow 𝐿′ choice
| L ⇒ 𝐸1
| R ⇒ 𝐸2⊥

𝐿′ .L⇝
======⇒ 𝐸1

[N-Fork]

𝐸′
1
= 𝐸1

[
𝛼 ↦→ 𝐿′, 𝑥 ↦→ ⌈𝐿′⌋

]
𝐸′
2
= 𝐸2

[
𝛼 ↦→ 𝐿′, 𝑥 ↦→ ⌈𝐿′⌋

] 𝐿′ globally fresh

fv(𝐸′
1
) = ∅

𝐿 ⊲ let (𝛼, 𝑥) B fork(𝐸1) in 𝐸2
fork(𝐿′,𝐸′

1
)

===========⇒ 𝐸′
2

[N-Exit]

𝐿 ⊲ exit
exit
=====⇒ ()

Fig. 6. Selected Network Language Operational Semantics

There are five forms of transition labels, corresponding to five different sorts of steps. The “iota”

label 𝜄 denotes an internal step, in which the network program or a local program reduces without

interaction between other locations.

The send 𝑚 ⇝ 𝜌 and receive 𝐿.𝑚 ⇝ labels account for message-passing steps, including

selection messages. As recipients cannot know the contents of a message in advance, the rules

N-Recv and N-AllowL (as well as the omitted N-AllowR rule) are non-deterministic, and allow

any value to arrive. The sender follows the N-Send and N-Choose rules, which ensure that the

contents of the transition label match the message and recipients specified by the program. The

system semantics defined below ensures the sender and recipient agree on the message, resolving

the recipient’s non-determinism.

The label fork(𝐿, 𝐸) indicates the spawning of a new thread and includes the name 𝐿 of the

thread and its thread task 𝐸. Note that the N-Fork rule, like the choreographic counterpart C-Fork,

ensures that the name 𝐿 is globally fresh. The dual label exit denotes when a thread is killed. While

the rule N-Exit has no special effect in this single-location semantics, the corresponding rule in

the system semantics below will entirely remove the thread from the system.

5.2.1 Network Systems. Since network programs represent the isolated execution of a single

program at a given location, while choreographies represent an entire concurrent system, we need

to lift the semantics of our network programs to model an entire system. Formally, we represent

a system Π = ∥𝐿∈Ω (𝐿 ⊲ 𝐸𝐿) as a map from each location 𝐿 in a finite set Ω ⊂ L to the network

program 𝐸𝐿 it is currently executing.

The operational semantics of systems are shown in Figure 7. These rules lift the single-location

semantics into a concurrent composition using four rules. The Internal rule allows one location

to independently take an internal step. Comm models message passing, and requires the sender and

all recipients to simultaneously step with the same message value. Fork spawns a new child thread

with a fresh name 𝐿′, allowing the parent to specify which code the child should run as long as all

18 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

System Label 𝑙𝑆 F 𝜄𝐿 | 𝐿1 .𝑚⇝ 𝜌 | 𝐿.fork(𝐿′, 𝐸) | kill(𝐿)

[Internal]

𝐿 ⊲ Π(𝐿) 𝜄
=⇒ 𝐸

Π
𝜄𝐿
=⇒𝑆 Π[𝐿 ↦→ 𝐸]

[Comm]

𝐿1 ∉ 𝜌 𝐿1 ⊲ Π(𝐿1)
𝑚⇝𝜌
======⇒ 𝐸1

∀𝐿 ∈ 𝜌.

(
𝐿 ⊲ Π(𝐿)

𝐿1 .𝑚⇝
=======⇒ 𝐸𝐿

)
Π

𝐿1 .𝑚⇝𝜌
========⇒𝑆 Π[𝐿1 ↦→ 𝐸1, 𝜌 ↦→ 𝐸𝐿]

[Fork]

𝐿′ globally fresh fv(𝐸1) = ∅

𝐿 ⊲ Π(𝐿)
fork(𝐿′,𝐸1)
===========⇒ 𝐸2

Π
𝐿.fork(𝐿′,𝐸1)
=============⇒𝑆 Π

[
𝐿′ ↦→ (𝐸1 ; exit), 𝐿 ↦→ 𝐸2

] [Kill]

𝐿 ⊲ Π(𝐿) exit
=====⇒ 𝐸

Π
kill(𝐿)
========⇒𝑆 Π \ 𝐿

Fig. 7. System Semantics and Labels

variables are resolved. Finally, Kill kills a thread by removing it from the system. Notationally,

Π[𝜌 ↦→ 𝐸𝐿] denotes the updated system mapping 𝐿 to 𝐸𝐿 if 𝐿 ∈ 𝜌 and Π(𝐿) otherwise, and Π \ 𝐿
denotes the system which is identical to Π, but removes 𝐿 from its domain.

6 Endpoint Projection
Having defined our target language, we can now formalize the endpoint projection (EPP) procedure

which translates a choreography into a system of concurrently executing locations.

6.1 Network Program Merging
To keep EPP simple and scalable, we would like it to be compositional. However, the case and
localCase expressions complicate this desire when non-branching locations participate in the

branches. The synchronization messages ℓ [𝑑] ⇝ 𝜌 inform these parties which branch to take, but

projecting the branches to a single program requires a merge operator. To understand this process,

consider the following choreography 𝐶 .

localCase A.𝑒 of (inl _ ⇒ A[L] ⇝ B ; B.1) else (inr _ ⇒ A[R] ⇝ B ; B.2)

allow A choice
| L ⇒ ret(1)

allow A choice
| R ⇒ ret(2)⊔ =

allow A choice
| L ⇒ ret(1)
| R ⇒ ret(2)

𝐶=

J·KB J·KB J·KB

If the case that the inl branch is executed, A will always send B the selection message L. Therefore
in the projection of this branch, B should wait to receive L and then return 1. If instead B receives R
in this branch, there are no instructions for what to do (and this can never happen), so the side

for R in the allow-choice is missing. Symmetrically if the inr branch is executed, B will only ever

receive R, so the R side of this allow-choice returns 2, while the L side is missing.

However, the overall localCase expression contains both branches, so B’s projection of this

expression must handle both cases. To combine both branches into a single program, we use

the merge operator 𝐸1 ⊔ 𝐸2: an idempotent binary partial function defined homomorphically on

matching network programs. Importantly, this function collects allow-choice branches that exist

on only one side, and merges those that exist in both. Our merge operator is identical to the one in

Step in Tine: Forking Processes in Functional Choreographies 19

(
allow ℓ choice
| L ⇒ 𝐸1

)
⊔
(
allow ℓ choice
| R ⇒ 𝐸2

)
≜

allow ℓ choice
| L ⇒ 𝐸1
| R ⇒ 𝐸2(

allow ℓ choice
| L ⇒ 𝐸1

)
⊔
(
allow ℓ choice
| L ⇒ 𝐸′

1

)
≜

allow ℓ choice
| L ⇒ 𝐸1 ⊔ 𝐸′

1(
allow ℓ choice
| L ⇒ 𝐸1

)
⊔ ©­«

allow ℓ choice
| L ⇒ 𝐸′

1

| R ⇒ 𝐸2

ª®¬ ≜
allow ℓ choice
| L ⇒ 𝐸1 ⊔ 𝐸′

1

| R ⇒ 𝐸2

Fig. 8. Selected Merge Operator Definitions

𝜆qc [Samuelson et al. 2025], accounting for the added fork and exit constructs. Figure 8 shows
the most insight-generating rules, with the full definition available in Appendix D.1.

6.2 Endpoint Projection Definition
With the merge operator in-hand, we can now define EPP. The projection of a choreography 𝐶 for

a location 𝐿, denoted J𝐶K𝐿 , is the network program that executes the actions involving 𝐿 in 𝐶 . EPP

is partial, both because the merge operator is partial, and because EPP ensures that variables are

only used in locations that have bound them. We denote the cases where a choreography fails to

project with the notation “undefined,” leaving failures due to the merge operator implicit.

EPP is defined in a structurally-recursive manner over the syntax of choreographies. The rules

are very similar to those of 𝜆qc, with the exception of functions and applications, where we must

account for the annotations which allow a subset of locations to participate in a function body. The

majority of rules simply convert choreographic syntax into the network language equivalent, but

in some cases—such as those shown in Figure 9—there is more complexity.

For the MLV 𝜌.𝑒 , only locations in 𝜌 should compute 𝑒 while others do nothing. For functions

whose bodies may involve locations from 𝜌 , only those locations in 𝜌 project to a function, while

others can simply project to a unit value (). The projection of function applications is similar, where

locations involved in the function body should apply the function, while other locations can simply

sequence the function and its argument, afterwards returning a unit value.

Type functions project to network type functions, but those that abstract over locations (and

location sets) must behave differently depending on whether or not the variable 𝛼 resolves to 𝐿.

Following Graversen et al. [2024] and Samuelson et al. [2025], we use AmI to branch on the identity

of the current process. In the then branch, when the locations match, we substitute 𝛼 with ℓ in

the body 𝐶 before projecting 𝐶 . In the else branch, we project the body directly. Because location

variables are equal only to themselves, this projection correctly treats 𝛼 ≠ 𝐿.

For the send 𝐶 {ℓ }⇝ 𝜌 , all locations first execute their projection of 𝐶 , then location ℓ multicasts

the output of 𝐶 to the locations in 𝜌 , who receive it. For the selection statement ℓ [𝑑] ⇝ 𝜌 ; 𝐶 ,

location ℓ sends the choice 𝑑 to all in 𝜌 , who condition on this choice using an allow-choice. As
explained in Section 6.1, because the choice is guaranteed, allow-choice only has that branch.

For localCase expressions, first all locations execute the program in the guard, then locations

in 𝜌 branch, while the merge operator combines the branches for others. Since non-branching

locations will not know the scrutinee, we also need to ensure that local variables 𝑥 and 𝑦 are not

free in the projection of the branches. The choreographic case expressions has identical rules.
For the new fork expression, the parent location ℓ projects to a network fork expression with

two pieces of code. The body is the projection of the fork’s body to ℓ , and the thread task is the

20 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

J𝜌.𝑒K𝐿 ≜

{
ret(𝑒) if 𝐿 ∈ 𝜌

() otherwise

q
𝐶1 $𝜌 𝐶2

y
𝐿
≜

{
J𝐶1K𝐿 J𝐶2K𝐿 if 𝐿 ∈ 𝜌

J𝐶1K𝐿 # J𝐶2K𝐿 # () otherwise

q
fun𝜌 𝐹 (𝑋) B 𝐶

y
𝐿
≜


fun 𝐹 (𝑋) B J𝐶K𝐿 if 𝐿 ∈ 𝜌

() if 𝐿 ∉ 𝜌 and J𝐶K𝐿 ≠ undefined

undefined otherwise

q
tfun𝜌 𝐹 (𝛼 ::∗loc) B 𝐶

y
𝐿
≜


tfun 𝐹 (𝛼) B AmI∈ {𝛼} then J𝐶 [𝛼 ↦→ 𝐿]K𝐿 else J𝐶K𝐿 if 𝐿 ∈ 𝜌

() if 𝐿 ∉ 𝜌 and J𝐶K𝐿, J𝐶 [𝛼 ↦→ 𝐿]K𝐿 ≠ undefined

undefined otherwise

J𝐶 {ℓ }⇝ 𝜌K𝐿 ≜


send J𝐶K𝐿 to 𝜌 if 𝐿 = ℓ

J𝐶K𝐿 # recv from ℓ if 𝐿 ≠ ℓ and 𝐿 ∈ 𝜌

J𝐶K𝐿 otherwise

Jℓ [𝑑] ⇝ 𝜌 ; 𝐶K𝐿 ≜


choose 𝑑 for 𝜌 ; J𝐶K𝐿 if 𝐿 = ℓ

allow ℓ choice (𝑑 ⇒ J𝐶K𝐿) if 𝐿 ≠ ℓ and 𝐿 ∈ 𝜌

J𝐶K𝐿 otherwise

u

v
localCase𝜌 𝐶 of
| inl 𝑥 ⇒ 𝐶1

| inr 𝑦 ⇒ 𝐶2

}

~

𝐿

≜


localCase J𝐶K𝐿 of (inl 𝑥 ⇒ J𝐶1K𝐿) (inr 𝑦 ⇒ J𝐶2K𝐿) if 𝐿 ∈ 𝜌

J𝐶K𝐿 # (J𝐶1K𝐿 ⊔ J𝐶2K𝐿) if 𝐿 ∉ 𝜌 and 𝑥 ∉ fv(J𝐶1K𝐿) and 𝑦 ∉ fv(J𝐶2K𝐿)
undefined otherwise

Jlet (𝛼, 𝑥) B ℓ .fork() in 𝐶K𝐿 ≜


let (𝛼, 𝑥) B fork(J𝐶K𝛼) in J𝐶K𝐿 if 𝐿 = ℓ

J𝐶K𝐿 if 𝐿 ≠ ℓ and 𝛼, 𝑥 ∉ fv(J𝐶K𝐿)
undefined otherwise

Jkill 𝐿′ after 𝐶K𝐿 ≜

{
J𝐶K𝐿 # exit if 𝐿 = 𝐿′

J𝐶K𝐿 otherwise

Fig. 9. Selected EPP Definitions

projection of the body to the child thread 𝛼 . That is, the parent projects the body twice: once for its

own role, and a second time for the role of the spawned thread. Locations not equal to the parent

can simply project to the body of the fork expression, ensuring that neither of the two variables
bound in the body are free. The projection of the kill-after expression is simple: everyone performs

their role to execute the body, and then the thread associated with the kill-after expression must

exit, while others continue on.
Instead of directly using the sequencing primitive 𝐸1 ; 𝐸2, note that EPP must use the collapsing

sequencing function 𝐸1 # 𝐸2 introduced by Samuelson et al. [2025], which is defined as

𝐸1 # 𝐸2 =

{
𝐸2 if Val(𝐸1)
𝐸1 ; 𝐸2 otherwise.

Step in Tine: Forking Processes in Functional Choreographies 21

It may seem that this function is only an optimization, but it is actually required to ensure projected

programs can simulate the out-of-order choreographic steps mentioned in Section 4.2. For instance,

these steps allow the program𝐶 = let A.𝑥 B A.𝑒 in B.(1 + 2) to reduce B’s local computation to B.3.
If EPP used the primitive ; rather than #, then 𝐶 would project to () ; ret(1 + 2) for B, preventing
this step. In reality we project 𝐶 to ret(1 + 2) so the step can immediately occur.

Combining this collapsing sequencing operator with the involved location tracking necessary to

maintain deadlock freedom also allows us to project entire choreographies to () for uninvolved
parties. We therefore, essentially for free, achieve most of the goals of modular endpoint projec-

tion [Cruz-Filipe et al. 2023]—that J𝐶KA should not depend on parts of 𝐶 that do not involve A.

Projecting Functions. There are two important notes to be made about the projection of functions

and type functions. First, if the latent-participants annotation 𝜌 includes ⊤ then an unresolved

location needs to participate. Since it could resolve to any running location, everyone must perform

the computation. We thus consider 𝐿 ∈ ⊤ for all 𝐿.

Second, if 𝐿 ∉ 𝜌 , the function projects to () because 𝐿 will not participate in the body, but we

still require J𝐶K𝐿 to be defined. This requirement may seem unnecessary; if 𝐿 does not participate

in the body, one might hope that the body would always project, preferably to (). Unfortunately
this is not so, which can cause otherwise-projectable choreographies to step to non-projectable

ones. To see why, consider the type function

𝐶 = tfun{A}∪⊤𝐺 (ℓ ::∗loc) B ifA 𝑋 then ℓ .4 else ℓ .(3 ∗ 2),

which has type ∀ℓ ::∗loc [A, ℓ] . int@ℓ in context 𝑋 :bool@A. While 𝐶 projects for A, it does not
project for any other location—for instance, B. The then branch of the resulting AmI would need to

merge ret(4) ⊔ ret(3 ∗ 2), which is undefined. Wrapping𝐶 in a function and applying it gives the

well-typed choreography (funA 𝐹 (𝑋) B 𝐶 $A A) $A A.true involving only A. If we did not check

that B could project the body, it would project for everyone, but after a 𝛽-reduction, it no longer

projects for B.

(funA 𝐹 (𝑋) B 𝐶 $A A) $A A.true 𝐶 [𝑋 ↦→ A.true] $A A

() # () # () = () undefined

𝑐

J·KB J·KB

B’s projection of the type application is J𝐶 [𝑋 ↦→ A.true]KB # (), as, in general, B may participate

in 𝐶 even without participating in the final application. However, ⊤ appears in the participant

annotation of the tfun, forcing everyone, including B, to project its body, which is not possible. By

(unsuccessfully) checking that J𝐶KB is defined initially, we reject the program before the step.

Projecting Systems and Active Threads. While the above EPP definition produces a network

program for a single location, choreographies specify the behavior of many participants. Matching

the definition in Section 5 of a system of network programs running concurrently, we aim to lift

EPP point-wise to a finite set of locations Ω ⊂ L. For locations with access to the full choreography,

this approach works well. For spawned locations, however, it fails to recognize that they only have

code for their thread task, not the whole choreography. Consider the following scenario.

22 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti((
let 𝛼 B A.fork()
in 𝛼.(1 + 1) ⇝ A

)
,A.3

)
A

(kill B after B.(1 + 1) ⇝ A,A.3)A

A ⊲
©­«©­«
let 𝛼 B

fork(send ret(1 + 1) to A)
in recv from 𝛼

ª®¬ , ret(3)ª®¬ A ⊲ (recv from B, ret(3))
B ⊲ send ret(1 + 1) to A ; exit

𝐶1 = = 𝐶2𝑐

J·K{A} J·K{A,B}⧸

𝑆

When A spawns thread B in the system semantics on the bottom, B is only aware of the thread

task send ret(1 + 1) to A—the projection of the fork expression’s body to 𝛼 . However, after the

corresponding choreographic step on the top, projecting 𝐶2 to B must sequence the left and right

sides of the pair followed by a unit value, producing J𝐶2KB = (send ret(1 + 1) to A ; exit) ; () ; ().
This discrepancy breaks the correspondence between the choreography and the system.

To account for this, we modify the EPP function to only extract the body of (necessarily unique)

kill-after expressions when projecting the location that will be killed. The modified definition,

denoted J𝐶K⋔
𝐿
is defined as follows.

J𝐶K⋔𝐿 =

{
J𝐶′K𝐿 # exit if 𝐶 contains a unique subterm kill 𝐿 after 𝐶′

J𝐶K𝐿 otherwise.

In the example above, this modified EPP will maintain the connection between the choreography

and its projection by correctly projecting J𝐶2K⋔B = send ret(1 + 1) to A ; exit.
To project a full system, we can now lift projection point-wise to each running location using

this modified EPP. That is, J𝐶K⋔Ω = ∥𝐿∈Ω (𝐿 ⊲ J𝐶K⋔
𝐿
) for a finite Ω ⊂ L. Note that J𝐶K⋔

𝐿
must be

defined for all 𝐿 ∈ Ω for J𝐶K⋔Ω to be defined.

Example 5 (Fork Bomb Projection). Recall the fork bomb program from in Example 4. The

forkBomb type function projects to A (or any other location) with the network program

JforkBombKA = tfun 𝐹 (ℓ) B AmI∈ {ℓ} then let 𝛼 B fork(𝐹 𝛼)
𝛽 B fork(𝐹 𝛽) in ()

else ()

It is okay that 𝐹 𝛼 and 𝐹 𝛽 are the thread tasks for 𝛼 and 𝛽 , respectively, even though 𝐹 is free in

those expressions; before the threads are spawned, 𝐹 will be replaced with its definition once the

originating location applies the outer type function. Specifically, JforkBomb $A AKA reduces to the

below program, where it is now obvious that 𝛼 and 𝛽 will be given the appropriate code to run.

let 𝛼 B fork((tfun 𝐹 (ℓ) B AmI∈ {ℓ} . . .) 𝛼)
𝛽 B fork((tfun 𝐹 (ℓ) B AmI∈ {ℓ} . . .) 𝛽) in ()

6.3 Soundness, Completeness, and Deadlock Freedom
Note that we provide two separate semantics for 𝜆⋔: the top-level choreographic semantics, and

the semantics given by EPP. We now examine the relationship between these semantics and use

that relationship to provide a deadlock-freedom-by-design guarantee for compiled systems.

Simulation Relation. To relate the two semantics, we must decide which systems are related to a

given choreography.While onemay think a choreography𝐶 should only relate to its projection J𝐶K⋔Ω ,
this property is not preserved by reductions. Specifically during branching steps, the branch not

taken is discarded in the choreography, but is retained in projected programs waiting on a selection

Step in Tine: Forking Processes in Functional Choreographies 23

message. Additionally, EPP’s use of the collapsing sequencing function 𝐸1 # 𝐸2 means programs

that resolve to a value after a substitution may be removed from the projected program.

To account for these mismatches we follow traditional choreographic style—specifically, the style

of Samuelson et al. [2025]—and define a relation 𝐸1 ⪯ 𝐸2 which relates two network programs if 𝐸1
may have discarded unneeded code—choices or sequenced values—that remain in 𝐸2. Formally, it is

the smallest structurally compatible partial order on network programs that admits the following

three rules.

𝐸1 ⪯ 𝐸′
1

allow ℓ choice
| L ⇒ 𝐸1

⪯
allow ℓ choice
| L ⇒ 𝐸′

1

| R ⇒ 𝐸′
2

𝐸2 ⪯ 𝐸′
2

allow ℓ choice
| R ⇒ 𝐸2

⪯
allow ℓ choice
| L ⇒ 𝐸′

1

| R ⇒ 𝐸′
2

𝐸1 ⪯ 𝐸2 Val(𝑉)
𝐸1 ⪯ 𝑉 ; 𝐸2

To extend this relation to entire systems we can simply lift it point-wise:

Π1 ⪯ Π2 ≜ ∀𝐿 ∈ Ω.Π1 (𝐿) ⪯ Π2 (𝐿).
This relaxed correspondence is sufficient to yield deadlock freedom of compiled systems. To this

end, we prove that the projected semantics simulate the choreographic semantics.

Theorem 3 (Completeness). If Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 , every location literal in 𝐶 is in Ω, and 𝐶 contains no
kill-after expressions, then whenever ⟨𝐶,Ω⟩ =⇒∗

𝑐 ⟨𝐶′,Ω′⟩, there is some Π′ such that J𝐶K⋔Ω =⇒∗
𝑆
Π′

and J𝐶′K⋔Ω′ ⪯ Π′.

Note that we have labeled this simulation theorem “completeness.” One might expect a traditional

accompanying soundness theorem, stating that the choreographic semantics also simulate the

projected program. However, this is not true for nonterminating choreographies. While our out-

of-order steps mimic the concurrent execution of a projected system, they fail to fully capture all

possible execution paths in the presence of non-terminating computations. For example, consider

the choreography (𝜆𝑋 . 𝜆𝑌 . 𝑌 {B}⇝ C) ${A,B,C} A.loop ${B,C} B.5. The only possible choreographic

step is to run the infinite loop at A. In the projected system, however, B will eventually send 5 to C.
𝜆qc solves this problem by (1) requiring all locations to synchronize at every function boundary—

forcing B and C to wait for A to finish the infinite loop before proceeding—and (2) limiting its

soundness result to apply only to choreographies that do not contain infinite loops in local programs.

Such an approach does not work here, since 𝜆⋔ allows a selected subset of locations to participate

in a 𝛽-reduction, meaning that even a choreographic function can loop for A while allowing B
and C to proceed. This problem with endpoint projection has existed since the advent of functional

choreographic programming [Cruz-Filipe et al. 2023; Hirsch and Garg 2022]. See Section 7 for more

discussion.

Thus, our operational semantics faces a fork in the road: either require every relevant location

to synchronize whenever an infinite loop might occur—negating many benefits of parallelism and

possibly requiring locations who do not even know each other exist to synchronize—or give up

soundness for non-terminating programs. We choose the latter option, and prove our soundness

result, presented below, only for terminating programs.

We say a system Π is final if every location in Π maps to a value.

Theorem 4 (Soundness). If ⊢ 𝐶 : 𝜏 ▷ 𝜌 , every location literal in 𝐶 is in Ω, 𝐶 contains no kill-after
expressions, and J𝐶K⋔Ω =⇒∗

𝑆
Π where Π is final, then ⟨𝐶,Ω⟩ =⇒∗

𝑐 ⟨𝑉 ,Ω′⟩ where J𝑉 K⋔Ω′ ⪯ Π.

Although the relationship between our choreographic semantics and projected semantics is

weaker than in other systems, they are powerful enough to prove deadlock freedom. Note that

deadlock freedom holds even for nonterminating choreographies. Specifically, by combining type

24 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

soundness (Theorem 2) and (a strengthening of) EPP completeness (Theorem 3), we prove that

either the system terminates in a value for all locations or it can execute forever.

Theorem 5 (Deadlock Freedom). If ⊢ 𝐶 : 𝜏 ▷ 𝜌 , every location literal in 𝐶 is in Ω, and 𝐶 contains
no kill-after expressions, then whenever J𝐶K⋔Ω =⇒∗

𝑐 Π, either Π is final or it can step.

7 Related Work
While 𝜆⋔ is the first functional choreographic language with process forking, it builds on a rich

literature which we review here. First, we discuss the development of functional choreographic

programming, including process polymorphism. We then compare the approach for process spawn-

ing in 𝜆⋔ to previous (lower-order) choreographic languages. Finally, we look at process spawning

in multiparty session types, the main alternative to choreographic programming.

7.1 Functional Choreographic Programming
Since its inception [Carbone and Montesi 2013; Montesi 2013], the choreographic-programming par-

adigm has advanced considerably. Early work expanded on core features such as local computations,

message passing, and recursion [see e.g., Carbone et al. 2014; Cruz-Filipe and Montesi 2017a,b;

Cruz-Filipe et al. 2018; Lanese et al. 2013], but only allowed imperative and procedural computation.

Pirouette [Hirsch and Garg 2022] and Chor𝜆 [Cruz-Filipe et al. 2022]—developed independently—

were the first functional choreographic languages. While Chor𝜆 unified the language of chore-

ographies and local computations, Pirouette (like 𝜆⋔) allowed any language to be used for local

computations and messages. Bates et al. [2025] then extended Chor𝜆 with multiply-located values,

providing an alternative to synchronization messages.

Process polymorphism was originally developed by Graversen et al. [2024] in an extension

to Chor𝜆 called PolyChor𝜆. This additionally enabled delegation, but required integrating the

type-level programming features of System F𝜔 and seemed to preclude recursive types. Later,

Samuelson et al. [2025] developed 𝜆qc—the language that 𝜆⋔ primarily extends—which showed

that this complication is the result of Chor𝜆’s choice to combine the language of choreographies

and local computations. Moreover, it provided process-set polymorphism and first-class location

names for the first time. This last feature was critical for the development of 𝜆⋔.

Defining a top-level semantics for functional choreographies remains a significant challenge.

While the original Chor𝜆 work simply punted on correctness of projection, Cruz-Filipe et al. [2023]

later provided an out-of-order semantics for Chor𝜆 where EPP was both sound and complete. How-

ever, this semantics relied on rewriting rules similar to commuting conversions, which are quite

fragile, failing in the presence of language features as simple as named recursive functions [Samuel-

son et al. 2025]. To provide soundness and completeness guarantees for projection, Pirouette

required global synchronization at every function boundary, which 𝜆qc extended to its addition of

choreographic data types, including sums, pairs, and type abstractions.

Constant global synchronization is unsatisfying at the best of times, but when process forking

is available, it is anathema. Thus, 𝜆⋔ does not require global synchronization. This flexibility

comes at a cost: not every evaluation path available to the projected program is available at the

choreographic level. However, completeness and confluence of the network semantics allow for

the deadlock-freedom guarantee we provide. Moreover, we do get a form of a soundness guarantee

for terminating programs. This is similar to 𝜆qc, which only provides a soundness guarantee when

every local program terminates.

Step in Tine: Forking Processes in Functional Choreographies 25

7.2 Process Spawning in Choreographies
Two papers of which we are aware have previously considered process spawning in lower-order

choreographies. The first [Carbone and Montesi 2013] was an imperative language, and therefore

lacked most features offered by 𝜆⋔. Importantly, the lack of functions and process polymorphism

restricts spawned processes to only be used in a local scope, and prevented even simple examples

such as the list-summation example of Section 1.

Cruz-Filipe and Montesi [2016a] provided a highly tailored calculus to implement parallel divide-

and-conquer algorithms. It was able to provide processes like parallel merge sort, which the earlier

work of Carbone and Montesi [2013] could not, but the language lacks a majority of the features

found in 𝜆⋔. For instance, only top-level functions may be process polymorphic, and the language

entirely lacks higher-orderedness, avoiding many of the challenges addressed by 𝜆⋔. In addition,

processes may only store a single value and must update it through a predefined set of local

procedures, such as splitting and merging lists, that must be specially designed for each task.

7.3 Process Spawning in (Multiparty) Session Types
Concurrent programming has always had process spawning as a major feature [Milner 1980; Milner

et al. 1992], and thus it has always been prevalent in session types [Caires and Pfenning 2010; Gay

and Vasconcelos 2010; Honda 1993; Honda et al. 1998; Wadler 2012]. Traditionally, session types

either do not guarantee deadlock freedom [Honda 1993; Honda et al. 1998] or require that processes

only communicate in an acyclic topology [Caires and Pfenning 2010; Wadler 2012]. Multiparty
session types address this deficit, but only for a particular set of communicating processes. In order

to allow for process spawning, they must create a new session which includes the new process,

and then reason about communication orders between sessions. While this leads to complicated

reasoning principles, it can be done [Bettini et al. 2008; Coppo et al. 2013, 2016; Jacobs et al. 2022].

Recently, Le Brun et al. [2025] considered multiparty session types with replication, which allows

new processes to spawn in the same session. However, the processes that can be spawned via

replication are limited; replication is intended to represent client-server communication, rather

than allowing more general techniques like parallel divide-and-conquer.

8 Conclusion
This work introduced 𝜆⋔, the first functional choreographic language to support process forking.

𝜆⋔ retains support for key features of 𝜆qc—its predecessor—including higher-order programming,

process polymorphism, multiply-located computations, and first-class process names. While this

combination of features is powerful, it can introduce complex bugs, such as killing a thread and then

attempting to execute a function that closes over its name. 𝜆⋔ prevents these bugs by integrating

participant tracking into its type system.

𝜆⋔ can model complex multi-party computations where arbitrarily many threads are spawned

and killed, including a fork bomb. Despite this, we retain the classic choreographic result that the

projection of every well-typed choreography is deadlock-free.

As parallel programming becomes more prevalent, the need for languages that can express

complex concurrent computations is growing. 𝜆⋔ addresses this need by supporting process forking

in tandemwith functional-programming features such as higher-order functions and polymorphism.

It additionally provides the advantages of choreographic languages, such deadlock freedom by

design. Our language thus provides a powerful tool for developers to write parallel programs—such

as parallel divide-and-conquer—that are both expressive and safe, allowing them to focus on the

logic of their applications rather than the intricacies of concurrency.

26 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

Acknowledgments
We would like to thank Andrey Yao and Rahul Krishnan for help editing. Support for this research

was provided by the University of Wisconsin–Madison Office of the Vice Chancellor for Research

with funding from the Wisconsin Alumni Research Foundation.

References
Mako Bates, Shun Kashiwa, Syed Jafri, Gan Shen, Lindsey Kuper, and Joseph P. Near. 2025. Efficient, Portable, Census-

Polymorphic Choreographic Programming. Proc. ACM Program. Lang. 9, PLDI, Article 193 (June 2025), 24 pages.

https://doi.org/10.1145/3729296

Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida.

2008. Global Progress in Dynamically Interleaved Multiparty Sessions. In Concurrency Theory (CONCUR). https:

//doi.org/10.1007/978-3-540-85361-9_33

Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Propositions. In Concurrency Theory (CONCUR).
https://doi.org/10.1007/978-3-642-15375-4_16

Marco Carbone and Fabrizio Montesi. 2013. Deadlock-Freedom-by-Design: Multiparty Asynchronous Global Programming.

In Principles of Programming Languages (POPL). https://doi.org/10.1145/2429069.2429101

Marco Carbone, Fabrizio Montesi, and Carsten Schürmann. 2014. Choreographies, Logically. In Concurrency Theory
(CONCUR). https://doi.org/10.1007/978-3-662-44584-6_5

Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. 2013. Inference of Global Progress

Properties for Dynamically Interleaved Multiparty Sessions. In Coordination Models and Languages (COORDINATION).
https://doi.org/10.1007/978-3-642-38493-6_4

Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. 2016. Global Progress for Dynamically

Interleaved Multiparty Sessions. Mathematical Structures in Computer Science (MSCS) 26, 2 (2016), 238–302. https:

//doi.org/10.1017/S0960129514000188

Luís Cruz-Filipe, Eva Graversen, Lovro Lugović, Fabrizio Montesi, and Marco Peressotti. 2022. Functional Choreographic

Programming. In Theoretical Aspects of Computing – ICTAC 2022: 19th International Colloquium, Tbilisi, Georgia, September
27–29, 2022, Proceedings (Tbilisi, Georgia). Springer-Verlag, Berlin, Heidelberg, 212–237. https://doi.org/10.1007/978-3-

031-17715-6_15

Luís Cruz-Filipe, Eva Graversen, Lovro Lugović, Fabrizio Montesi, and Marco Peressotti. 2023. Modular Compilation for

Higher-Order Functional Choreographies. In European Conference on Object-Oriented Programming (ECOOP). https:

//doi.org/10.4230/LIPIcs.ECOOP.2023.7

Luís Cruz-Filipe and Fabrizio Montesi. 2016a. Choreographies, Divided and Conquered. (02 2016). https://doi.org/10.48550/

arXiv.1602.03729

Luís Cruz-Filipe and Fabrizio Montesi. 2016b. Choreographies in Practice. In Formal Techniques for Distributed Objects,
Components, and Systems (FORTE). https://doi.org/10.1007/978-3-319-39570-8_8

Luís Cruz-Filipe and Fabrizio Montesi. 2017a. A CoreModel for Choreographic Programming. In Formal Aspects of Component
Software (FACS). https://doi.org/10.1007/978-3-319-57666-4_3

Luís Cruz-Filipe and Fabrizio Montesi. 2017b. Procedural Choreographic Programming. In Formal Techniques for Distributed
Objects, Components, and Systems (FORTE). https://doi.org/10.1007/978-3-319-60225-7_7

Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peresotti. 2018. Communications in Choreographies, Revisited. In Symposium
on Applied Computing (SAC). https://doi.org/10.1145/3167132.3167267

Simon J. Gay and Vasco T. Vasconcelos. 2010. Linear Type Theory for Asynchronous Session Types. Journal of Functional
Programming (JFP) 20, 1 (2010). https://doi.org/10.1017/S0956796809990268

Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. 2023. Choral: Object-Oriented Choreographic Programming.

Transactions on Programming Languages and Systems (TOPLAS) (nov 2023). https://doi.org/10.1145/3632398

Eva Graversen, Andrew K. Hirsch, and Fabrizio Montesi. 2024. Alice or Bob?: Process Polymorphism in Choreographies.

Journal of Functional Programming (JFP) 34 (2024), e1. https://doi.org/10.1017/S0956796823000114

Andrew K. Hirsch and Deepak Garg. 2022. Pirouette: Higher-Order Typed Functional Choreographies. In Principles of
Programming Languages (POPL). https://doi.org/10.1145/3498684

Kohei Honda. 1993. Types for Dyadic Interaction. In Concurrency Theory (CONCUR). https://doi.org/10.1007/3-540-57208-

2_35

Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. 1998. Language Primitives and Type Discipline for

Structured Communication-Based Programming. In European Symposium on Programming (ESOP). https://doi.org/10.

1007/BFb0053567

Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. 2022. Multiparty GV: FunctionalMultiparty Session Typeswith Certified

Deadlock Freedom. In International Conference on Functional Programming (ICFP). https://doi.org/10.1145/3547638

https://doi.org/10.1145/3729296
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1007/978-3-662-44584-6_5
https://doi.org/10.1007/978-3-642-38493-6_4
https://doi.org/10.1017/S0960129514000188
https://doi.org/10.1017/S0960129514000188
https://doi.org/10.1007/978-3-031-17715-6_15
https://doi.org/10.1007/978-3-031-17715-6_15
https://doi.org/10.4230/LIPIcs.ECOOP.2023.7
https://doi.org/10.4230/LIPIcs.ECOOP.2023.7
https://doi.org/10.48550/arXiv.1602.03729
https://doi.org/10.48550/arXiv.1602.03729
https://doi.org/10.1007/978-3-319-39570-8_8
https://doi.org/10.1007/978-3-319-57666-4_3
https://doi.org/10.1007/978-3-319-60225-7_7
https://doi.org/10.1145/3167132.3167267
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1145/3632398
https://doi.org/10.1017/S0956796823000114
https://doi.org/10.1145/3498684
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/3547638

Step in Tine: Forking Processes in Functional Choreographies 27

Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro. 2013. Amending Choreographies. In Workshop on Automated
Specification and Verification of Web Systems (WWV). https://doi.org/10.4204/EPTCS.123.5

Matthew Alan Le Brun, Simon Fowler, and Ornela Dardha. 2025. Multiparty Session Types with a Bang! https://doi.org/10.

1007/978-3-031-91121-7_6

Robin Milner. 1980. A calculus of communicating systems. Lecture Notes in Computer Science, Vol. 92. Springer Berlin

Heidelberg. https://doi.org/10.1007/3-540-10235-3

Robin Milner, Joachim Parrow, and David Walker. 1992. A Calculus of Mobile Processes, Part I. Information and Computation
100, 1 (1992). https://doi.org/10.1016/0890-5401(92)90008-4

Fabrizio Montesi. 2013. Choreographic Programming. Ph. D. Dissertation. IT University of Copenhagen. https://www.

fabriziomontesi.com/files/choreographic_programming.pdf

Fabrizio Montesi. 2023. Introduction to Choreographies. Cambridge University Press. https://doi.org/10.1017/9781108981491

Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti. 2025. Choreographic Quick Changes: First-Class Location (Set)

Polymorphism. In Object-Oriented Programming, Systems, Languages & Applications (OOPSLA). https://arxiv.org/abs/

2506.10913 To Appear, OOPSLA 2025.

Ian Sweet, David Darais, David Heath, Ryan Estes, William Harris, and Michael Hicks. 2023. Symphony: Expressive Secure

Multiparty Computation with Coordination. In The Art, Science, and Engineering of Programming (〈Programming〉).
Philip Wadler. 2012. Propositions as Sessions. In International Conference on Functional Programming (ICFP). https:

//doi.org/10.1145/2364527.2364568

Appendices
A Choreography Operational Semantics
A.1 Choreography Values

Choreography Values 𝑉 F 𝜌.𝑣 | fun𝜌 𝐹 (𝑋) B 𝐶 | tfun𝜌 𝐹 (𝛼) B 𝐶

| (𝑉1,𝑉2)𝜌 | inl𝜌 𝑉 | inr𝜌 𝑉 | fold𝜌 𝑉

A.2 Redices and Evaluation Contexts

Messages 𝑚 F 𝑣 | 𝑑
Redices 𝑅 F 𝜌.(𝑒1 → 𝑒2) | Fun(𝑅) | Arg(𝑅) | App𝜌 | TApp𝜌 | UnfoldFold𝜌

| PairL(𝑅) | PairR(𝑅) | FstPair𝜌 | SndPair𝜌 | CaseInl𝜌 | CaseInr𝜌
| let 𝜌 B 𝑣 | let 𝜌 B 𝑡 | 𝐿.𝑚⇝ 𝜌 | 𝐿1.fork(𝐿2,𝐶) | kill(𝐿)

Evaluation Contexts 𝜂 F [·] 𝐶 | 𝑉 [·] | [·] 𝑡 | fold𝜌 [·] | unfold𝜌 [·]
| ([·],𝐶)𝜌 | (𝑉 , [·])𝜌 | fst𝜌 [·] | snd𝜌 [·]
| inl𝜌 [·] | inr𝜌 [·] | case𝜌 [·] of (inl 𝑋 ⇒ 𝐶1) (inr 𝑌 ⇒ 𝐶2)
| localCase𝜌 [·] of (inl 𝑥 ⇒ 𝐶1) (inr 𝑦 ⇒ 𝐶2)
| let 𝜌.𝑥 :𝑡𝑒 B [·] in 𝐶2 | let 𝜌.𝛼 ::𝜅 B [·] in 𝐶2

| [·] {ℓ }⇝ 𝜌 | kill 𝐿 after [·]

A.3 Projection of a Redex
For a redex 𝑅, its projection J𝑅K𝐿 to 𝐿 is a list of network program labels. We denote the empty list

as 𝜖 .

J𝜌.(𝑒1 → 𝑒2)K𝐿 =

{
[𝜄] if 𝐿 ∈ 𝜌

𝜖 otherwise

JFun(𝑅)K𝐿 = J𝑅K𝐿 JArg(𝑅)K𝐿 = J𝑅K𝐿

r
App𝜌

z

𝐿
=

{
[𝜄] if 𝐿 ∈ 𝜌

𝜖 otherwise

r
TApp𝜌

z

𝐿
=

{
[𝜄 , 𝜄] if 𝐿 ∈ 𝜌

𝜖 otherwise

https://doi.org/10.4204/EPTCS.123.5
https://doi.org/10.1007/978-3-031-91121-7_6
https://doi.org/10.1007/978-3-031-91121-7_6
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0890-5401(92)90008-4
https://www.fabriziomontesi.com/files/choreographic_programming.pdf
https://www.fabriziomontesi.com/files/choreographic_programming.pdf
https://doi.org/10.1017/9781108981491
https://arxiv.org/abs/2506.10913
https://arxiv.org/abs/2506.10913
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1145/2364527.2364568

28 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

q
UnfoldFold𝜌

y
𝐿
=

{
[𝜄] if 𝐿 ∈ 𝜌

𝜖 otherwise

JPairL(𝑅)K𝐿 = J𝑅K𝐿 JPairR(𝑅)K𝐿 = J𝑅K𝐿

q
FstPair𝜌

y
𝐿
=

{
[𝜄] if 𝐿 ∈ 𝜌

𝜖 otherwise

q
SndPair𝜌

y
𝐿
=

{
[𝜄] if 𝐿 ∈ 𝜌

𝜖 otherwise

q
CaseInl𝜌

y
𝐿
=

{
[𝜄] if 𝐿 ∈ 𝜌

𝜖 otherwise

q
CaseInr𝜌

y
𝐿
=

{
[𝜄] if 𝐿 ∈ 𝜌

𝜖 otherwise

Jlet 𝜌 B 𝑣K𝐿 =

{
[𝜄] if 𝐿 ∈ 𝜌

𝜖 otherwise

Jlet 𝜌 B 𝑡K𝐿 =

{
[𝜄 , 𝜄] if 𝐿 ∈ 𝜌

𝜖 otherwise

J𝐿1 .𝑚⇝ 𝜌2K𝐿 =


[𝑚⇝ 𝜌] if 𝐿 = 𝐿1

[𝐿1 .𝑚⇝] if 𝐿 ≠ 𝐿1 and 𝐿 ∈ 𝜌2

𝜖 otherwise

J𝐿1 .fork(𝐿2,𝐶)K𝐿 =

{
[fork(𝐿2, 𝐸)] if 𝐿 = 𝐿1 and J𝐶K𝐿2 = 𝐸

𝜖 otherwise

Jkill(𝐿1)K𝐿 =

{
[exit] if 𝐿 = 𝐿1

𝜖 otherwise

Similarly the projection J𝑅KL of a redex 𝑅 to all locations is a list of system labels. We denote

the concatenation of two lists 𝑥 and 𝑦 as 𝑥 ++ 𝑦.

J𝜌.(𝑒1 → 𝑒2)KL = [𝜄𝐿 | 𝐿 ∈ 𝜌] JFun(𝑅)KL = J𝑅KL JArg(𝑅)KL = J𝑅KL
r
App𝜌

z

L
= [𝜄𝐿 | 𝐿 ∈ 𝜌]

r
TApp𝜌

z

L
= [𝜄𝐿 | 𝐿 ∈ 𝜌] ++ [𝜄𝐿 | 𝐿 ∈ 𝜌]

q
UnfoldFold𝜌

y
L = [𝜄𝐿 | 𝐿 ∈ 𝜌] JPairL(𝑅)KL = J𝑅KL JPairR(𝑅)KL = J𝑅KL

q
FstPair𝜌

y
L = [𝜄𝐿 | 𝐿 ∈ 𝜌]

q
SndPair𝜌

y
L = [𝜄𝐿 | 𝐿 ∈ 𝜌]

q
CaseInl𝜌

y
L = [𝜄𝐿 | 𝐿 ∈ 𝜌]

q
CaseInr𝜌

y
L = [𝜄𝐿 | 𝐿 ∈ 𝜌] Jlet 𝜌 B 𝑣KL = [𝜄𝐿 | 𝐿 ∈ 𝜌]

Jlet 𝜌 B 𝑡KL = [𝜄𝐿 | 𝐿 ∈ 𝜌] ++ [𝜄𝐿 | 𝐿 ∈ 𝜌] J𝐿1 .𝑚⇝ 𝜌2KL = [𝐿1.𝑚⇝ 𝜌2]

J𝐿1.fork(𝐿2,𝐶)KL =

{
[𝐿1.fork(𝐿2, 𝐸)] if J𝐶K𝐿2 = 𝐸

𝜖 otherwise

Jkill(𝐿1)KL = [kill(𝐿1)]

A.4 Redex Blocked Locations
rloc(𝜌.(𝑒1 → 𝑒2)) = 𝜌 rloc(Fun(𝑅)) = rloc(𝑅) rloc(Arg(𝑅)) = rloc(𝑅)

rloc(App𝜌) = 𝜌 rloc(TApp𝜌) = 𝜌 rloc(UnfoldFold𝜌) = 𝜌 rloc(PairL(𝑅)) = rloc(𝑅)

Step in Tine: Forking Processes in Functional Choreographies 29

rloc(PairR(𝑅)) = rloc(𝑅) rloc(FstPair𝜌) = 𝜌 rloc(SndPair𝜌) = 𝜌 rloc(CaseInl𝜌) = 𝜌

rloc(CaseInr𝜌) = 𝜌 rloc(let 𝜌 B 𝑣) = 𝜌 rloc(let 𝜌 B 𝑡) = 𝜌

rloc(𝐿.𝑚⇝ 𝜌) = {𝐿} ∪ 𝜌 rloc(𝐿1.fork(𝐿2,𝐶)) = {𝐿1} rloc(kill(𝐿)) = {𝐿}

A.5 Choreography Blocked Locations

cloc(𝑋) = ∅ cloc(𝜌.𝑒) = 𝜌 cloc(fun𝜌 𝐹 (𝑋) B 𝐶) = ∅

cloc(𝐶1 $𝜌 𝐶2) = cloc(𝐶1) ∪ cloc(𝐶2) ∪ 𝜌 cloc(tfun𝜌 𝐹 (𝛼) B 𝐶) = ∅

cloc(𝐶 $𝜌 𝑡) = cloc(𝐶) ∪ 𝜌 cloc(fold𝜌 𝐶) = cloc(𝐶) cloc(unfold𝜌 𝐶) = cloc(𝐶) ∪ 𝜌

cloc((𝐶1,𝐶2)𝜌) = cloc(𝐶1) ∪ cloc(𝐶2) cloc(fst𝜌 𝐶) = cloc(𝐶) ∪ 𝜌

cloc(snd𝜌 𝐶) = cloc(𝐶) ∪ 𝜌 cloc(inl𝜌 𝐶) = cloc(𝐶) cloc(inr𝜌 𝐶) = cloc(𝐶)

cloc(case𝜌 𝐶 of (inl 𝑋 ⇒ 𝐶1) (inr 𝑌 ⇒ 𝐶2)) = cloc(𝐶) ∪ cloc(𝐶1) ∪ cloc(𝐶2) ∪ 𝜌

cloc(let 𝜌.𝑥 B 𝐶1 in 𝐶2) = cloc(𝐶1) ∪ cloc(𝐶2) ∪ 𝜌

cloc(let 𝜌.𝛼 ::𝜅 B 𝐶1 in 𝐶2) = cloc(𝐶1) ∪ (cloc(𝐶2) \ 𝛼) ∪ 𝜌

cloc(𝐶 {ℓ }⇝ 𝜌) = cloc(𝐶) ∪ {ℓ} ∪ 𝜌 cloc(ℓ [𝑑] ⇝ 𝜌 ; 𝐶) = {ℓ} ∪ 𝜌 ∪ cloc(𝐶)

cloc(let (𝛼, 𝑥) B ℓ .fork() in 𝐶) = {ℓ} ∪ (cloc(𝐶) \ 𝛼) cloc(kill 𝐿 after 𝐶) = {𝐿} ∪ cloc(𝐶)

A.6 Redex for an Evaluation Context
If 𝜂 is an evaluation context and 𝑅 is a redex, we define 𝜂 [𝑅] to be the redex which corresponds to

making the reduction given by 𝑅 in the context 𝜂.

([·] $𝜌 𝐶) [𝑅] ≜ Fun(𝑅) (𝑉 $𝜌 [·]) [𝑅] ≜ Arg(𝑅) ([·] 𝑡)𝜌 [𝑅] ≜ 𝑅

(fold𝜌 [·]) [𝑅] = (unfold𝜌 [·]) [𝑅] ≜ 𝑅 ([·],𝐶)𝜌 [𝑅] ≜ PairL(𝑅) (𝑉 , [·])𝜌 [𝑅] ≜ PairR(𝑅)

(fst𝜌 [·]) [𝑅] = (snd𝜌 [·]) [𝑅] ≜ 𝑅 (inl𝜌 [·]) [𝑅] = (inr𝜌 [·]) [𝑅] ≜ 𝑅

(case𝜌 [·] of (inl 𝑋 ⇒ 𝐶1) (inr 𝑌 ⇒ 𝐶2)) [𝑅] ≜ 𝑅 ([·] {ℓ }⇝ 𝜌) [𝑅] ≜ 𝑅

(let 𝜌.𝑥 B [·] in 𝐶) [𝑅] = (let 𝛼 ::𝜅 B [·] in 𝐶) [𝑅] ≜ 𝑅 kill 𝐿 after [·] [𝑅] ≜ 𝑅

A.7 Location Set Relations
Here we define the containment ℓ ∈ 𝜌 , disjointness 𝜌1 ∩ 𝜌2 = ∅, and subset 𝜌1 ⊆ 𝜌2 relations, with

special care given to how they are defined when the locations and sets in question are non-ground.

The principle for how the containment and subset relations behave is that of a modality of necessity.
For instance, the containment relation ℓ ∈ 𝜌 only holds if the location ℓ is an element of 𝜌 for

any possible values that their variables could resolve to. Note here that the metavariable ℓ stands

for either a type variable 𝛼 or a concrete location 𝐿 ∈ L, and the metavariable 𝜌 stands for any

location set, including possibly a type variable.

30 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

ℓ ∈ {ℓ}
ℓ ∈ 𝜌1

ℓ ∈ 𝜌1 ∪ 𝜌2

ℓ ∈ 𝜌2

ℓ ∈ 𝜌1 ∪ 𝜌2

The disjointness relation is defined as expected:

(𝜌1 ∩ 𝜌2 = ∅) ≜ ∀ℓ .¬(ℓ ∈ 𝜌1 ∧ ℓ ∈ 𝜌2)

To define the subset relation, we first note that we cannot use the naïve definition in terms of

the containment relation. That is, ∀ℓ . ℓ ∈ 𝜌1 ⇒ ℓ ∈ 𝜌2 would not serve as a correct definition for

𝜌1 ⊆ 𝜌2 in the presence of type variables. This is because ℓ ∉ 𝛼 for every location ℓ , so with this

definition we would have that 𝛼 ⊆ 𝜌 for every set 𝜌 . The subset relation should be preserved under

substitution, but this example shows that this is not the case with the naïve definition. Instead, the

subset relation must be defined inductively as follows.

∅ ⊆ 𝜌

ℓ ∈ 𝜌

{ℓ} ⊆ 𝜌

𝜌 ⊆ 𝜌1

𝜌 ⊆ 𝜌1 ∪ 𝜌2

𝜌 ⊆ 𝜌2

𝜌 ⊆ 𝜌1 ∪ 𝜌2

𝜌1 ⊆ 𝜌 𝜌2 ⊆ 𝜌

𝜌1 ∪ 𝜌2 ⊆ 𝜌

A.8 Choreography Operational Semantics

[C-Ctx]

⟨𝐶,Ω⟩ 𝑅
=⇒𝑐

〈
𝐶′,Ω′〉

⟨𝜂 [𝐶],Ω⟩
𝜂 [𝑅]
=====⇒𝑐

〈
𝜂 [𝐶′],Ω′〉

[C-Done]

𝑒1 −→ 𝑒2 𝜌 ⊆ Ω

⟨𝜌.𝑒1,Ω⟩
𝜌.(𝑒1→𝑒2)
==========⇒𝑐 ⟨𝜌.𝑒2,Ω⟩

[C-App]

𝑓 = fun𝜌 𝐹 (𝑋) B 𝐶 Val(𝑉) 𝜌 ⊆ Ω〈
𝑓 $𝜌 𝑉 ,Ω

〉 App𝜌
=====⇒𝑐 ⟨𝐶 [𝐹 ↦→ 𝑓 , 𝑋 ↦→ 𝑉],Ω⟩

[C-TApp]

𝑓 = tfun𝜌 𝐹 (𝛼) B 𝐶 𝜌′ ⊆ Ω〈
𝑓 $𝜌 ′ 𝑡,Ω

〉 TApp𝜌′
=======⇒𝑐 ⟨𝐶 [𝐹 ↦→ 𝑓 , 𝛼 ↦→ 𝑡],Ω⟩

[C-UnfoldFold]

Val(𝑉) 𝜌 ⊆ Ω〈
unfold𝜌 (fold𝜌 𝑉),Ω

〉 UnfoldFold𝜌
============⇒𝑐 ⟨𝑉 ,Ω⟩

[C-FstPair]

Val(𝑉1) Val(𝑉2) 𝜌 ⊆ Ω〈
fst𝜌 (𝑉1,𝑉2)𝜌 ,Ω

〉 FstPair𝜌
========⇒𝑐 ⟨𝑉1,Ω⟩

[C-SndPair]

Val(𝑉1) Val(𝑉2) 𝜌 ⊆ Ω〈
snd𝜌 (𝑉1,𝑉2)𝜌 ,Ω

〉 SndPair𝜌
========⇒𝑐 ⟨𝑉2,Ω⟩

[C-CaseInl]

Val(𝑉) 𝜌 ⊆ Ω〈 case𝜌 (inl𝜌 𝑉) of
| inl 𝑋 ⇒ 𝐶1

| inr 𝑌 ⇒ 𝐶2

,Ω

〉
CaseInl𝜌
========⇒𝑐 ⟨𝐶1 [𝑋 ↦→ 𝑉],Ω⟩

[C-CaseInr]

Val(𝑉) 𝜌 ⊆ Ω〈 case𝜌 (inr𝜌 𝑉) of
| inl 𝑋 ⇒ 𝐶1

| inr 𝑌 ⇒ 𝐶2

,Ω

〉
CaseInr𝜌
========⇒𝑐 ⟨𝐶2 [𝑋 ↦→ 𝑉],Ω⟩

[C-LocalCaseInl]

Val(𝑣) 𝜌 ⊆ Ω〈 localCase𝜌 𝜌.(inl 𝑣) of
| inl 𝑥 ⇒ 𝐶1

| inr 𝑦 ⇒ 𝐶2

,Ω

〉
LocalCaseInl𝜌
=============⇒𝑐 ⟨𝐶1 [𝜌 |𝑥 ↦→ 𝑣],Ω⟩

Step in Tine: Forking Processes in Functional Choreographies 31

[C-LocalCaseInr]

Val(𝑣) 𝜌 ⊆ Ω〈 localCase𝜌 𝜌.(inr 𝑣) of
| inl 𝑥 ⇒ 𝐶1

| inr 𝑦 ⇒ 𝐶2

,Ω

〉
LocalCaseInr𝜌
=============⇒𝑐 ⟨𝐶2 [𝜌 |𝑥 ↦→ 𝑣],Ω⟩

[C-LetV]

Val(𝑣) 𝜌 ⊆ Ω〈
let 𝜌.𝑥 :𝑡𝑒 B 𝜌′ .𝑣 in 𝐶,Ω

〉 let 𝜌B𝑣
=======⇒𝑐 ⟨𝐶 [𝜌 |𝑥 ↦→ 𝑣],Ω⟩

[C-TyLetV]

Val(⌈𝑡⌋) 𝜌 ⊆ Ω〈
let 𝜌.𝛼 ::𝜅 B 𝜌′ .⌈𝑡⌋ in 𝐶,Ω

〉 let 𝜌.𝛼B𝑡
=========⇒𝑐 ⟨𝐶 [𝛼 ↦→ 𝑡],Ω⟩

[C-SendV]

Val(𝑣) 𝐿1 ∈ 𝜌1 𝐿1 ∈ Ω 𝜌2 ⊆ Ω

⟨𝜌1 .𝑣 {𝐿1 }⇝ 𝜌2,Ω⟩
𝐿1 .𝑣⇝𝜌2
========⇒𝑐 ⟨(𝜌1 ∪ 𝜌2) .𝑣,Ω⟩

[C-Sync]

𝐿 ∈ Ω 𝜌 ⊆ Ω

⟨𝐿[𝑑] ⇝ 𝜌 ; 𝐶,Ω⟩
𝐿.𝑑⇝𝜌
=======⇒𝑐 ⟨𝐶,Ω⟩

[C-SyncI]

⟨𝐶,Ω⟩ 𝑅
=⇒𝑐

〈
𝐶′,Ω′〉

ℓ ∉ rloc(𝑅) 𝜌 ∩ rloc(𝑅) = ∅ fv(𝜌) = fv(ℓ) = ∅

⟨ℓ [𝑑] ⇝ 𝜌 ; 𝐶,Ω⟩ 𝑅
=⇒𝑐

〈
ℓ [𝑑] ⇝ 𝜌 ; 𝐶′,Ω′〉

[C-CaseI]

⟨𝐶1,Ω⟩
𝑅
=⇒𝑐

〈
𝐶′
1
,Ω′〉 ⟨𝐶2,Ω⟩

𝑅
=⇒𝑐

〈
𝐶′
2
,Ω′〉

cloc(𝐶) ∩ rloc(𝑅) = ∅ 𝜌 ∩ rloc(𝑅) = ∅ fv(𝜌) = ∅〈 case𝜌 𝐶 of
| inl 𝑋 ⇒ 𝐶1

| inr 𝑌 ⇒ 𝐶2

,Ω

〉
𝑅
=⇒𝑐

〈 case𝜌 𝐶 of
| inl 𝑋 ⇒ 𝐶′

1

| inr 𝑌 ⇒ 𝐶′
2

,Ω′
〉

[C-LocalCaseI]

⟨𝐶1,Ω⟩
𝑅
=⇒𝑐

〈
𝐶′
1
,Ω′〉 ⟨𝐶2,Ω⟩

𝑅
=⇒𝑐

〈
𝐶′
2
,Ω′〉

cloc(𝐶) ∩ rloc(𝑅) = ∅ 𝜌 ∩ rloc(𝑅) = ∅ fv(𝜌) = ∅〈 localCase𝜌 𝐶 of
| inl 𝑥 ⇒ 𝐶1

| inr 𝑦 ⇒ 𝐶2

,Ω

〉
𝑅
=⇒𝑐

〈 localCase𝜌 𝐶 of
| inl 𝑥 ⇒ 𝐶′

1

| inr 𝑦 ⇒ 𝐶′
2

,Ω′
〉

[C-AppI]

⟨𝐶2,Ω⟩
𝑅
=⇒𝑐

〈
𝐶′
2
,Ω′〉

cloc(𝐶1) ∩ rloc(𝑅) = ∅〈
𝐶1 $𝜌 𝐶2,Ω

〉 𝑅
=⇒𝑐

〈
𝐶1 $𝜌 𝐶

′
2
,Ω′〉

[C-PairI]

⟨𝐶2,Ω⟩
𝑅
=⇒𝑐

〈
𝐶′
2
,Ω′〉

cloc(𝐶1) ∩ rloc(𝑅) = ∅〈
(𝐶1,𝐶2)𝜌 ,Ω

〉 𝑅
=⇒𝑐

〈
(𝐶1,𝐶

′
2
)𝜌 ,Ω′〉

[C-LetI]

⟨𝐶2,Ω⟩
𝑅
=⇒𝑐

〈
𝐶′
2
,Ω′〉

cloc(𝐶1) ∩ rloc(𝑅) = ∅ 𝜌 ∩ rloc(𝑅) = ∅ fv(𝜌) = ∅

⟨let 𝜌.𝑥 :𝑡𝑒 B 𝐶1 in 𝐶2,Ω⟩
𝑅
=⇒𝑐

〈
let 𝜌.𝑥 :𝑡𝑒 B 𝐶1 in 𝐶′

2
,Ω′〉

32 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

[C-TyLetI]

⟨𝐶2,Ω⟩
𝑅
=⇒𝑐

〈
𝐶′
2
,Ω′〉

cloc(𝐶1) ∩ rloc(𝑅) = ∅ 𝜌 ∩ rloc(𝑅) = ∅ fv(𝜌) = ∅

⟨let 𝜌.𝛼 ::𝜅 B 𝐶1 in 𝐶2,Ω⟩
𝑅
=⇒𝑐

〈
let 𝜌.𝛼 ::𝜅 B 𝐶1 in 𝐶′

2
,Ω′〉

[C-Fork]

𝐿′ globally fresh fv(𝐶′) = ∅ 𝐿 ∈ Ω
𝐶′ = 𝐶

[
𝛼 ↦→ 𝐿′, 𝑥 ↦→ ⌈𝐿′⌋

]
⟨let (𝛼, 𝑥) B 𝐿.fork() in 𝐶,Ω⟩

𝐿.fork(𝐿′,𝐶 ′)
============⇒𝑐

〈
kill 𝐿′ after 𝐶′,Ω ∪ {𝐿′}

〉
[C-ForkI]

⟨𝐶,Ω⟩ 𝑅
=⇒𝑐

〈
𝐶′,Ω′〉 𝐿 ∉ rloc(𝑅)

⟨let (𝛼, 𝑥) B 𝐿.fork() in 𝐶,Ω⟩ 𝑅
=⇒𝑐

〈
let (𝛼, 𝑥) B 𝐿.fork() in 𝐶′,Ω′〉

[C-Kill]

Val(𝑉) 𝐿 ∈ Ω

⟨kill 𝐿 after 𝑉 ,Ω⟩
kill(𝐿)
======⇒𝑐 ⟨𝑉 ,Ω \ {𝐿}⟩

[C-KillI]

𝐿 ∉ cloc(𝐶) 𝐿 ∈ Ω

⟨kill 𝐿 after 𝐶,Ω⟩
kill(𝐿)
======⇒𝑐 ⟨𝑉 ,Ω \ {𝐿}⟩

B Static Semantics
B.1 𝜆⋔ Kinding System
First we note that, in order to prevent kind dependency, the kinding context should be split into two

contexts—Γℓ for locations and location sets of kind 𝜅ℓ ∈ {∗loc, ∗locset}, and Γ for local and program

kinds. We have elided this detail from the presentation of the kinding and typing rules for simplicity,

but fully address the details in Appendix E.1 and subsequent appendices.

[K-Var]

⊢ Γ 𝛼 ::𝜅 ∈ Γ

Γ ⊢ 𝛼 :: 𝜅
[K-Loc]

L ∈ L
Γ ⊢ L :: ∗loc

[K-Sng]

Γ ⊢ ℓ :: ∗loc
Γ ⊢ {ℓ} :: ∗locset

[K-Union]

Γ ⊢ 𝜌1 :: ∗locset Γ ⊢ 𝜌2 :: ∗locset
Γ ⊢ 𝜌1 ∪ 𝜌2 :: ∗locset

[K-Local]

⊢ Γ Γ ⊩ 𝑡𝑒 :: ∗𝑒
Γ ⊢ 𝑡𝑒 :: ∗𝑒

[K-At]

Γ ⊢ 𝑡𝑒 :: ∗𝑒 Γ ⊢ 𝜌 :: ∗locset
Γ ⊢ 𝑡𝑒@𝜌 :: ∗𝜌

[K-Arrow]

Γ ⊢ 𝜌 :: ∗locset
Γ ⊢ 𝜏1 :: ∗𝜌1 Γ ⊢ 𝜏2 :: ∗𝜌2
Γ ⊢ 𝜏1

𝜌
−→ 𝜏2 :: ∗𝜌1∪𝜌2∪𝜌

[K-Prod]

Γ ⊢ 𝜏1 :: ∗𝜌1 Γ ⊢ 𝜏2 :: ∗𝜌2
Γ ⊢ 𝜏1 × 𝜏2 :: ∗𝜌1∪𝜌2

[K-Sum]

Γ ⊢ 𝜏1 :: ∗𝜌1 Γ ⊢ 𝜏2 :: ∗𝜌2
Γ ⊢ 𝜌 :: ∗locset 𝜌1 ∪ 𝜌2 ⊆ 𝜌

Γ ⊢ 𝜏1 +𝜌 𝜏2 :: ∗𝜌

[K-Rec]

Γ, 𝛼 ::∗𝜌 ⊢ 𝜏 :: ∗𝜌
Γ ⊢ 𝜇𝜌𝛼. 𝜏 :: ∗𝜌

[K-AllLoc]

𝜅ℓ ∈ {∗loc, ∗locset} Γ, 𝛼 ::𝜅ℓ ⊢ 𝜏 :: ∗𝜌𝜏
Γ, 𝛼 ::𝜅ℓ ⊢ 𝜌 :: ∗locset 𝜌′ = ((𝜌 ∪ 𝜌𝜏) \ 𝛼) ∪ ⊤

Γ ⊢ ∀𝛼 ::𝜅ℓ [𝜌] . 𝜏 :: ∗𝜌 ′

[K-AllLocal]

Γ, 𝛼 ::∗𝑒 ⊢ 𝜏 :: ∗𝜌 Γ ⊢ 𝜌′ :: ∗loc
Γ ⊢ ∀𝛼 ::∗𝑒 [𝜌′] . 𝜏 :: ∗𝜌∪𝜌 ′

[K-All]

Γ, 𝛼 ::∗𝜌1 ⊢ 𝜏 :: ∗𝜌2 Γ ⊢ 𝜌′ :: ∗loc
Γ ⊢ ∀𝛼 ::∗𝜌1 [𝜌′] . 𝜏 :: ∗𝜌2∪𝜌 ′

Step in Tine: Forking Processes in Functional Choreographies 33

B.2 𝜆⋔ Type System
In these rules we denote Θ = Γ;Δ𝑒 ;Δ for brevity, and abuse notation to add variables to and use

the kinding judgment on the required sub-contexts of Θ as appropriate. In the subsequent sections

we may use the shorthand tloc(Θ;𝜏) to denote the set 𝜌 of locations such that Θ ⊢ 𝜏 ::∗𝜌 .

[T-Var]

⊢ Θ 𝑋 :𝜏 ∈ Θ

Θ ⊢ 𝑋 : 𝜏 ▷ ∅
[T-Done]

⊢ Θ Θ ⊢ 𝜌 :: ∗locset Θ|𝜌 ⊩ 𝑒 : 𝑡𝑒
𝜌′ = if Val(𝑒) then ∅ else 𝜌

Θ ⊢ 𝜌.𝑒 : 𝑡𝑒@𝜌 ▷ 𝜌′

[T-Fun]

Θ, 𝐹 :𝜏1
𝜌
−→ 𝜏2, 𝑋 :𝜏1 ⊢ 𝐶 : 𝜏2 ▷ 𝜌

Θ ⊢ 𝜏1 :: ∗𝜌𝑎 Θ ⊢ 𝜏2 :: ∗𝜌𝑏
𝜌′ = 𝜌𝑎 ∪ 𝜌𝑏 ∪ 𝜌

Θ ⊢ fun𝜌 ′ 𝐹 (𝑋) B 𝐶 : 𝜏1
𝜌
−→ 𝜏2 ▷ ∅

[T-App]

Θ ⊢ 𝐶1 : 𝜏1
𝜌
−→ 𝜏2 ▷ 𝜌1 Θ ⊢ 𝐶2 : 𝜏1 ▷ 𝜌2

Θ ⊢ 𝜏1 :: ∗𝜌𝑎 Θ ⊢ 𝜏2 :: ∗𝜌𝑏
𝜌′ = 𝜌𝑎 ∪ 𝜌𝑏 ∪ 𝜌

Θ ⊢ 𝐶1 $𝜌 ′ 𝐶2 : 𝜏2 ▷ 𝜌1 ∪ 𝜌2 ∪ 𝜌′

[T-TFunLoc]

𝜅ℓ ∈ {∗loc, ∗locset} 𝜌′ = (𝜌 \ 𝛼) ∪ ⊤
Θ, 𝐹 :∀𝛼 ::𝜅ℓ [𝜌] . 𝜏, 𝛼 ::𝜅ℓ ⊢ 𝐶 : 𝜏 ▷ 𝜌

Θ ⊢ tfun𝜌 ′ 𝐹 (𝛼 ::𝜅ℓ) B 𝐶 : ∀𝛼 ::𝜅ℓ [𝜌] . 𝜏 ▷ ∅

[T-TAppLoc]

𝜅ℓ ∈ {∗loc, ∗locset}
Θ ⊢ 𝐶 : ∀𝛼 ::𝜅ℓ [𝜌] . 𝜏 ▷ 𝜌1 Θ ⊢ 𝑡 :: 𝜅ℓ

Θ ⊢ 𝜏 [𝛼 ↦→ 𝑡] :: ∗𝜌𝜏 𝜌′ = 𝜌𝜏 ∪ 𝜌 [𝛼 ↦→ 𝑡]
Θ ⊢ 𝐶 $𝜌 ′ 𝑡 : 𝜏 [𝛼 ↦→ 𝑡] ▷ 𝜌1 ∪ 𝜌′

[T-TFun]

𝜅 ∈ {∗𝑒 , ∗𝜌 }
Θ, 𝐹 :∀𝛼 ::𝜅 [𝜌] . 𝜏, 𝛼 ::𝜅 ⊢ 𝐶 : 𝜏 ▷ 𝜌

Θ, 𝛼 ::𝜅 ⊢ 𝜏 :: ∗𝜌𝜏 𝜌′ = 𝜌𝜏 ∪ 𝜌

Θ ⊢ tfun𝜌 ′ 𝐹 (𝛼 ::𝜅) B 𝐶 : ∀𝛼 ::𝜅 [𝜌] . 𝜏 ▷ ∅
[T-TApp]

𝜅 ∈ {∗𝑒 , ∗𝜌 }
Θ ⊢ 𝐶 : ∀𝛼 ::𝜅 [𝜌] . 𝜏 ▷ 𝜌1 Θ ⊢ 𝑡 :: 𝜅
Θ ⊢ 𝜏 [𝛼 ↦→ 𝑡] :: ∗𝜌𝜏 𝜌′ = 𝜌𝜏 ∪ 𝜌

Θ ⊢ 𝐶 $𝜌 ′ 𝑡 : 𝜏 [𝛼 ↦→ 𝑡] ▷ 𝜌1 ∪ 𝜌′

[T-Pair]

Θ ⊢ 𝐶1 : 𝜏1 ▷ 𝜌1 Θ ⊢ 𝐶2 : 𝜏2 ▷ 𝜌2
Θ ⊢ 𝜏1 :: ∗𝜌𝑎 Θ ⊢ 𝜏2 :: ∗𝜌𝑎

𝜌 = 𝜌𝑎 ∪ 𝜌𝑏

Θ ⊢ (𝐶1,𝐶2)𝜌 : 𝜏1 × 𝜏2 ▷ 𝜌1 ∪ 𝜌2
[T-Fst]

Θ ⊢ 𝐶 : 𝜏1 × 𝜏2 ▷ 𝜌′

Θ ⊢ 𝜏1 :: ∗𝜌𝑎 Θ ⊢ 𝜏2 :: ∗𝜌𝑎
𝜌 = 𝜌𝑎 ∪ 𝜌𝑏

Θ ⊢ fst𝜌 𝐶 : 𝜏1 ▷ 𝜌 ∪ 𝜌′

[T-Snd]

Θ ⊢ 𝐶 : 𝜏1 × 𝜏2 ▷ 𝜌′

Θ ⊢ 𝜏1 :: ∗𝜌𝑎 Θ ⊢ 𝜏2 :: ∗𝜌𝑎
𝜌 = 𝜌𝑎 ∪ 𝜌𝑏

Θ ⊢ snd𝜌 𝐶 : 𝜏2 ▷ 𝜌 ∪ 𝜌′
[T-Inl]

Θ ⊢ 𝐶 : 𝜏1 ▷ 𝜌 Θ ⊢ 𝜌′ :: ∗locset
Θ ⊢ 𝜏1 :: ∗𝜌𝑎 Θ ⊢ 𝜏2 :: ∗𝜌𝑎

𝜌𝑎 ∪ 𝜌𝑏 ⊆ 𝜌′

Θ ⊢ inl𝜌 ′ 𝐶 : 𝜏1 +𝜌 ′ 𝜏2 ▷ 𝜌

[T-Inr]

Θ ⊢ 𝐶 : 𝜏2 ▷ 𝜌 Θ ⊢ 𝜌′ :: ∗locset
Θ ⊢ 𝜏1 :: ∗𝜌𝑎 Θ ⊢ 𝜏2 :: ∗𝜌𝑎

𝜌𝑎 ∪ 𝜌𝑏 ⊆ 𝜌′

Θ ⊢ inr𝜌 ′ 𝐶 : 𝜏1 +𝜌 ′ 𝜏2 ▷ 𝜌
[T-Case]

Θ ⊢ 𝐶 : 𝜏1 +𝜌 ′ 𝜏2 ▷ 𝜌

Θ, 𝑋 :𝜏1 ⊢ 𝐶1 : 𝜏 ▷ 𝜌1 Θ, 𝑌 :𝜏2 ⊢ 𝐶2 : 𝜏 ▷ 𝜌2

Θ ⊢
case𝜌 ′ 𝐶 of
| inl 𝑋 ⇒ 𝐶1

| inr 𝑌 ⇒ 𝐶2

: 𝜏 ▷ 𝜌 ∪ 𝜌′ ∪ 𝜌1 ∪ 𝜌2

34 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

[T-LocalCase]

isSum(𝑠, 𝑡1, 𝑡2) Θ ⊢ 𝐶 : 𝑠@𝜌′ ▷ 𝜌

Θ, 𝜌′ .𝑥 :𝑡1 ⊢ 𝐶1 : 𝜏 ▷ 𝜌1 Θ, 𝜌′ .𝑦 :𝑡2 ⊢ 𝐶2 : 𝜏 ▷ 𝜌2

Θ ⊢
localCase𝜌 ′ 𝐶 of
| inl 𝑥 ⇒ 𝐶1

| inr 𝑦 ⇒ 𝐶2

: 𝜏 ▷ 𝜌 ∪ 𝜌′ ∪ 𝜌1 ∪ 𝜌2

[T-Fold]

Θ ⊢ 𝐶 : 𝜏
[
𝛼 ↦→ 𝜇𝜌𝛼. 𝜏

]
▷ 𝜌′

Θ ⊢ fold𝜌 𝐶 : 𝜇𝜌𝛼. 𝜏 ▷ 𝜌′
[T-Unfold]

Θ ⊢ 𝐶 : 𝜇𝜌𝛼. 𝜏 ▷ 𝜌′

Θ ⊢ unfold𝜌 𝐶 : 𝜏 [𝛼 ↦→ 𝜇𝛼. 𝜏] ▷ 𝜌 ∪ 𝜌′

[T-LetLocal]

Θ ⊢ 𝐶1 : 𝑡𝑒@𝜌2 ▷ 𝜌 𝜌1 ⊆ 𝜌2
Θ, 𝜌1 .𝑥 :𝑡𝑒 ⊢ 𝐶2 : 𝜏 ▷ 𝜌′

Θ ⊢ let 𝜌1 .𝑥 B 𝐶1 in 𝐶2 : 𝜏 ▷ 𝜌 ∪ 𝜌′ ∪ 𝜌1

[T-LetLoc]

Θ ⊢ 𝐶1 : loc𝜌1@𝜌3 ▷ 𝜌 𝜌1 ⊆ 𝜌2 ⊆ 𝜌3
Θ ⊢ 𝜏 :: ∗𝜌𝜏 Θ, 𝛼 ::∗loc ⊢ 𝐶2 : 𝜏 ▷ 𝜌′

Θ ⊢ let 𝜌2 .𝛼 ::∗loc B 𝐶1 in 𝐶2 : 𝜏 ▷ 𝜌 ∪ (𝜌′ \ {𝛼}) ∪ 𝜌2

[T-LetLocSet]

Θ ⊢ 𝐶1 : locset𝜌1@𝜌3 ▷ 𝜌 𝜌1 ⊆ 𝜌2 ⊆ 𝜌3
Γ ⊢ 𝜏 :: ∗𝜌𝜏 Θ, 𝛼 ::∗locset ⊢ 𝐶2 : 𝜏 ▷ 𝜌′

Θ ⊢ let 𝜌2 .𝛼 ::∗locset B 𝐶1 in 𝐶2 : 𝜏 ▷ 𝜌 ∪ (𝜌′ \ 𝛼) ∪ 𝜌2

[T-Send]

Θ ⊢ 𝐶 : 𝑡𝑒@𝜌1 ▷ 𝜌

ℓ1 ∈ 𝜌1 Θ ⊢ 𝜌2 :: ∗locset
Θ ⊢ 𝐶 {ℓ1 }⇝ 𝜌2 : 𝑡𝑒@(𝜌1 ∪ 𝜌2) ▷ 𝜌 ∪ {ℓ1} ∪ 𝜌2

[T-Sync]

Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌′

Θ ⊢ ℓ :: ∗loc Θ ⊢ 𝜌 :: ∗locset
Θ ⊢ ℓ [𝑑] ⇝ 𝜌 ; 𝐶 : 𝜏 ▷ {ℓ} ∪ 𝜌 ∪ 𝜌′

[T-Fork]

Θ, 𝛼 ::∗loc, {ℓ, 𝛼}.𝑥 : loc𝛼 ⊢ 𝐶 : 𝜏 ▷ 𝜌

Θ ⊢ ℓ :: ∗loc Θ ⊢ 𝜏 :: ∗𝜌𝜏
Θ ⊢ let (𝛼, 𝑥) B ℓ .fork() in 𝐶 : 𝜏 ▷ {ℓ} ∪ (𝜌 \ 𝛼)

[T-Kill]

Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌

Θ ⊢ kill 𝐿 after 𝐶 : 𝜏 ▷ 𝜌 ∪ {𝐿}

B.3 Spawned Thread Well-Scopedness Judgment
Because 𝜆⋔ programs may spawn multiple threads, we need to guarantee that the names of these

spawned locations are distinct from other threads, and also distinct from any other locations who

may have already been executing the choreography.

For instance, consider the simple program (kill B after A.1,B.2⇝ A). While it may be obvious

that such a program cannot be reached by means of reducing a surface-language expression (as B
could not be chosen as the spawned thread), the type system defined above does not rule it out.

Indeed, the specific issue we identify with this program is that the participant B in the right-

hand side B.2 ⇝ A is one of the spawned locations in the left-hand side kill B after A.1. The
expression (kill B after A.1, kill B after A.2) should be a similarly impossible state to reach as the

thread B has been spawned in two separate expressions, which, by the C-Fork rule, could not occur

as each simultaneously spawned thread must be distinct.

To rule out scenarios like those described above, we use a secondary judgment Θ ⊢ 𝐶 loc-ok
that ensures the spawned threads in a choreography 𝐶 are well-scoped—only participating in the

scope of the kill-after expression that they are declared to be operating in.

In the following rules, the syntax Θ ⊢ 𝐶 ▷ 𝜌 is used to mean that 𝐶 type-checks under context Θ
and with participants 𝜌 , but the type may be arbitrary. In effect, Θ ⊢ 𝐶 ▷ 𝜌 ⇔ ∃𝜏 .Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 .

Step in Tine: Forking Processes in Functional Choreographies 35

[S-Var]

Θ ⊢ 𝑋 loc-ok
[S-Done]

Θ ⊢ 𝜌.𝑒 loc-ok
[S-Fun]

Θ, 𝐹 :𝜏1
𝜌
−→ 𝜏2, 𝑋 :𝜏1 ⊢ 𝐶 loc-ok

SL(𝐶) = ∅
Θ ⊢ fun𝜌 𝐹 (𝑋) B 𝐶 loc-ok

[S-App]

Θ ⊢ 𝐶1 loc-ok Θ ⊢ 𝐶2 loc-ok
Θ ⊢ 𝐶1 ▷ 𝜌1 Θ ⊢ 𝐶2 ▷ 𝜌2

NL(𝜌1) ∩ SL(𝐶2) = ∅
NL(𝜌2) ∩ SL(𝐶1) = ∅

NL(𝜌) ∩ (SL(𝐶1) ∪ SL(𝐶2)) = ∅
Θ ⊢ 𝐶1 $𝜌 𝐶2 loc-ok

[S-TFun]

Θ, 𝐹 :∀𝛼 ::𝜅 [𝜌] . 𝜏 ⊢ 𝐶 loc-ok
SL(𝐶) = ∅

Θ ⊢ tfun𝜌 𝐹 (𝛼 ::𝜅ℓ) B 𝐶 loc-ok

[S-TApp]

Θ ⊢ 𝐶 loc-ok
NL(𝜌) ∩ SL(𝐶) = ∅
Θ ⊢ 𝐶 $𝜌 𝑡 loc-ok

[S-Pair]

Θ ⊢ 𝐶1 loc-ok Θ ⊢ 𝐶2 loc-ok
Θ ⊢ 𝐶1 ▷ 𝜌1 Θ ⊢ 𝐶2 ▷ 𝜌2

NL(𝜌1) ∩ SL(𝐶2) = ∅
NL(𝜌2) ∩ SL(𝐶1) = ∅
Θ ⊢ (𝐶1,𝐶2)𝜌 loc-ok

[S-Fst]

Θ ⊢ 𝐶 loc-ok NL(𝜌) ∩ SL(𝐶) = ∅
Θ ⊢ fst𝜌 𝐶 loc-ok

[S-Snd]

Θ ⊢ 𝐶 loc-ok NL(𝜌) ∩ SL(𝐶) = ∅
Θ ⊢ snd𝜌 𝐶 loc-ok

[S-Inl]

Θ ⊢ 𝐶 loc-ok

Θ ⊢ inl𝜌 𝐶 loc-ok
[S-Inr]

Θ ⊢ 𝐶 loc-ok

Θ ⊢ inr𝜌 𝐶 loc-ok

[S-Case]

Θ ⊢ 𝐶 loc-ok Θ, 𝑋 :𝜏1 ⊢ 𝐶1 loc-ok Θ, 𝑌 :𝜏2 ⊢ 𝐶2 loc-ok
Θ ⊢ 𝐶 ▷ 𝜌 Θ, 𝑋 :𝜏1 ⊢ 𝐶1 ▷ 𝜌1 Θ, 𝑌 :𝜏2 ⊢ 𝐶2 ▷ 𝜌2

NL(𝜌) ∩ (SL(𝐶) ∪ SL(𝐶1) ∪ SL(𝐶2)) = ∅
NL(𝜌1) ∩ (SL(𝐶) ∪ SL(𝐶2)) = ∅
NL(𝜌2) ∩ (SL(𝐶) ∪ SL(𝐶1)) = ∅

Θ ⊢ case𝜌 𝐶 of (inl 𝑋 ⇒ 𝐶1) (inr 𝑌 ⇒ 𝐶2) loc-ok

[S-LocalCase]

Θ ⊢ 𝐶 loc-ok Θ, 𝜌 .𝑥 :𝑡1 ⊢ 𝐶1 loc-ok Θ, 𝜌 .𝑦 :𝑡2 ⊢ 𝐶2 loc-ok
Θ ⊢ 𝐶 ▷ 𝜌 Θ, 𝑋 :𝜏1 ⊢ 𝐶1 ▷ 𝜌1 Θ, 𝑌 :𝜏2 ⊢ 𝐶2 ▷ 𝜌2

NL(𝜌) ∩ (SL(𝐶) ∪ SL(𝐶1) ∪ SL(𝐶2)) = ∅
NL(𝜌1) ∩ (SL(𝐶) ∪ SL(𝐶2)) = ∅
NL(𝜌2) ∩ (SL(𝐶) ∪ SL(𝐶1)) = ∅

Θ ⊢ localCase𝜌 𝐶 of (inl 𝑥 ⇒ 𝐶1) (inr 𝑦 ⇒ 𝐶2) loc-ok

[S-Fold]

Θ ⊢ 𝐶 loc-ok

Θ ⊢ fold𝜌 𝐶 loc-ok
[S-Unfold]

Θ ⊢ 𝐶 loc-ok NL(𝜌) ∩ SL(𝐶) = ∅
Θ ⊢ unfold𝜌 𝐶 loc-ok

[S-LetLocal]

Θ ⊢ 𝐶1 loc-ok Θ, 𝜌 .𝑥 :𝑡𝑒 ⊢ 𝐶2 loc-ok
Θ ⊢ 𝐶1 ▷ 𝜌1 Θ, 𝜌 .𝑥 :𝑡𝑒 ⊢ 𝐶2 ▷ 𝜌2

NL(𝜌1) ∩ SL(𝐶2) = ∅
NL(𝜌2) ∩ SL(𝐶1) = ∅

NL(𝜌) ∩ (SL(𝐶1) ∪ SL(𝐶2)) = ∅
Θ ⊢ let 𝜌.𝑥 B 𝐶1 in 𝐶2 loc-ok

36 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

[S-LetLoc]

Θ ⊢ 𝐶1 loc-ok Θ, 𝛼 ::∗loc ⊢ 𝐶2 loc-ok
Θ ⊢ 𝐶1 ▷ 𝜌1 Θ, 𝛼 ::∗loc ⊢ 𝐶2 ▷ 𝜌2

NL(𝜌1) ∩ SL(𝐶2) = ∅
NL(𝜌2) ∩ SL(𝐶1) = ∅

NL(𝜌) ∩ (SL(𝐶1) ∪ SL(𝐶2)) = ∅
Θ ⊢ let 𝜌.𝛼 ::∗loc B 𝐶1 in 𝐶2 loc-ok

[S-LetLocSet]

Θ ⊢ 𝐶1 loc-ok Θ, 𝛼 ::∗locset ⊢ 𝐶2 loc-ok
Θ ⊢ 𝐶1 ▷ 𝜌1 Θ, 𝛼 ::∗locset ⊢ 𝐶2 ▷ 𝜌2

NL(𝜌1) ∩ SL(𝐶2) = ∅
NL(𝜌2) ∩ SL(𝐶1) = ∅

NL(𝜌) ∩ (SL(𝐶1) ∪ SL(𝐶2)) = ∅
Θ ⊢ let 𝜌.𝛼 ::∗locset B 𝐶1 in 𝐶2 loc-ok

[S-Send]

Θ ⊢ 𝐶 loc-ok
(NL(ℓ) ∪ NL(𝜌)) ∩ SL(𝐶) = ∅

Θ ⊢ 𝐶 {ℓ }⇝ 𝜌 loc-ok

[S-Sync]

Θ ⊢ 𝐶 loc-ok
(NL(ℓ) ∪ NL(𝜌)) ∩ SL(𝐶) = ∅
Θ ⊢ ℓ [𝑑] ⇝ 𝜌 ; 𝐶 loc-ok

[S-Fork]

Θ, 𝛼 ::∗loc, {ℓ, 𝛼}.𝑥 :: locℓ ⊢ 𝐶 loc-ok
NL(ℓ) ∩ SL(𝐶) = ∅

Θ ⊢ let (𝛼, 𝑥) B ℓ .fork() in 𝐶 loc-ok

[S-Kill]

Θ ⊢ 𝐶 loc-ok
𝐿 ∉ SL(𝐶)

Θ ⊢ kill 𝐿 after 𝐶 loc-ok

C Network Language
C.1 Network Language Expressions

Network Program 𝐸 F 𝑋 | () | ret(𝑒) | 𝐸1 ; 𝐸2
| fun 𝐹 (𝑋) B 𝐸 | 𝐸1 𝐸2 | tfun 𝐹 (𝛼) B 𝐸 | 𝐸 𝑡

| (𝐸1, 𝐸2) | fst 𝐸 | snd 𝐸
| inl 𝐸 | inr 𝐸 | case 𝐸 of (inl 𝑋 ⇒ 𝐸1) (inr 𝑌 ⇒ 𝐸2)
| localCase 𝐸 of (inl 𝑥 ⇒ 𝐸1) (inr 𝑦 ⇒ 𝐸2)
| fold 𝐸 | unfold 𝐸
| send 𝐸 to 𝜌 | recv from ℓ
| let 𝑥 B 𝐸1 in 𝐸2 | let 𝛼 ::𝜅 B 𝐸1 in 𝐸2
| choose 𝑑 for ℓ ; 𝐸
| allow ℓ choice (L ⇒ 𝐸1⊥) (R ⇒ 𝐸2⊥)
| AmI∈ 𝜌 then 𝐸1 else 𝐸2
| let (𝛼, 𝑥) B fork(𝐸1) in 𝐸2 | exit

Network Values 𝑉 F 𝑋 | () | ret(𝑣) | fun 𝐹 (𝑋) B 𝐸 | tfun 𝐹 (𝛼) B 𝐸

| (𝑉1,𝑉2) | inl 𝑉 | inr 𝑉 | fold 𝑉

C.2 Transition Labels and Evaluation Contexts
Transition Labels 𝑙 F 𝜄 | 𝑚⇝ 𝜌 | 𝐿.𝑚⇝ | fork(𝐿, 𝐸) | exit

Evaluation Contexts 𝜂 F [·] ; 𝐸 | [·] 𝐸 | 𝑉 [·] | [·] 𝑡 | fold [·] | unfold [·]
| ([·], 𝐸) | (𝑉 , [·]) | fst [·] | snd [·] | inl [·] | inr [·]
| case [·] of (inl 𝑋 ⇒ 𝐸1) (inr 𝑌 ⇒ 𝐸2)
| localCase [·] of (inl 𝑥 ⇒ 𝐸1) (inr 𝑦 ⇒ 𝐸2)
| send [·] to 𝜌 | let 𝑥 B [·] in 𝐸 | let 𝛼 ::𝜅 B [·] in 𝐸

Step in Tine: Forking Processes in Functional Choreographies 37

C.3 Network Language Operational Semantics

[N-Ctx]

𝐿 ⊲ 𝐸1
𝑙
=⇒ 𝐸2

𝐿 ⊲ 𝜂 [𝐸1]
𝑙
=⇒ 𝜂 [𝐸2]

[N-Ret]

𝑒1 −→ 𝑒2

𝐿 ⊲ ret(𝑒1)
𝜄

=⇒ ret(𝑒2)
[N-Seq]

Val(𝑉)

𝐿 ⊲𝑉 ; 𝐸
𝜄

=⇒ 𝐸

[N-App]

𝑓 = fun 𝐹 (𝑋) B 𝐸 Val(𝑉)

𝐿 ⊲ 𝑓 𝑉
𝜄

=⇒ 𝐸 [𝐹 ↦→ 𝑓 , 𝑋 ↦→ 𝑉]
[N-TApp]

𝑓 = tfun 𝐹 (𝛼) B 𝐸

𝐿 ⊲ 𝑓 𝑡
𝜄

=⇒ 𝐸 [𝐹 ↦→ 𝑓 , 𝛼 ↦→ 𝑡]

[N-UnfoldFold]

Val(𝑉)

𝐿 ⊲ unfold (fold 𝑉) 𝜄
=⇒ 𝑉

[N-FstPair]

Val(𝑉1) Val(𝑉2)

𝐿 ⊲ fst (𝑉1,𝑉2)
𝜄

=⇒ 𝑉1

[N-SndPair]

Val(𝑉1) Val(𝑉2)

𝐿 ⊲ snd (𝑉1,𝑉2)
𝜄

=⇒ 𝑉2

[N-CaseInl]

Val(𝑉)

𝐿 ⊲ case (inl 𝑉) of (inl 𝑋 ⇒ 𝐸1) (inr 𝑌 ⇒ 𝐸2)
𝜄

=⇒ 𝐸1 [𝑋 ↦→ 𝑉]

[N-CaseInr]

Val(𝑉)

𝐿 ⊲ case (inr 𝑉) of (inl 𝑋 ⇒ 𝐸1) (inr 𝑌 ⇒ 𝐸2)
𝜄

=⇒ 𝐸2 [𝑌 ↦→ 𝑉]

[N-LocalCaseInl]

Val(𝑣)

𝐿 ⊲ localCase ret(inl 𝑣) of (inl 𝑥 ⇒ 𝐸1) (inr 𝑦 ⇒ 𝐸2)
𝜄

=⇒ 𝐸1 [𝑥 ↦→ 𝑣]

[N-LocalCaseInr]

Val(𝑣)

𝐿 ⊲ localCase ret(inr 𝑣) of (inl 𝑥 ⇒ 𝐸1) (inr 𝑦 ⇒ 𝐸2)
𝜄

=⇒ 𝐸2 [𝑦 ↦→ 𝑣]

[N-Let]

Val(𝑣)

𝐿 ⊲ let 𝑥 B ret(𝑣) in 𝐶 𝜄
=⇒ 𝐶 [𝑥 ↦→ 𝑣]

[N-TyLet]

Val(⌈𝑡⌋)

𝐿 ⊲ let 𝛼 ::𝜅 B ret(⌈𝑡⌋) in 𝐸 𝜄
=⇒ 𝐸 [𝛼 ↦→ 𝑡]

[N-Send]

Val(𝑣) fv(𝜌) = ∅

𝐿 ⊲ send ret(𝑣) to 𝜌
𝑣⇝𝜌\{𝐿}
==========⇒ ret(𝑣)

[N-Recv]

Val(𝑣) 𝐿′ ≠ 𝐿

𝐿 ⊲ recv from 𝐿′
𝐿′ .𝑣⇝
======⇒ ret(𝑣)

[N-Choose]

fv(𝜌) = ∅

𝐿 ⊲ choose 𝑑 for 𝜌 ; 𝐸
𝑑⇝𝜌\{𝐿}
==========⇒ 𝐸

[N-AllowL]

𝐿′ ≠ 𝐿

𝐿 ⊲ allow 𝐿′ choice (L ⇒ 𝐸1) (R ⇒ 𝐸2⊥)
𝐿′ .L⇝
======⇒ 𝐸1

38 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

[N-AllowR]

𝐿′ ≠ 𝐿

𝐿 ⊲ allow 𝐿′ choice (L ⇒ 𝐸1⊥) (R ⇒ 𝐸2)
𝐿′ .R⇝
======⇒ 𝐸2

[N-IAmIn]

𝐿 ∈ 𝜌

𝐿 ⊲ AmI∈ 𝜌 then 𝐸1 else 𝐸2
𝜄

=⇒ 𝐸1

[N-IAmNotIn]

𝐿 ∉ 𝜌

𝐿 ⊲ AmI∈ 𝜌 then 𝐸1 else 𝐸2
𝜄

=⇒ 𝐸2

[N-Fork]

𝐸′
1
= 𝐸1

[
𝛼 ↦→ 𝐿′, 𝑥 ↦→ ⌈𝐿′⌋

]
𝐸′
2
= 𝐸2

[
𝛼 ↦→ 𝐿′, 𝑥 ↦→ ⌈𝐿′⌋

] 𝐿′ globally fresh

fv(𝐸′
1
) = ∅

𝐿 ⊲ let (𝛼, 𝑥) B fork(𝐸1) in 𝐸2
fork(𝐿′,𝐸′

1
)

===========⇒ 𝐸′
2

[N-Exit]

𝐿 ⊲ exit
exit
=====⇒ ()

D Compilation
D.1 Network Program Merging
We show the patterns for which 𝐸1 ⊔ 𝐸2 is defined; if there is no matching pattern, then 𝐸1 ⊔ 𝐸2 is

undefined.

undefined ⊔ undefined ≜ undefined

undefined ⊔ 𝐸2 ≜ 𝐸2

𝐸1 ⊔ undefined ≜ 𝐸1

𝑋 ⊔ 𝑋 ≜ 𝑋

() ⊔ () ≜ ()

ret(𝑒) ⊔ ret(𝑒) ≜ ret(𝑒)

(𝐸1,1 ; 𝐸1,2) ⊔ (𝐸2,1 ; 𝐸2,2) ≜ 𝐸1,1 ⊔ 𝐸2,1 ; 𝐸1,2 ⊔ 𝐸2,2

(fun 𝐹 (𝑋) B 𝐸1) ⊔ (fun 𝐹 (𝑋) B 𝐸2) ≜ fun 𝐹 (𝑋) B (𝐸1 ⊔ 𝐸2)

(𝐸1,1 𝐸1,2) ⊔ (𝐸2,1 𝐸2,2) ≜ (𝐸1,1 ⊔ 𝐸2,1) (𝐸1,2 ⊔ 𝐸2,2)

(tfun 𝐹 (𝛼) B 𝐸1) ⊔ (tfun 𝐹 (𝛼) B 𝐸2) ≜ tfun 𝐹 (𝛼) B (𝐸1 ⊔ 𝐸2)

(𝐸1 𝑡) ⊔ (𝐸2 𝑡) ≜ (𝐸1 ⊔ 𝐸2) 𝑡

(fold 𝐸1) ⊔ (fold 𝐸2) ≜ fold (𝐸1 ⊔ 𝐸2)

(unfold 𝐸1) ⊔ (unfold 𝐸2) ≜ unfold (𝐸1 ⊔ 𝐸2)

(𝐸1,1, 𝐸1,2) ⊔ (𝐸2,1, 𝐸2,2) ≜ ((𝐸1,1 ⊔ 𝐸2,1), (𝐸1,2 ⊔ 𝐸2,2))

(fst 𝐸1) ⊔ (fst 𝐸2) ≜ fst (𝐸1 ⊔ 𝐸2)

(snd 𝐸1) ⊔ (snd 𝐸2) ≜ snd (𝐸1 ⊔ 𝐸2)

(inl 𝐸1) ⊔ (inl 𝐸2) ≜ inl (𝐸1 ⊔ 𝐸2)

(inr 𝐸1) ⊔ (inr 𝐸2) ≜ inr (𝐸1 ⊔ 𝐸2)

©­«
case 𝐸1,1 of
| inl 𝑋 ⇒ 𝐸1,2
| inr 𝑌 ⇒ 𝐸1,3

ª®¬ ⊔ ©­«
case 𝐸2,1 of
| inl 𝑋 ⇒ 𝐸2,2
| inr 𝑌 ⇒ 𝐸2,3

ª®¬ ≜
case (𝐸1,1 ⊔ 𝐸2,1) of
| inl 𝑋 ⇒ 𝐸1,2 ⊔ 𝐸2,2
| inr 𝑌 ⇒ 𝐸1,3 ⊔ 𝐸2,3

Step in Tine: Forking Processes in Functional Choreographies 39

©­«
localCase 𝐸1,1 of
| inl 𝑥 ⇒ 𝐸1,2
| inr 𝑦 ⇒ 𝐸1,3

ª®¬ ⊔ ©­«
localCase 𝐸2,1 of
| inl 𝑥 ⇒ 𝐸2,2
| inr 𝑦 ⇒ 𝐸2,3

ª®¬ ≜
localCase (𝐸1,1 ⊔ 𝐸2,1) of
| inl 𝑥 ⇒ 𝐸1,2 ⊔ 𝐸2,2
| inr 𝑦 ⇒ 𝐸1,3 ⊔ 𝐸2,3

(let 𝑥 B 𝐸1,1 in 𝐸1,2) ⊔ (let 𝑥 B 𝐸2,1 in 𝐸2,2) ≜ let 𝑥 B (𝐸1,1 ⊔ 𝐸2,1) in (𝐸1,2 ⊔ 𝐸2,2)

(let 𝛼 ::𝜅 B 𝐸1,1 in 𝐸1,2) ⊔ (let 𝛼 ::𝜅 B 𝐸2,1 in 𝐸2,2) ≜ let 𝛼 ::𝜅 B (𝐸1,1 ⊔ 𝐸2,1) in (𝐸1,2 ⊔ 𝐸2,2)

(send 𝐸1 to 𝜌) ⊔ (send 𝐸2 to 𝜌) ≜ send (𝐸1 ⊔ 𝐸2) to 𝜌

(recv from ℓ) ⊔ (recv from ℓ) ≜ recv from ℓ

(choose 𝑑 for ℓ ; 𝐸1) ⊔ (choose 𝑑 for ℓ ; 𝐸2) ≜ choose 𝑑 for ℓ ; (𝐸1 ⊔ 𝐸2)

©­«
allow ℓ choice
| L ⇒ 𝐸1,1
| R ⇒ 𝐸1,2

ª®¬ ⊔ ©­«
allow ℓ choice
| L ⇒ 𝐸2,1
| R ⇒ 𝐸2,2

ª®¬ ≜
allow ℓ choice
| L ⇒ 𝐸1,1 ⊔ 𝐸1,2
| R ⇒ 𝐸2,1 ⊔ 𝐸2,2(

AmI∈ 𝜌 then 𝐸1,1
else 𝐸1,2

)
⊔
(
AmI∈ 𝜌 then 𝐸2,1

else 𝐸2,2

)
≜

AmI∈ 𝜌 then (𝐸1,1 ⊔ 𝐸2,1)
else (𝐸1,2 ⊔ 𝐸2,2)(

let (𝛼, 𝑥) B fork(𝐸1,1)
in 𝐸1,2

)
⊔
(
let (𝛼, 𝑥) B fork(𝐸2,1)
in 𝐸2,2

)
≜

let (𝛼, 𝑥) B fork(𝐸1,1 ⊔ 𝐸2,1)
in (𝐸1,2 ⊔ 𝐸2,2)

exit ⊔ exit ≜ exit

D.2 Endpoint Projection
Note that AmI ℓ then 𝐸1 else 𝐸2 is shorthand for AmI∈ {ℓ} then 𝐸1 else 𝐸2.

J𝑋 K𝐿 = 𝑋

J𝜌.𝑒K𝐿 =

{
ret(𝑒) if 𝐿 ∈ 𝜌

() otherwise

q
fun𝜌 𝐹 (𝑋) B 𝐶

y
𝐿
=


fun 𝐹 (𝑋) B J𝐶K𝐿 if 𝐿 ∈ 𝜌

() if 𝐿 ∉ 𝜌 and J𝐶K𝐿 ≠ undefined

undefined otherwise

q
𝐶1 $𝜌 𝐶2

y
𝐿
=

{
J𝐶1K𝐿 J𝐶2K𝐿 if 𝐿 ∈ 𝜌

J𝐶1K𝐿 # J𝐶2K𝐿 # () otherwise

q
tfun𝜌 𝐹 (𝛼 ::∗loc) B 𝐶

y
𝐿
=



tfun 𝐹 (𝛼) B
AmI 𝛼 then J𝐶 [𝛼 ↦→ 𝐿]K𝐿

else J𝐶K𝐿

if 𝐿 ∈ 𝜌

() if 𝐿 ∉ 𝜌 and

J𝐶K𝐿, J𝐶 [𝛼 ↦→ 𝐿]K𝐿 ≠ undefined

undefined otherwise

40 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

q
tfun𝜌 𝐹 (𝛼 ::∗locset) B 𝐶

y
𝐿
=



tfun 𝐹 (𝛼) B
AmI∈ 𝛼 then J𝐶 [𝛼 ↦→ {𝐿} ∪ 𝛼]K𝐿

else J𝐶K𝐿

if 𝐿 ∈ 𝜌

() if 𝐿 ∉ 𝜌 and

J𝐶K𝐿, J𝐶 [𝛼 ↦→ {𝐿} ∪ 𝛼]K𝐿 ≠ undefined

undefined otherwise

q
tfun𝜌 𝐹 (𝛼 ::𝜅) B 𝐶

y
𝐿
=


tfun 𝐹 (𝛼) B J𝐶K𝐿 if 𝐿 ∈ 𝜌

() if 𝐿 ∉ 𝜌 and J𝐶K𝐿 ≠ undefined

undefined otherwise

q
𝐶 $𝜌 𝑡

y
𝐿
=

{
J𝐶K𝐿 𝑡 if 𝐿 ∈ 𝜌

J𝐶K𝐿 # () otherwise

q
fold𝜌 𝐶

y
𝐿
=

{
fold J𝐶K𝐿 if 𝐿 ∈ 𝜌

J𝐶K𝐿 otherwise

q
unfold𝜌 𝐶

y
𝐿
=

{
unfold J𝐶K𝐿 if 𝐿 ∈ 𝜌

J𝐶K𝐿 # () otherwise

q
(𝐶1,𝐶2)𝜌

y
𝐿
=

{
(J𝐶1K𝐿, J𝐶2K𝐿) if 𝐿 ∈ 𝜌

J𝐶1K𝐿 # J𝐶2K𝐿 otherwise

q
fst𝜌 𝐶

y
𝐿
=

{
fst J𝐶K𝐿 if 𝐿 ∈ 𝜌

J𝐶K𝐿 # () otherwise

q
snd𝜌 𝐶

y
𝐿
=

{
snd J𝐶K𝐿 if 𝐿 ∈ 𝜌

J𝐶K𝐿 # () otherwise

q
inl𝜌 𝐶

y
𝐿
=

{
inl J𝐶K𝐿 if 𝐿 ∈ 𝜌

J𝐶K𝐿 otherwise

q
inr𝜌 𝐶

y
𝐿
=

{
inr J𝐶K𝐿 if 𝐿 ∈ 𝜌

J𝐶K𝐿 otherwise

u

v
case𝜌 𝐶 of
| inl 𝑋 ⇒ 𝐶1

| inr 𝑌 ⇒ 𝐶2

}

~

𝐿

=



case J𝐶K𝐿 of

| inl 𝑋 ⇒ J𝐶1K𝐿
| inr 𝑌 ⇒ J𝐶2K𝐿

if 𝐿 ∈ 𝜌

J𝐶K𝐿 # J𝐶1K𝐿 ⊔ J𝐶2K𝐿 if 𝐿 ∉ 𝜌 and 𝑋 ∉ fv(J𝐶1K𝐿) and 𝑌 ∉ fv(J𝐶2K𝐿)
undefined otherwise

u

v
localCase𝜌 𝐶 of
| inl 𝑥 ⇒ 𝐶1

| inr 𝑦 ⇒ 𝐶2

}

~

𝐿

=



localCase J𝐶K𝐿 of

| inl 𝑥 ⇒ J𝐶1K𝐿
| inr 𝑦 ⇒ J𝐶2K𝐿

if 𝐿 ∈ 𝜌

J𝐶K𝐿 # J𝐶1K𝐿 ⊔ J𝐶2K𝐿 if 𝐿 ∉ 𝜌 and 𝑥 ∉ fv(J𝐶1K𝐿) and 𝑦 ∉ fv(J𝐶2K𝐿)
undefined otherwise

Step in Tine: Forking Processes in Functional Choreographies 41

Jlet 𝜌.𝑥 :𝑡𝑒 B 𝐶1 in 𝐶2K𝐿 =


let 𝑥 B J𝐶1K𝐿 in J𝐶2K𝐿 if 𝐿 ∈ 𝜌

J𝐶1K𝐿 # J𝐶2K𝐿 if 𝐿 ∉ 𝜌 and 𝑥 ∉ fv(J𝐶2K𝐿)
undefined otherwise

Jlet 𝜌.𝛼 ::∗𝑒 B 𝐶1 in 𝐶2K𝐿 =


let 𝛼 B J𝐶1K𝐿 in J𝐶2K𝐿 if 𝐿 ∈ 𝜌

J𝐶1K𝐿 # J𝐶2K𝐿 if 𝐿 ∉ 𝜌 and 𝛼 ∉ fv(J𝐶2K𝐿)
undefined otherwise

Jlet 𝜌.𝛼 ::∗loc B 𝐶1 in 𝐶2K𝐿 =


let 𝛼 B J𝐶1K𝐿
in AmI 𝛼 then J𝐶2 [𝛼 ↦→ 𝐿]K𝐿 else J𝐶2K𝐿

if 𝐿 ∈ 𝜌

J𝐶1K𝐿 # J𝐶2K𝐿 if 𝐿 ∉ 𝜌 and 𝛼 ∉ fv(J𝐶2K𝐿)
undefined otherwise

Jlet 𝜌.𝛼 ::∗locset B 𝐶1 in 𝐶2K𝐿 =



let 𝛼 B J𝐶1K𝐿
in AmI∈ 𝛼 then J𝐶2 [𝛼 ↦→ {𝐿} ∪ 𝛼]K𝐿

else J𝐶2K𝐿

if 𝐿 ∈ 𝜌

J𝐶1K𝐿 # J𝐶2K𝐿 if 𝐿 ∉ 𝜌 and 𝛼 ∉ fv(J𝐶2K𝐿)
undefined otherwise

J𝐶 {ℓ }⇝ 𝜌K𝐿 =


send J𝐶K𝐿 to 𝜌 if 𝐿 = ℓ

J𝐶K𝐿 # recv from ℓ if 𝐿 ≠ ℓ and 𝐿 ∈ 𝜌

J𝐶K𝐿 otherwise

Jℓ [𝑑] ⇝ 𝜌 ; 𝐶K𝐿 =


choose 𝑑 for 𝜌 ; J𝐶K𝐿 if 𝐿 = ℓ

allow ℓ choice (L ⇒ J𝐶K𝐿) if 𝐿 ≠ ℓ and 𝐿 ∈ 𝜌 and 𝑑 = L
allow ℓ choice (R ⇒ J𝐶K𝐿) if 𝐿 ≠ ℓ and 𝐿 ∈ 𝜌 and 𝑑 = R
J𝐶K𝐿 otherwise

Jlet (𝛼, 𝑥) B ℓ .fork() in 𝐶K𝐿 =


let (𝛼, 𝑥) B fork(J𝐶K𝛼) in J𝐶K𝐿 if 𝐿 = ℓ

J𝐶K𝐿 if 𝐿 ≠ ℓ and 𝛼, 𝑥 ∉ fv(J𝐶K𝐿)
undefined otherwise

Jkill 𝐿′ after 𝐶K𝐿 =

{
J𝐶K𝐿 # exit if 𝐿 = 𝐿′

J𝐶K𝐿 otherwise

D.3 Locations Named by a Type or Choreography

NL(𝛼) = ∅

NL(𝐿) = {𝐿}

NL({ℓ}) = NL(ℓ)

NL(𝜌1 ∪ 𝜌2) = NL(𝜌1) ∪ NL(𝜌2)

NL(⊤) = ∅

NL(𝑡𝑒@𝜌) = NL(𝜌)

NL(𝜏1
𝜌
−→ 𝜏2) = NL(𝜏1) ∪ NL(𝜏2) ∪ NL(𝜌)

42 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

NL(𝜏1 +𝜌 𝜏2) = NL(𝜏1) ∪ NL(𝜏2) ∪ NL(𝜌)

NL(𝜏1 × 𝜏2) = NL(𝜏1) ∪ NL(𝜏2)

NL(𝜇𝜌𝛼. 𝜏) = NL(𝜌) ∪ NL(𝜏)

NL(∀𝛼 ::𝜅 [𝜌] . 𝜏) = NL(𝜌) ∪ NL(𝜏)

NL(𝑋) = ∅

NL(𝜌.𝑒) = NL(𝜌)

NL(fun𝜌 𝐹 (𝑋) B 𝐶) = NL(𝜌) ∪ NL(𝐶)

NL(𝐶1 $𝜌 𝐶2) = NL(𝜌) ∪ NL(𝐶1) ∪ NL(𝐶2)

NL(tfun𝜌 𝐹 (𝛼) B 𝐶) = NL(𝜌) ∪ NL(𝐶)

NL(𝐶 $𝜌 ℓ) = NL(𝐶) ∪ NL(𝜌) ∪ NL(ℓ)

NL(𝐶 $𝜌 𝜌′) = NL(𝐶) ∪ NL(𝜌) ∪ NL(𝜌′)

NL(𝐶 $𝜌 𝑡) = NL(𝐶) ∪ NL(𝜌)

NL(fold𝜌 𝐶) = NL(𝜌) ∪ NL(𝐶)

NL(unfold𝜌 𝐶) = NL(𝜌) ∪ NL(𝐶)

NL((𝐶1,𝐶2)𝜌) = NL(𝜌) ∪ NL(𝐶1) ∪ NL(𝐶2)

NL(fst𝜌 𝐶) = NL(𝜌) ∪ NL(𝐶)

NL(snd𝜌 𝐶) = NL(𝜌) ∪ NL(𝐶)

NL(inl𝜌 𝐶) = NL(𝜌) ∪ NL(𝐶)

NL(inr𝜌 𝐶) = NL(𝜌) ∪ NL(𝐶)

NL
©­«

case𝜌 𝐶 of
| inl 𝑋 ⇒ 𝐶1

| inr 𝑌 ⇒ 𝐶2

ª®¬ = NL(𝜌) ∪ NL(𝐶) ∪ NL(𝐶1) ∪ NL(𝐶2)

NL
©­«

localCase𝜌 𝐶 of
| inl 𝑥 ⇒ 𝐶1

| inr 𝑦 ⇒ 𝐶2

ª®¬ = NL(𝜌) ∪ NL(𝐶) ∪ NL(𝐶1) ∪ NL(𝐶2)

NL(let 𝜌.𝑥 B 𝐶1 in 𝐶2) = NL(𝜌) ∪ NL(𝐶1) ∪ NL(𝐶2)

NL(let 𝜌.𝛼 B 𝐶1 in 𝐶2) = NL(𝜌) ∪ NL(𝐶1) ∪ NL(𝐶2)

NL(𝐶 {ℓ }⇝ 𝜌) = NL(ℓ) ∪ NL(𝜌) ∪ NL(𝐶)

NL(ℓ [𝑑] ⇝ 𝜌 ; 𝐶) = NL(ℓ) ∪ NL(𝜌) ∪ NL(𝐶)

NL(let (𝛼, 𝑥) B ℓ .fork() in 𝐶) = NL(ℓ) ∪ NL(𝐶)

NL(kill 𝐿 after 𝐶) = {𝐿} ∪ NL(𝐶)

D.4 Spawned Locations in a Choreography

SL(𝑋) = ∅

Step in Tine: Forking Processes in Functional Choreographies 43

SL(𝜌.𝑒) = ∅

SL(fun𝜌 𝐹 (𝑋) B 𝐶) = SL(𝐶)

SL(𝐶1 $𝜌 𝐶2) = SL(𝐶1) ∪ SL(𝐶2)

SL(tfun𝜌 𝐹 (𝛼) B 𝐶) = SL(𝐶)

SL(𝐶 $𝜌 𝑡) = SL(𝐶)

SL(fold𝜌 𝐶) = SL(𝐶)

SL(unfold𝜌 𝐶) = SL(𝐶)

SL((𝐶1,𝐶2)𝜌) = SL(𝐶1) ∪ SL(𝐶2)

SL(fst𝜌 𝐶) = SL(𝐶)

SL(snd𝜌 𝐶) = SL(𝐶)

SL(inl𝜌 𝐶) = SL(𝐶)

SL(inr𝜌 𝐶) = SL(𝐶)

SN
©­«

case𝜌 𝐶 of
| inl 𝑋 ⇒ 𝐶1

| inr 𝑌 ⇒ 𝐶2

ª®¬ = SL(𝐶) ∪ SL(𝐶1) ∪ SL(𝐶2)

SN
©­«

localCase𝜌 𝐶 of
| inl 𝑥 ⇒ 𝐶1

| inr 𝑦 ⇒ 𝐶2

ª®¬ = SL(𝐶) ∪ SL(𝐶1) ∪ SL(𝐶2)

SL(let 𝜌.𝑥 B 𝐶1 in 𝐶2) = SL(𝐶1) ∪ SL(𝐶2)

SL(let 𝜌.𝛼 B 𝐶1 in 𝐶2) = SL(𝐶1) ∪ SL(𝐶2)

SL(𝐶 {ℓ }⇝ 𝜌) = SL(𝐶)

SL(ℓ [𝑑] ⇝ 𝜌 ; 𝐶) = SL(𝐶)

SL(let (𝛼, 𝑥) B ℓ .fork() in 𝐶) = SL(𝐶)

SL(kill 𝐿 after 𝐶) = {𝐿} ∪ SL(𝐶)

D.5 The Less-Than Relation

undefined ⪯ 𝐸

𝐸1 ⪯ 𝐸2 Val(𝑉)
𝐸1 ⪯ 𝑉 ; 𝐸2 𝑋 ⪯ 𝑋 () ⪯ () 𝑋 ⪯ () () ⪯ 𝑋

ret(𝑒) ⪯ ret(𝑒)
𝐸1,1 ⪯ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

𝐸1,1 ; 𝐸1,2 ⪯ 𝐸2,1 ; 𝐸2,2

𝐸1 ⪯ 𝐸2

fun 𝐹 (𝑋) B 𝐸1 ⪯ fun 𝐹 (𝑋) B 𝐸2

𝐸1,1 ⪯ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

𝐸1,1 𝐸1,2 ⪯ 𝐸2,1 𝐸2,2

𝐸1 ⪯ 𝐸2

tfun 𝐹 (𝛼) B 𝐸1 ⪯ tfun 𝐹 (𝛼) B 𝐸2

𝐸1 ⪯ 𝐸2

𝐸1 𝑡 ⪯ 𝐸2 𝑡

𝐸1 ⪯ 𝐸2

fold 𝐸1 ⪯ fold 𝐸2

𝐸1 ⪯ 𝐸2

unfold 𝐸1 ⪯ unfold 𝐸2

𝐸1,1 ⪯ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

(𝐸1,1, 𝐸1,2) ⪯ (𝐸2,1, 𝐸2,2)

44 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

𝐸1 ⪯ 𝐸2

fst 𝐸1 ⪯ fst 𝐸2

𝐸1 ⪯ 𝐸2

snd 𝐸1 ⪯ snd 𝐸2

𝐸1 ⪯ 𝐸2

inl 𝐸1 ⪯ inl 𝐸2

𝐸1 ⪯ 𝐸2

inr 𝐸1 ⪯ inr 𝐸2

𝐸1,1 ⪯ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2 𝐸1,3 ⪯ 𝐸2,3

case 𝐸1,1 of
| inl 𝑋 ⇒ 𝐸1,2
| inr 𝑌 ⇒ 𝐸1,3

⪯
case 𝐸2,1 of
| inl 𝑋 ⇒ 𝐸2,2
| inr 𝑌 ⇒ 𝐸2,3

𝐸1,1 ⪯ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2 𝐸1,3 ⪯ 𝐸2,3

localCase 𝐸1,1 of
| inl 𝑥 ⇒ 𝐸1,2
| inr 𝑦 ⇒ 𝐸1,3

⪯
localCase 𝐸2,1 of
| inl 𝑥 ⇒ 𝐸2,2
| inr 𝑦 ⇒ 𝐸2,3

𝐸1,1 ⪯ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

let 𝑥 B 𝐸1,1 in 𝐸1,2 ⪯ let 𝑥 B 𝐸2,1 in 𝐸2,2

𝐸1,1 ⪯ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

let 𝛼 ::𝜅 B 𝐸1,1 in 𝐸1,2 ⪯ let 𝛼 ::𝜅 B 𝐸2,1 in 𝐸2,2

𝐸1 ⪯ 𝐸2

send 𝐸1 to 𝜌 ⪯ send 𝐸2 to 𝜌

recv from ℓ ⪯ recv from ℓ

𝐸1 ⪯ 𝐸2

choose 𝑑 for ℓ ; 𝐸1 ⪯ choose 𝑑 for ℓ ; 𝐸2

𝐸1,1 ⪯ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

allow ℓ choice
| L ⇒ 𝐸1,1
| R ⇒ 𝐸1,2

⪯
allow ℓ choice
| L ⇒ 𝐸2,1
| R ⇒ 𝐸2,2

𝐸1,1 ⪯ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

AmI∈ 𝜌 then 𝐸1,1
else 𝐸1,2

⪯ AmI∈ 𝜌 then 𝐸2,1
else 𝐸2,2

𝐸1,1 ⪯ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

let (𝛼, 𝑥) B fork(𝐸1,1)
in 𝐸1,2

⪯ let (𝛼, 𝑥) B fork(𝐸2,1)
in 𝐸2,2

exit ⪯ exit

D.6 The Simulating Less-Than Relation
Let the simulating less-than relation ≾ be the following subrelation of ⪯. This relation is similar to

the less-than relation, but differs in the following ways:

(1) it does not contain a rule to allow 𝐸1 ⪯ 𝑉 ; 𝐸2,

(2) in order for two expressions to be related, their heads must be related by ≾, but their bodies
must be related by ⪯, and

(3) the rules for function applications and pairs differ in how their right-hand arguments must

be related depending on whether their left-hand arguments are values.

This relation is so-named because if 𝐸1 ≾ 𝐸2, then the next step that 𝐸1 and 𝐸2 make—if any—must

be identical (i.e., 𝐸1 and 𝐸2 simulate each other for a single step), whereas this is not the case for ⪯.

undefined ≾ 𝐸 𝑋 ≾ 𝑋 () ≾ () 𝑋 ≾ () () ≾ 𝑋 ret(𝑒) ≾ ret(𝑒)

𝐸1,1 ≾ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

𝐸1,1 ; 𝐸1,2 ≾ 𝐸2,1 ; 𝐸2,2

𝐸1 ⪯ 𝐸2

fun 𝐹 (𝑋) B 𝐸1 ≾ fun 𝐹 (𝑋) B 𝐸2

¬Val(𝐸1,1) 𝐸1,1 ≾ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

𝐸1,1 𝐸1,2 ≾ 𝐸2,1 𝐸2,2

Val(𝐸1,1) 𝐸1,1 ≾ 𝐸2,1 𝐸1,2 ≾ 𝐸2,2

𝐸1,1 𝐸1,2 ≾ 𝐸2,1 𝐸2,2

Step in Tine: Forking Processes in Functional Choreographies 45

𝐸1 ⪯ 𝐸2

tfun 𝐹 (𝛼) B 𝐸1 ≾ tfun 𝐹 (𝛼) B 𝐸2

𝐸1 ≾ 𝐸2

𝐸1 𝑡 ≾ 𝐸2 𝑡

𝐸1 ≾ 𝐸2

fold 𝐸1 ≾ fold 𝐸2

𝐸1 ≾ 𝐸2

unfold 𝐸1 ≾ unfold 𝐸2

¬Val(𝐸1,1) 𝐸1,1 ≾ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

(𝐸1,1, 𝐸1,2) ≾ (𝐸2,1, 𝐸2,2)

Val(𝐸1,1) 𝐸1,1 ≾ 𝐸2,1 𝐸1,2 ≾ 𝐸2,2

(𝐸1,1, 𝐸1,2) ≾ (𝐸2,1, 𝐸2,2)
𝐸1 ≾ 𝐸2

fst 𝐸1 ≾ fst 𝐸2

𝐸1 ≾ 𝐸2

snd 𝐸1 ≾ snd 𝐸2

𝐸1 ≾ 𝐸2

inl 𝐸1 ≾ inl 𝐸2

𝐸1 ≾ 𝐸2

inr 𝐸1 ≾ inr 𝐸2

𝐸1,1 ≾ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2 𝐸1,3 ⪯ 𝐸2,3

case 𝐸1,1 of
| inl 𝑋 ⇒ 𝐸1,2
| inr 𝑌 ⇒ 𝐸1,3

≾
case 𝐸2,1 of
| inl 𝑋 ⇒ 𝐸2,2
| inr 𝑌 ⇒ 𝐸2,3

𝐸1,1 ≾ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2 𝐸1,3 ⪯ 𝐸2,3

localCase 𝐸1,1 of
| inl 𝑥 ⇒ 𝐸1,2
| inr 𝑦 ⇒ 𝐸1,3

≾
localCase 𝐸2,1 of
| inl 𝑥 ⇒ 𝐸2,2
| inr 𝑦 ⇒ 𝐸2,3

𝐸1,1 ≾ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

let 𝑥 B 𝐸1,1 in 𝐸1,2 ≾ let 𝑥 B 𝐸2,1 in 𝐸2,2

𝐸1,1 ≾ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

let 𝛼 ::𝜅 B 𝐸1,1 in 𝐸1,2 ≾ let 𝛼 ::𝜅 B 𝐸2,1 in 𝐸2,2

𝐸1 ≾ 𝐸2

send 𝐸1 to 𝜌 ≾ send 𝐸2 to 𝜌

recv from ℓ ≾ recv from ℓ

𝐸1 ⪯ 𝐸2

choose 𝑑 for ℓ ; 𝐸1 ≾ choose 𝑑 for ℓ ; 𝐸2

𝐸1,1 ⪯ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

allow ℓ choice
| L ⇒ 𝐸1,1
| R ⇒ 𝐸1,2

≾
allow ℓ choice
| L ⇒ 𝐸2,1
| R ⇒ 𝐸2,2

𝐸1,1 ⪯ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

AmI∈ 𝜌 then 𝐸1,1
else 𝐸1,2

≾
AmI∈ 𝜌 then 𝐸2,1

else 𝐸2,2

𝐸1,1 ⪯ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

let (𝛼, 𝑥) B fork(𝐸1,1)
in 𝐸1,2

≾
let (𝛼, 𝑥) B fork(𝐸2,1)
in 𝐸2,2

exit ≾ exit

E Proofs
E.1 Substitution Lemmas
The following lemmas quantify the behavior of the kinding and type systems with respect to the

substitution operations. Each lemma is proven with respect to an infinite parallel substitution 𝜎

mapping all variables to choreographies (or types, or local expressions), of which a single-variable

substitution [𝑋 ↦→ 𝐶] can be recovered as a special case by setting 𝜎 (𝑋) = 𝐶 and 𝜎 (𝑌) = 𝑌 for

𝑌 ≠ 𝑋 . We make use of these lemmas frequently, and so may elide explicitly referencing them in

any following proofs.

Lemma 1 (Location Substitution Preserves Containment). If ℓ ∈ 𝜌 then ℓ [𝜎] ∈ 𝜌 [𝜎].

46 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

Proof. By induction on 𝜌 . □

Lemma 2 (Location Substitution Preserves Subsets). If 𝜌1 ⊆ 𝜌2 then 𝜌1 [𝜎] ⊆ 𝜌2 [𝜎].

Proof. By induction on the definition of the ⊆ relation. The only interesting case is when

𝜌1 = {ℓ}, which follows by Lemma 1. □

Lemma 3. If 𝜎 is a location substitution where ∀𝛼.NL(𝜎 (𝛼)) ⊆ 𝜌 , then NL(𝑡) ⊆ NL(𝑡 [𝜎]) ⊆
NL(𝑡) ∪ 𝜌 .

Proof. By induction on 𝑡 . □

Lemma 4. If 𝜎 is a type substitution, then NL(𝑡 [𝜎]) = NL(𝑡).

Proof. By induction on 𝑡 . □

Lemma 5. For any location substitution 𝜎 , SL(𝐶 [𝜎]) = SL(𝐶).

Proof. By induction on 𝐶 . □

Lemma 6. For any type substitution 𝜎 , SL(𝐶 [𝜎]) = SL(𝐶).

Proof. By induction on 𝐶 . □

Lemma 7. For any local substitution 𝜎 , SL(𝐶 [𝜌 |𝜎]) = SL(𝐶).

Proof. By induction on 𝐶 . □

Lemma 8. If 𝜎 is a substitution where ∀𝑋 . SL(𝜎 (𝑋)) = ∅, then SL(𝐶 [𝜎]) = SL(𝐶).

Proof. By induction on 𝐶 . □

Definition 1 (Well-formed Location-Type Substitutions). Say that a function 𝜎 from location-type

variables to locations or location sets maps Γℓ,1 to Γℓ,2 (written ⊢ 𝜎 : Γℓ,1 ⇒ Γℓ,2) if and only if

∀𝛼 ::𝜅ℓ ∈ Γℓ,1 . Γℓ,2 ⊢ 𝜎 (𝛼) :: 𝜅ℓ .

Lemma 9 (Location Substitution Preserves Location Kinding). If ⊢ 𝜎 : Γℓ,1 ⇒ Γℓ,2 and Γℓ,1 ⊢ 𝑡 :: 𝜅ℓ ,
then Γℓ,2 ⊢ 𝑡 [𝜎] :: 𝜅ℓ .

Proof. By induction on the kinding derivation Γℓ,1 ⊢ 𝑡 :: 𝜅ℓ . □

Lemma 10 (Location Substitution Preserves Kinding). If ⊢ 𝜎 : Γℓ,1 ⇒ Γℓ,2 and Γℓ,1; Γ ⊢ 𝑡 :: 𝜅, then
Γℓ,2; Γ [𝜎] ⊢ 𝑡 [𝜎] :: 𝜅 [𝜎].

Proof. By induction on the kinding derivation Γℓ,1; Γ ⊢ 𝑡 :: 𝜅. □

Definition 2. For a location substitution 𝜎 and a set of locations Θ, say that 𝜎 does not mention Θ
(written Θ ∉ 𝜎) if and only if 𝐿 ≠ 𝜎 (𝛼) and 𝐿 ∉ 𝜎 (𝛼) for all location-type variables 𝛼 and 𝐿 ∈ Θ.

Lemma 11 (Unmentioned Substitutions Preserve Equality). If Θ ∉ 𝜎 then ℓ = 𝐿 ⇔ ℓ [𝜎] = 𝐿 for all
𝐿 ∈ Θ.

Lemma 12 (Unmentioned Substitutions Preserve Containment). If Θ ∉ 𝜎 then 𝐿 ∈ 𝜌 ⇔ 𝐿 ∈ 𝜌 [𝜎]
for all 𝐿 ∈ Θ.

Lemma 13 (Unmentioned Substitutions Preserve Containment in Named Locations). If Θ ∉ 𝜎 then
𝐿 ∈ NL(𝜌) ⇔ 𝐿 ∈ NL(𝜌 [𝜎]) for all 𝐿 ∈ Θ.

Lemma 14 (Unmentioned Substitutions Preserve Disjointness). If Θ ∉ 𝜎 , then Θ ∩ 𝜌 = ∅ if and
only if Θ ∩ 𝜌 [𝜎] = ∅.

Step in Tine: Forking Processes in Functional Choreographies 47

Lemma 15 (Unmentioned Substitutions Preserve Disjointness in Named Locations). If Θ ∉ 𝜎 , then
Θ ∩ NL(𝜌) = ∅ if and only if Θ ∩ NL(𝜌 [𝜎]) = ∅.

Lemma 16 (Context Projection and Location Substitution Commute). If 𝜎 is a location substitution,
Δ𝑒 is a local context, and 𝜌 is a location set, then (Δ𝑒 |𝜌) [𝜎] ⊆ Δ𝑒 [𝜎] |𝜌 [𝜎] .

Proof. By induction on Δ𝑒 . If Δ𝑒 = ·, the claim is trivial. Otherwise suppose that Δ𝑒 = 𝜌 ′ .𝑥 :𝑡𝑒 ,Δ′
𝑒 .

If 𝜌 ⊆ 𝜌 ′, then Δ𝑒 |𝜌 = 𝑥 :𝑡𝑒 , Δ
′
𝑒

��
𝜌
, and so

(Δ𝑒 |𝜌) [𝜎] = 𝑥 :𝑡𝑒 [𝜎], (Δ′
𝑒

��
𝜌
) [𝜎] ⊆ 𝑥 :𝑡𝑒 [𝜎], Δ′

𝑒 [𝜎]
��
𝜌 [𝜎]

by induction. By Lemma 2, 𝜌 [𝜎] ⊆ 𝜌 ′ [𝜎], so
Δ𝑒 [𝜎] |𝜌 [𝜎] = (𝜌 ′ [𝜎] .𝑥 :𝑡𝑒 [𝜎],Δ′

𝑒 [𝜎])
��
𝜌 [𝜎] = 𝑥 :𝑡𝑒 [𝜎], Δ′

𝑒 [𝜎]
��
𝜌 [𝜎]

as desired. Otherwise suppose that 𝜌 ⊈ 𝜌 ′. In this case,

(Δ𝑒 |𝜌) [𝜎] = (Δ′
𝑒

��
𝜌
) [𝜎] ⊆ Δ′

𝑒 [𝜎]
��
𝜌 [𝜎] .

We could have either 𝜌 [𝜎] ⊆ 𝜌 ′ [𝜎]—in which case Δ𝑒 [𝜎] |𝜌 [𝜎] = 𝑥 :𝑡𝑒 [𝜎], Δ′
𝑒 [𝜎]

��
𝜌 [𝜎] as before—or

𝜌 [𝜎] ⊈ 𝜌 ′ [𝜎], wherein Δ𝑒 [𝜎] |𝜌 [𝜎] = Δ′
𝑒 [𝜎]

��
𝜌 [𝜎] . In either instance, (Δ𝑒 |𝜌) [𝜎] ⊆ Δ𝑒 [𝜎] |𝜌 [𝜎] ,

completing the proof. □

Lemma 17 (Location Substitution Preserves Typing). If ⊢ 𝜎 : Γℓ,1 ⇒ Γℓ,2, Γℓ,1; Γ;Δ𝑒 ;Δ ⊢ 𝐶 : 𝜏 ▷ 𝜌 ,
and SL(𝐶) ∉ 𝜎 , then Γℓ,2; Γ [𝜎];Δ𝑒 [𝜎];Δ[𝜎] ⊢ 𝐶 [𝜎] : 𝜏 [𝜎] ▷ 𝜌 [𝜎].

Proof. By induction on the typing derivation Γℓ,1; Γ;Δ𝑒 ;Δ ⊢ 𝐶 : 𝜏 ▷ 𝜌 . In the following we

denote Θ1 = Γℓ,1; Γ;Δ𝑒 ;Δ and Θ2 = Γℓ,2; Γ [𝜎];Δ𝑒 [𝜎];Δ[𝜎] for simplicity.

• (T-Var) As 𝑋 : 𝜏 [𝜎] ∈ Δ[𝜎], we have that Θ2 ⊢ 𝑋 : 𝜏 [𝜎] ▷ ∅ as desired.

• (T-Done) By Lemma 16 we have (Δ𝑒 |𝜌) [𝜎] ⊆ Δ𝑒 [𝜎] |𝜌 [𝜎] . Therefore by weakening and

location substitution of the local type system Γℓ,2; Γ [𝜎]; Δ𝑒 [𝜎] |𝜌 [𝜎] ⊩ 𝑒 [𝜎] : 𝑡 [𝜎] as desired.
As well, because 𝜎 is a type substitution, 𝑒 is a value if and only if 𝑒 [𝜎] is a value, meaning

both 𝜌 [𝜎] .𝑒 [𝜎] and 𝜌.𝑒 have participant set 𝜌 [𝜎] and 𝜌 , respectively, or both have ∅.
• (T-Fun) By induction, Θ2, 𝐹 :𝜏1 [𝜎]

𝜌 [𝜎]
−−−−→ 𝜏2 [𝜎], 𝑋 :𝜏1 [𝜎] ⊢ 𝐶 [𝜎] : 𝜏 [𝜎] ▷ 𝜌 [𝜎], so Θ2 ⊢

fun𝜌 ′ [𝜎] 𝐹 (𝑋) B 𝐶 [𝜎] : 𝜏1 [𝜎]
𝜌 [𝜎]
−−−−→ 𝜏2 [𝜎] ▷ ∅.

• (T-App) As SL(𝐶1) ∪ SL(𝐶2) ∉ 𝜎 , we have that both SL(𝐶1) ∉ 𝜎 and SL(𝐶2) ∉ 𝜎 . Thus

by induction, Θ2 ⊢ 𝐶1 [𝜎] : 𝜏1 [𝜎]
𝜌 [𝜎]
−−−−→ 𝜏2 [𝜎] ▷ 𝜌1 [𝜎] and Θ2 ⊢ 𝐶2 [𝜎] : 𝜏1 [𝜎] ▷ 𝜌2 [𝜎].

Therefore Θ2 ⊢ 𝐶1 [𝜎] $𝜌 ′ [𝜎] 𝐶2 [𝜎] : 𝜏2 [𝜎] ▷ 𝜌1 [𝜎] ∪ 𝜌2 [𝜎] ∪ 𝜌 ′ [𝜎].
• (T-TFunLoc, T-TFun) Suppose Θ1, 𝐹 :∀𝛼 ::𝜅ℓ [𝜌] . 𝜏, 𝛼 ::𝜅ℓ ⊢ 𝐶 : 𝜏 ▷ 𝜌 . Then by induction,

Θ2, 𝐹 :∀𝛼 ::𝜅ℓ [𝜌 [𝜎]] . 𝜏 [𝜎], 𝛼 ::𝜅ℓ ⊢ 𝐶 [𝜎] : 𝜏 [𝜎] ▷ 𝜌 [𝜎]. Therefore Θ2 ⊢ tfun𝜌 ′ 𝐹 (𝛼 ::𝜅ℓ) B
𝐶 [𝜎] : ∀𝛼 ::𝜅ℓ [𝜌 [𝜎]] . 𝜏 [𝜎] ▷ ∅. The case for T-TFun is similar.

• (T-TAppLoc, T-TApp) By induction Θ2 ⊢ 𝐶 [𝜎] : ∀𝛼 ::𝜅ℓ [𝜌 [𝜎]] . 𝜏 [𝜎] ▷ 𝜌1 [𝜎], and Γℓ,2 ⊢
𝑡 [𝜎] :: 𝜅ℓ by Lemma 9. Therefore Θ2 ⊢ 𝐶 [𝜎] $𝜌 ′ [𝜎] 𝑡 [𝜎] : 𝜏 [𝛼 ↦→ 𝑡] [𝜎] ▷ 𝜌1 [𝜎] ∪ 𝜌 ′ [𝜎] as
desired. The case for T-TApp is similar.

• (T-Pair) By induction, Θ2 ⊢ 𝐶1 [𝜎] : 𝜏1 [𝜎] ▷ 𝜌1 [𝜎] and Θ2 ⊢ 𝐶2 [𝜎] : 𝜏2 [𝜎] ▷ 𝜌2 [𝜎]. Thus
Θ2 ⊢ (𝐶1 [𝜎],𝐶2 [𝜎])𝜌 [𝜎] : 𝜏1 [𝜎] × 𝜏2 [𝜎] ▷ 𝜌1 [𝜎] ∪ 𝜌2 [𝜎] as desired. The arguments for the

other algebraic data type constructors and eliminators are similar.

• (T-LetLoc, T-LetLocSet, T-LetLocal) By induction, Θ2 ⊢ 𝐶1 [𝜎] : loc𝜌1 [𝜎]@𝜌3 [𝜎] ▷ 𝜌 [𝜎]
and Θ2, 𝛼 ::∗loc ⊢ 𝐶2 [𝜎] : 𝜏 [𝜎] ▷ 𝜌 ′ [𝜎]. By preservation of ⊆ under substitution, 𝜌1 [𝜎] ⊆
𝜌2 [𝜎] ⊆ 𝜌3 [𝜎]. Thus Θ2 ⊢ let 𝜌2 [𝜎] .𝛼 ::∗loc B 𝐶1 [𝜎] in𝐶2 [𝜎] : 𝜏 [𝜎] ▷ 𝜌 [𝜎] ∪ (𝜌 ′ [𝜎] \𝛼) ∪
𝜌2 [𝜎] as desired. The cases for T-LetLocSet, and T-LetLocal are analogous.

48 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

• (T-Send, T-Sync) By induction, Θ2 ⊢ 𝐶 [𝜎] : 𝑡𝑒 [𝜎]@𝜌1 [𝜎] ▷ 𝜌 [𝜎]. As containment is

preserved under substitution, ℓ1 [𝜎] ∈ 𝜌1 [𝜎]. Therefore Θ2 ⊢ 𝐶 [𝜎] {ℓ [𝜎] }⇝ 𝜌2 [𝜎] :

𝑡𝑒 [𝜎]@(𝜌1 [𝜎] ∪ 𝜌2 [𝜎]) ▷ 𝜌 [𝜎] ∪ {ℓ [𝜎]} ∪ 𝜌2 [𝜎]. The argument for T-Sync is similar.

• (T-Fork) By inductionΘ2, 𝛼 ::∗loc, {𝛼, ℓ [𝜎]}.𝑥 : loc𝛼 ⊢ 𝐶 [𝜎] : 𝜏 [𝜎] ▷ 𝜌 [𝜎], soΘ2 ⊢ let (𝛼, 𝑥) B
ℓ [𝜎] .fork() in 𝐶 [𝜎] : 𝜏 [𝜎] ▷ 𝜌 [𝜎] as desired.

• (T-Kill) By induction, Θ2 ⊢ 𝐶 [𝜎] : 𝜏 ▷ 𝜌 . As 𝐿 ∉ 𝜎 and 𝐿 ∉ NL(𝜏), using Lemma 13 we have

𝐿 ∉ NL(𝜏 [𝜎]). Therefore Θ2 ⊢ kill 𝐿 after 𝐶 [𝜎] : 𝜏 [𝜎] ▷ 𝜌 [𝜎] ∪ {𝐿}.
□

Definition 3 (Well-formed Type Substitutions). Say that a function 𝜎 from type variables to types

maps Γ1 to Γ2 under Γℓ (written Γℓ ⊢ 𝜎 : Γ1 ⇒ Γ2) if and only if

∀𝛼 ::𝜅 ∈ Γ1 . Γℓ ; Γ2 ⊢ 𝜎 (𝛼) :: 𝜅.

Lemma 18 (Type Substitution Preserves Kinding). If Γℓ ⊢ 𝜎 : Γ1 ⇒ Γ2, Γℓ ; Γ1 ⊢ 𝑡 :: 𝜅, and Γℓ ⊢ Γ2,
then Γℓ ; Γ2 ⊢ 𝑡 [𝜎] :: 𝜅 [𝜎].

Proof. By induction on the kinding derivation Γℓ , Γ1 ⊢ 𝑡 :: 𝜅, and using the fact that the local

kinding system is preserved under well-formed type substitutions. □

Lemma 19 (Context Projection and Type Substitution Commute). If 𝜎 is a type substitution, Δ𝑒 is
a local context, and 𝜌 is a location set, then (Δ𝑒 |𝜌) [𝜎] = Δ𝑒 [𝜎] |𝜌 .

Proof. The proof is identical to Lemma 16, also noting that type substitution does not affect

location sets so that both projected contexts contain the same variables. □

Lemma 20 (Type Substitution Preserves Typing). If Γℓ ⊢ 𝜎 : Γ1 ⇒ Γ2, Γℓ ; Γ1;Δ𝑒 ;Δ ⊢ 𝐶 : 𝜏 ▷ 𝜌 , and
Γℓ ⊢ Γ2, then Γℓ ; Γ2;Δ𝑒 [𝜎];Δ[𝜎] ⊢ 𝐶 [𝜎] : 𝜏 [𝜎] ▷ 𝜌 .

Proof. The argument proceeds similarly to Lemma 17, also using the facts that the local type

system is preserved under well-formed type substitutions, and that locations and location sets are

unaffected by type substitution. □

Definition 4 (Well-formed Local Substitutions). Say that a function 𝜎 from local variables to local

expressions maps Δ𝑒,1 to Δ𝑒,2 under Γℓ ; Γ (written Γℓ ; Γ ⊢ 𝜎 : Δ𝑒,1 ⇒ Δ𝑒,2) if and only if

∀𝜌.𝑥 :𝑡𝑒 ∈ Δ𝑒,1. Γℓ ; Γ; Δ𝑒,2

��
𝜌
⊩ 𝜎 (𝑥) : 𝑡𝑒 .

Lemma 21 (Local Substitution Preserves Typing). If Γℓ ; Γ ⊢ 𝜎 : Δ𝑒,1 ⇒ Δ𝑒,2, Γℓ ; Γ;Δ𝑒,1;Δ ⊢ 𝐶 : 𝜏 ▷ 𝜌 ,
and Γℓ ; Γ ⊢ Δ𝑒,2, then Γℓ ; Γ;Δ𝑒,2;Δ ⊢ 𝐶 [𝜎] : 𝜏 ▷ 𝜌 .

Proof. By induction on the typing derivation Γℓ ; Γ;Δ𝑒,1;Δ ⊢ 𝐶 : 𝜏 ▷ 𝜌 , and using the fact that

the local type system is preserved under well-formed local substitutions. □

Definition 5 (Well-formed Substitutions). Say that a function 𝜎 from program variables to chore-

ographies maps Δ1 to Δ2 under Γℓ ; Γ;Δ𝑒 (written Γℓ ; Γ;Δ𝑒 ⊢ 𝜎 : Δ1 ⇒ Δ2) if and only if

∀𝑋 :𝜏 ∈ Δ1 . Γℓ ; Γ;Δ𝑒 ;Δ2 ⊢ 𝜎 (𝑋) : 𝜏 ▷ ∅ ∧ SL(𝜎 (𝑋)) = ∅.

Lemma 22 (Substitution Preserves Typing). If Γℓ ; Γ;Δ𝑒 ⊢ 𝜎 : Δ1 ⇒ Δ2, Γℓ ; Γ;Δ𝑒 ;Δ1 ⊢ 𝐶 : 𝜏 ▷ 𝜌 ,
and Γℓ ; Γ ⊢ Δ2, then Γℓ ; Γ;Δ𝑒 ;Δ2 ⊢ 𝐶 [𝜎] : 𝜏 ▷ 𝜌 .

Proof. By induction on the typing derivation Γℓ ; Γ;Δ𝑒 ;Δ1 ⊢ 𝐶 : 𝜏 ▷ 𝜌 . The argument proceeds

similarly to Lemma 17, and the only interesting cases are for variables. Indeed, if 𝑋 :𝜏 ∈ Δ1, then as

𝜎 is well-formed, Θ2 ⊢ 𝜎 (𝑋) : 𝜏 ▷ ∅. This suffices because the premise is that Θ1 ⊢ 𝑋 : 𝜏 ▷ ∅. □

Step in Tine: Forking Processes in Functional Choreographies 49

Lemma 23 (Participants of Values). If Θ ⊢ 𝑉 : 𝜏 ▷ 𝜌 and Val(𝑉) or 𝑉 = 𝑋 , then 𝜌 = ∅ and
SL(𝑉) = ∅.

Proof. By induction on the typing derivation Θ ⊢ 𝑉 : 𝜏 ▷ 𝜌 , noting that no introduction form

adds more locations to 𝜌 than are in its subterms. □

Corollary 1. If Θ, 𝑋 :𝜏1 ⊢ 𝐶 : 𝜏2 ▷ 𝜌2, Θ ⊢ 𝑉 : 𝜏1 ▷ 𝜌1, and Val(𝑉), then Θ ⊢ 𝐶 [𝑋 ↦→ 𝑉] : 𝜏2 ▷ 𝜌2.

Lemma 24 (Location Substitution Preserves Spawned ThreadWell-Scopedness). If ⊢ 𝜎 : Γℓ,1 ⇒ Γℓ,2,
Γℓ,1; Γ;Δ𝑒 ;Δ ⊢ 𝐶 loc-ok, and SL(𝐶) ∉ 𝜎 then Γℓ,2; Γ [𝜎];Δ𝑒 [𝜎];Δ[𝜎] ⊢ 𝐶 [𝜎] loc-ok.

Proof. By induction on the judgment Θ1 ⊢ 𝐶 loc-ok.

• (S-Var) As 𝑋 [𝜎] = 𝑋 , we trivially we have that Θ2 ⊢ 𝑋 loc-ok.
• (S-Fun, S-TFun) We handle the case for functions. By induction Θ2 ⊢ 𝐶 [𝜎] loc-ok, and by

Lemma 5, SL(𝐶 [𝜎]) = SL(𝐶) = ∅, so Θ2 ⊢ fun𝜌 [𝜎] 𝐹 (𝑋) B 𝐶 [𝜎] loc-ok. The argument is

identical for type functions.

• (S-App, S-TApp)We handle the case for function application. By induction,Θ2 ⊢ 𝐶1 [𝜎] loc-ok
and Θ2 ⊢ 𝐶2 [𝜎] loc-ok. We show that SL(𝐶1 [𝜎]) = SL(𝐶1) and NL(𝜌2 [𝜎]) ⊆ NL(𝜌2) ∪
NL(𝜎) are disjoint. Indeed, NL(𝜌2) is already disjoint with SL(𝐶1) by assumption, and

NL(𝜎) is disjoint with SL(𝐶1) because SL(𝐶1) ∉ 𝜎 . The same is true for SL(𝐶2 [𝜎]) and
NL(𝜌1 [𝜎]). Therefore Θ2 ⊢ 𝐶1 $𝜌 𝐶2 loc-ok. The argument is similar for most other data

type introduction and elimination forms.

• (S-Inl, S-Inr, S-Fold, S-Send, S-Sync, S-Fork) We handle the case for inl. By induction,

Θ2 ⊢ 𝐶 [𝜎] loc-ok. We must show that NL(𝜌 [𝜎]) and SL(𝐶 [𝜎]) = SL(𝐶) are disjoint. This
follows immediately by using Lemma 15, and the assumptions that NL(𝜌) and SL(𝐶) are
disjoint and that SL(𝐶) ∉ 𝜎 . The arguments for the other cases are similar.

• (T-Kill) The assumptions are that Θ1 ⊢ 𝐶 loc-ok, 𝐿 ∉ SL(𝐶), and {𝐿} ∪ SL(𝐶) ∉

𝜎 . Then by induction, Θ2 ⊢ 𝐶 [𝜎] loc-ok. As well, 𝐿 ∉ SL(𝐶 [𝜎]) = SL(𝐶), so Θ2 ⊢
kill 𝐿 after 𝐶 [𝜎] loc-ok as desired.

□

Corollary 2. If Θ, 𝛼 ::𝜅ℓ ⊢ 𝐶 loc-ok, Θ ⊢ 𝑡 :: 𝜅ℓ , and 𝑡 ∉ SL(𝐶), then Θ ⊢ 𝐶 [𝛼 ↦→ 𝑡] loc-ok.

Lemma 25 (Type Substitution Preserves Spawned Thread Well-Scopedness). If Γℓ ⊢ 𝜎 : Γ1 ⇒ Γ2
and Γℓ ; Γ1;Δ𝑒 ;Δ ⊢ 𝐶 loc-ok, then Γℓ ; Γ2;Δ𝑒 [𝜎];Δ[𝜎] ⊢ 𝐶 [𝜎] loc-ok.

Proof. The proof is straightforward by induction, noting that by Lemmas 6 and 20 the substitu-

tion will not change the participants of 𝐶 nor SL(𝐶). □

Lemma 26 (Local Substitution Preserves Spawned Thread Well-Scopedness). If Γℓ ; Γ ⊢ 𝜎 : Δ𝑒,1 ⇒
Δ𝑒,2, Θ ⊢ Γℓ ; Γ;Δ𝑒,1;Δ loc-ok 𝐶 , and Γℓ ; Γ ⊢ Δ𝑒,2, then Γℓ ; Γ;Δ𝑒,2;Δ ⊢ 𝐶 [𝜌 |𝜎] loc-ok.

Proof. By induction on the judgment Θ ⊢ 𝐶 loc-ok. □

Lemma 27. If SL(𝐶) = ∅ and Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 then Θ ⊢ 𝐶 loc-ok.

Proof. By induction, noting that SL(𝐶′) = ∅ for all subterms 𝐶′
of 𝐶 . □

Lemma 28 (Substitution Preserves Spawned Thread Well-Scopedness). If Γℓ ; Γ;Δ𝑒 ⊢ 𝜎 : Δ1 ⇒ Δ2,
Γℓ ; Γ;Δ𝑒 ;Δ1 ⊢ 𝐶 loc-ok, Γℓ ; Γ ⊢ Δ2, and∀𝑋 :𝜏1 ∈ Δ1. Γℓ ; Γ;Δ𝑒 ;Δ2 ⊢ 𝜎 (𝑋) loc-ok, then Γℓ ; Γ;Δ𝑒 ;Δ2 ⊢
𝐶 [𝜎] loc-ok.

Proof. By induction on the judgment Θ ⊢ 𝐶 loc-ok.

• (S-Var) By assumption, Θ2 ⊢ 𝜎 (𝑋) loc-ok.

50 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

• (S-Fun, S-TFun) We handle the case for functions. By induction Θ2, 𝐹 :𝜏1
𝜌
−→ 𝜏2, 𝑋 :𝜏1 ⊢

𝐶 [𝜎] loc-ok, and by Lemma 8, SL(𝐶 [𝜎]) = SL(𝐶) = ∅, soΘ2 ⊢ fun𝜌 𝐹 (𝑋) B 𝐶 [𝜎] loc-ok.
The argument is identical for type functions.

• (S-App, S-TApp)We hande the case for function application. By induction,Θ2 ⊢ 𝐶1 [𝜎] loc-ok
andΘ2 ⊢ 𝐶2 [𝜎] loc-ok. It follows by the assumptions that SL(𝐶1 [𝜎]) = SL(𝐶1) and NL(𝜌2)
are disjoint. The same is true for SL(𝐶2 [𝜎]) and NL(𝜌1). Therefore Θ2 ⊢ 𝐶1 $𝜌 𝐶2 loc-ok.
The argument is similar for most other data type introduction and elimination forms.

• (S-Inl, S-Inr, S-Fold, S-Send, S-Sync, S-Fork) We handle the case for inl. By induction,

Θ ⊢ 𝐶 [𝜎] loc-ok. We must show that NL(𝜌) and SL(𝐶 [𝜎]) = SL(𝐶) are disjoint, which is

already given. The arguments for the other cases are similar.

• (T-Kill) The assumptions are that Θ1 ⊢ 𝐶 loc-ok, 𝐿 ∉ SL(𝐶), and {𝐿} ∪ SL(𝐶) ∉

𝜎 . Then by induction, Θ2 ⊢ 𝐶 [𝜎] loc-ok. As well, 𝐿 ∉ SL(𝐶 [𝜎]) = SL(𝐶), so Θ2 ⊢
kill 𝐿 after 𝐶 [𝜎] loc-ok as desired.

□

Corollary 3. If Θ, 𝑋 :𝜏 ⊢ 𝐶 loc-ok, Θ, 𝑋 :𝜏 ⊢ 𝐶 : 𝜏 ′ ▷ 𝜌 ′, Θ ⊢ 𝑉 : 𝜏 ▷ 𝜌 , and Val(𝑉), then Θ ⊢
𝐶 [𝑋 ↦→ 𝑉] loc-ok.

E.2 Type Soundness
Lemma 29. If Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 , then SL(𝐶) ⊆ NL(𝜌) ⊆ NL(𝐶).

Proof. By induction on the typing judgment Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 . □

Theorem 1 (Sound Participant Sets). IfΘ ⊢ 𝐶 : 𝜏 ▷ 𝜌 and ⟨𝐶,Ω⟩ 𝑅
=⇒𝑐 ⟨𝐶′,Ω′⟩, then rloc(𝑅) ⊆ 𝜌\⊤.

Proof. By induction on the step ⟨𝐶,Θ⟩ 𝑅
=⇒𝑐 ⟨𝐶′,Θ′⟩.

• (C-Done, C-App, C-TApp, C-UnfoldFold, C-FstPair, C-SndPair, C-CaseInl, C-CaseInr,

C-LetV, C-TyLetV, C-SendV, C-Fork, C-Sync) Immediate.

• (C-Ctx, C-SyncI, C-CaseI, C-AppI, C-PairI, C-LetI) By induction.

• (C-TyLetI, C-ForkI) Follows because all locations in rloc(𝑅) are concrete, so 𝛼 ∉ rloc(𝑅).
□

Lemma 30. If Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 , then NL(𝜌) ⊆ cloc(𝐶).

Proof. By induction on the typing derivation Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 . The only interesting case is when

𝐶 = 𝜌.𝑒 , wherein if Val(𝑒) we have that NL(∅) ⊆ 𝜌 , and otherwise NL(𝜌) ⊆ 𝜌 . □

Lemma 31 (Single-Step Type Preservation). If Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 , Θ ⊢ 𝐶 loc-ok, NL(𝜌) ⊆ Ω, and

⟨𝐶,Ω⟩ 𝑅
=⇒𝑐 ⟨𝐶′,Ω′⟩, then there is some 𝜌 ′ such that all of the following properties hold.

(1) Θ ⊢ 𝐶′
: 𝜏 ▷ 𝜌 ′

(2) Θ ⊢ 𝐶′ loc-ok
(3) NL(𝜌 ′) ⊆ Ω′

(4) SL(𝐶′) \ SL(𝐶) = Ω′ \ Ω
(5) SL(𝐶) \ SL(𝐶′) = Ω \ Ω′

(6) NL(𝜌 ′) \ NL(𝜌) ⊆ Ω′ \ Ω
(7) Ω \ Ω′ ⊆ NL(𝜌) \ NL(𝜌 ′)

Proof. By induction on the step ⟨𝐶,Ω⟩ 𝑅
=⇒𝑐 ⟨𝐶′,Ω′⟩. Most cases are immediate by induction

and using the various substitution lemmas.

Step in Tine: Forking Processes in Functional Choreographies 51

• (C-Ctx) We handle the case for reductions in pairs and inl. The argument for the other

cases, as well as the out-of-order cases, are similar.

For a pair (𝐶1,𝐶2), the assumptions are that Θ ⊢ 𝐶1 : 𝜏1 ▷ 𝜌1, Θ ⊢ 𝐶2 : 𝜏2 ▷ 𝜌2, NL(𝜌1) and
SL(𝐶2) are disjoint, and NL(𝜌2) and SL(𝐶1) are disjoint. First suppose the reduction is in

the left-hand side. By induction, there is some 𝜌 ′
1
where Θ ⊢ 𝐶′

1
: 𝜏1 ▷ 𝜌 ′

1
, Θ ⊢ 𝐶′

1
loc-ok,

and conditions (3–7) hold.

(1) By induction, Θ ⊢ (𝐶′
1
,𝐶2)𝜌 : 𝜏1 × 𝜏2 ▷ 𝜌 ′

1
∪ 𝜌2.

(2) First, we show that NL(𝜌 ′
1
) and SL(𝐶2) are disjoint. Suppose that 𝐿 ∈ NL(𝜌 ′

1
) and

𝐿 ∈ SL(𝐶2). By the assumption that NL(𝜌1) and SL(𝐶2) are disjoint, we must have that

𝐿 ∉ NL(𝜌1). Therefore 𝐿 ∈ NL(𝜌 ′
1
) \ NL(𝜌1), and hence 𝐿 ∈ Ω′ \ Ω by the inductive

hypothesis. But as SL(𝐶2) ⊆ NL(𝜌2) ⊆ Ω, we have a contradiction, as desired.
Now we show that NL(𝜌2) and SL(𝐶′

1
) are disjoint. Suppose that 𝐿 ∈ NL(𝜌2) and

𝐿 ∈ SL(𝐶′
1
). By the assumption that NL(𝜌2) and SL(𝐶1) are disjoint, we must have that

𝐿 ∉ SL(𝐶1). Therefore 𝐿 ∈ SL(𝐶′
1
) \ SL(𝐶1), and hence 𝐿 ∈ Ω′ \ Ω by the inductive

hypothesis. But as NL(𝜌2) ⊆ Ω, we have a contradiction, as desired. This means that

Θ ⊢ (𝐶′
1
,𝐶2)𝜌 loc-ok.

(3) We show that NL(𝜌 ′
1
) ∪ NL(𝜌2) ⊆ Ω′

. By induction NL(𝜌 ′
1
) ⊆ Ω′

, so we need only

show that NL(𝜌2) ⊆ Ω′
. To that end, let 𝐿 ∈ NL(𝜌2), and suppose for contradiction

that 𝐿 ∉ Ω′
. Then 𝐿 ∈ Ω because NL(𝜌2) ⊆ Ω by assumption, so 𝐿 ∈ Ω \ Ω′

. Then by

the inductive hypothesis, 𝐿 ∈ SL(𝐶1) \ SL(𝐶′
1
) ⊆ SL(𝐶1). But by assumption SL(𝐶1)

and NL(𝜌2) are disjoint, so we have a contradiction.

(4) We need to show that SL((𝐶′
1
,𝐶2)𝜌) \ SL((𝐶1,𝐶2)𝜌) = SL(𝐶′

1
) \ (SL(𝐶1) ∪ SL(𝐶2)) =

Ω′ \ Ω. We can see that SL(𝐶′
1
) \ (SL(𝐶1) ∪ SL(𝐶2)) ⊆ Ω′ \ Ω easily because SL(𝐶′

1
) \

SL(𝐶1) ⊆ Ω′ \ Ω by the inductive hypothesis. For the other direction, if 𝐿 ∈ Ω′ \ Ω,
then 𝐿 ∈ SL(𝐶′

1
) \ SL(𝐶1), so we need only show that 𝐿 ∉ SL(𝐶2). This holds because

if 𝐿 ∈ SL(𝐶2) ⊆ NL(𝐶2), then we would have that 𝐿 ∈ Ω, a contradiction.
(5) We need to show that SL((𝐶1,𝐶2)𝜌) \ SL((𝐶′

1
,𝐶2)𝜌) = SL(𝐶1) \ (SL(𝐶′

1
) ∪ SL(𝐶2)) =

Ω \ Ω′
. We can see that SL(𝐶1) \ (SL(𝐶′

1
) ∪ SL(𝐶2)) ⊆ Ω \ Ω′

easily because SL(𝐶1) \
SL(𝐶′

1
) ⊆ Ω \ Ω′

by the inductive hypothesis. For the other direction, if 𝐿 ∈ Ω \ Ω′
,

then 𝐿 ∈ SL(𝐶1) \ SL(𝐶′
1
), so we need only show that 𝐿 ∉ SL(𝐶2). This holds because

𝐿 ∈ NL(𝐶1) \ NL(𝜌 ′1) by (7) of the induction, so 𝐿 ∈ NL(𝐶1). But then as NL(𝐶1) and
SL(𝐶′

2
) are disjoint, 𝐿 ∉ SL(𝐶2) as desired.

(6) We need to show that (NL(𝜌 ′
1
) ∪ NL(𝜌2)) \ (NL(𝜌1) ∪ NL(𝜌2)) = NL(𝜌 ′

1
) \ (NL(𝜌1) ∪

NL(𝜌2)) ⊆ Ω′\Ω. However, NL(𝜌 ′
1
)\NL(𝜌1) ⊆ Ω′\Ω by (6) of the inductive hypothesis,

which is satisfactory.

(7) We need to show that Ω \ Ω′ ⊆ (NL(𝜌1) ∪ NL(𝜌2)) \ (NL(𝜌 ′1) ∪ NL(𝜌2)) = NL(𝜌1) \
(NL(𝜌 ′

1
) ∪ NL(𝜌2)). To that end, let 𝐿 ∈ Ω \ Ω′

. Clearly 𝐿 ∈ NL(𝜌1) as NL(𝜌1) ⊆ Ω,
so we must show that 𝐿 ∉ NL(𝜌 ′

1
) ∪ NL(𝐶2). But by (7) of the inductive hypothesis,

𝐿 ∉ NL(𝜌 ′
1
), so wemust simply show that 𝐿 ∉ NL(𝜌2). By (5) of the inductive hypothesis,

𝐿 ∈ SL(𝜌1) \ SL(𝜌 ′1), and hence 𝐿 ∉ NL(𝜌2) because SL(𝜌1) and NL(𝜌2) are disjoint.
The argument for reductions on the right-hand side of the pair is symmetric.

For inl𝜌 𝐶 , the assumptions are that Θ ⊢ 𝐶1 : 𝜏1 ▷ 𝜌1, tloc(Θ;𝜏1) ∪ tloc(Θ;𝜏2) ⊆ 𝜌 ,

Θ ⊢ 𝐶1 loc-ok, NL(𝜌) and SL(𝐶1) are disjoint, and NL(𝜌1) ∪ NL(𝜌) ⊆ Ω. By induction,

there is some 𝜌 ′
1
where Θ ⊢ 𝐶′

1
: 𝜏1 ▷ 𝜌 ′

1
, Θ ⊢ 𝐶′

1
loc-ok, and conditions (3–7) hold.

(1) Clearly Θ ⊢ inl𝜌 𝐶′
1
: 𝜏1 +𝜌 𝜏2 ▷ 𝜌 ′

1
.

(2) We show that NL(𝜌) and SL(𝐶′
1
) are disjoint. Suppose that 𝐿 ∈ SL(𝐶′

1
) and 𝐿 ∈ NL(𝜌).

We must have that 𝐿 ∉ SL(𝐶1), as NL(𝜌) and SL(𝐶1) are disjoint by assumption. But

52 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

then 𝐿 ∈ SL(𝐶′
1
) \ SL(𝐶1) = Ω′ \ Ω, and hence 𝐿 ∉ NL(𝜌) ⊆ Ω, a contradiction as

desired. Therefore Θ ⊢ inl𝜌 𝐶′
1
loc-ok.

(3) We need to show that NL(𝜌 ′
1
) ⊆ Ω′

, which is precisely (3) of the inductive hypothesis.

(4) We need to show that SL(inl𝜌 𝐶′
1
) \ SL(inl𝜌 𝐶1) = SL(𝐶′

1
) \ SL(𝐶1) = Ω′ \ Ω, but this is

precisely (4) of the inductive hypothesis.

(5) Symmetrically, SL(inl𝜌 𝐶1) \ SL(inl𝜌 𝐶′
1
) = SL(𝐶1) \ SL(𝐶′

1
) = Ω \ Ω′

by (5) of the

inductive hypothesis.

(6) We need to show that NL(𝜌 ′
1
)\NL(𝜌1) ⊆ Ω′\Ω, which is given directly by the inductive

hypothesis.

(7) Finally, we need to show that NL(𝜌1) \ NL(𝜌 ′1) ⊆ Ω \ Ω′
, which is also provided by (7)

of the inductive hypothesis.

• (C-Done) Follows by local type preservation, and as no locations are spawned or killed.

• (C-App) The assumptions are that Θ, 𝐹 :𝜏1
𝜌
−→ 𝜏2, 𝑋 :𝜏1 ⊢ 𝐶 : 𝜏2 ▷ 𝜌 , Θ, 𝐹 :𝜏1

𝜌
−→ 𝜏2, 𝑋 :𝜏1 ⊢

𝐶 loc-ok, Θ ⊢ 𝑉 : 𝜏1 ▷ ∅, Θ ⊢ 𝑉 loc-ok, and tloc(Θ;𝜏1) ∪ tloc(Θ;𝜏2) ∪ 𝜌 = 𝜌 ′.
(1) By Lemma 22, Θ ⊢ 𝐶 [𝐹 ↦→ 𝑓 , 𝑋 ↦→ 𝑉] : 𝜏2 ▷ 𝜌 , where 𝑓 = fun𝜌 𝐹 (𝑋) B 𝐶 .

(2) By Lemma 28, Θ ⊢ 𝐶 [𝐹 ↦→ 𝑓 , 𝑋 ↦→ 𝑉] loc-ok.
(3) By assumption, 𝜌 ′ ⊆ Ω, which immediately implies that 𝜌 ⊆ Ω.
(4) Since SL(𝐶) = SL(𝑓) = SL(𝑉) = ∅, SL(𝐶 [𝐹 ↦→ 𝑓 , 𝑋 ↦→ 𝑉]) = ∅, and Ω′ = Ω, this

condition is satisfied.

(5) Follows identically to (4).

(6) We should show that NL(𝜌) \ NL(𝜌 ′) ⊆ Ω′ \ Ω = ∅, which is true precisely because

NL(𝜌) ⊆ NL(𝜌 ′).
(7) As Ω \ Ω′ = ∅, (7) is trivially true.

• (C-TApp)We handle the casewhen the function’s type variable is a location. The assumptions

are that Θ, 𝐹 :∀𝛼 ::∗loc [𝜌] . 𝜏, 𝛼 ::∗loc ⊢ 𝐶 : 𝜏 ▷ 𝜌 , Θ, 𝐹 :∀𝛼 ::∗loc [𝜌] . 𝜏, 𝛼 ::∗loc ⊢ 𝐶 loc-ok,
Θ ⊢ ℓ :: ∗loc, and 𝜌 [𝛼 ↦→ ℓ] ∪ tloc(Θ;𝜏 [𝛼 ↦→ ℓ]) = 𝜌 ′.
(1) By Lemma 22, Θ, 𝛼 ::∗loc ⊢ 𝐶 [𝐹 ↦→ 𝑓] : 𝜏 ▷ 𝜌 , where 𝑓 = tfun⊤ 𝐹 (𝛼) B 𝐶 , and by

Lemma 17, Θ ⊢ 𝐶 [𝐹 ↦→ 𝑓 , 𝛼 ↦→ ℓ] : 𝜏 [𝛼 ↦→ ℓ] ▷ 𝜌 [𝛼 ↦→ ℓ].
(2) By Lemmas 24 and 28, noting that SL(𝐶) = SL(𝑓) = ∅, we haveΘ ⊢ 𝐶 [𝐹 ↦→ 𝑓 , 𝛼 ↦→ ℓ] loc-ok

.

(3) By assumption, 𝜌 ′ ⊆ Ω, which immediately implies that 𝜌 [𝛼 ↦→ ℓ] ⊆ Ω.
(4) As SL(𝐶 [𝐹 ↦→ 𝑓 , 𝛼 ↦→ ℓ]) = ∅, and Ω′ = Ω, this condition is satisfied.

(5) Follows symmetrically to (4).

(6) We should show that NL(𝜌 [𝛼 ↦→ ℓ]) \ NL(𝜌 ′) ⊆ Ω′ \ Ω = ∅, which is true precisely

because NL(𝜌 [𝛼 ↦→ ℓ]) ⊆ NL(𝜌 ′).
(7) As Ω \ Ω′ = ∅, (7) is trivially true.

The case when the function’s type variable is a location set, program type, or local type is

analogous.

• (C-TyLetV) We handle the case when the type variable bound by the type-let is a location.

The assumptions are that Θ ⊢ 𝜌3.⌈𝐿⌋ : loc𝜌1@𝜌3 ▷ ∅, Θ ⊢ 𝜏 :: ∗𝜌𝑡 , Θ, 𝛼 ::∗loc ⊢ 𝐶2 : 𝜏 ▷ 𝜌 ,

Θ, 𝛼 ::∗loc ⊢ 𝐶2 loc-ok, 𝜌1 ⊆ 𝜌2 ⊆ 𝜌3, NL(𝜌2) ∩ SL(𝐶2) = ∅ NL(𝜌2) ∪ NL(𝜌) ⊆ Ω, and by

soundness of the loc type, 𝐿 ∈ 𝜌1.

(1) By Lemma 17, Θ ⊢ 𝐶2 [𝛼 ↦→ 𝐿] : 𝜏 ▷ 𝜌 [𝛼 ↦→ 𝐿].
(2) As 𝐿 ∈ 𝜌1 ⊆ 𝜌2, we have that 𝐿 ∉ SL(𝐶2) by well-scopedness of the entire type-let

expression. Therefore by Lemma 24, we have Θ ⊢ 𝐶2 [𝛼 ↦→ 𝐿] loc-ok.
(3) By assumption, NL(𝜌) ⊆ Ω and 𝐿 ∈ NL(𝜌2) ⊆ Ω, therefore NL(𝜌 [𝛼 ↦→ 𝐿]) ⊆ NL(𝜌) ∪

{𝐿} ⊆ Ω′ = Ω.

Step in Tine: Forking Processes in Functional Choreographies 53

(4) As SL(𝐶2 [𝛼 ↦→ 𝐿]) \ SL(𝐶2) = SL(𝐶2) \ SL(𝐶2) = ∅ = Ω′ \Ω, this condition is satisfied.

(5) Follows symmetrically to (4).

(6) We should show that NL(𝜌 [𝛼 ↦→ 𝐿]) \ (NL(𝜌) ∪ NL(𝜌2)) ⊆ Ω′ \ Ω = ∅, which is true

precisely because

NL(𝜌 [𝛼 ↦→ 𝐿]) \ (NL(𝜌) ∪ NL(𝜌2)) ⊆ (NL(𝜌) ∪ {𝐿}) \ (NL(𝜌) ∪ NL(𝜌2))
⊆ (NL(𝜌) ∪ NL(𝜌2)) \ (NL(𝜌) ∪ NL(𝜌2))
= ∅

(7) As Ω \ Ω′ = ∅, (7) is trivially true.

The case when the type variable is a location set follow similar reasoning.

• (C-SendV) The assumptions are that Θ|𝜌1 ⊩ 𝑣 : 𝑡𝑒 , {𝐿} ∪ NL(𝜌2) ⊆ Ω, and 𝐿 ∈ 𝜌1. The

new expression is well-typed because, as 𝑣 is a value, ⊩ 𝑣 : 𝑡𝑒 , and so Θ| (𝜌1∪𝜌2) ⊩ 𝑣 : 𝑡𝑒 by

weakening of the local type system. The other conclusions are also straightforward because

there are no locations spawned or killed, and the reduct (𝜌1 ∪ 𝜌2).𝑣 is a value.
• (C-Fork) The assumptions are thatΘ, 𝛼 ::∗loc, {𝐿, 𝛼}.𝑥 : loc𝛼 ⊢ 𝐶 : 𝜏 ▷ 𝜌 ,Θ, 𝛼 ::∗loc, {𝐿, 𝛼}.𝑥 : loc𝛼 ⊢

𝐶 loc-ok, Θ ⊢ 𝜏 :: ∗𝜌 ′ , {𝐿} ∪ NL(𝜌) ⊆ Ω, 𝐿 ∉ SL(𝐶), and 𝐿′ ∉ Ω.
(1) As well-typedness is preserved under substitution and 𝛼 is not free in 𝜏 , Θ ⊢ 𝐶′

: 𝜏 ▷
𝜌 [𝛼 ↦→ 𝐿], where 𝐶′ = 𝐶 [𝛼 ↦→ 𝐿′, 𝑥 ↦→ ⌈𝐿′⌋], and hence Θ ⊢ kill 𝐿′ after 𝐶′

: 𝜏 ▷
{𝐿′} ∪ 𝜌 [𝛼 ↦→ 𝐿].

(2) As 𝐿′ ∉ Ω ⊇ SL(𝐶), we have that Θ ⊢ 𝐶′ loc-ok. As well, because SL(𝐶′) = SL(𝐶), we
have that Θ ⊢ kill 𝐿′ after 𝐶′ loc-ok as desired.

(3) NL({𝐿} ∪ 𝜌 [𝛼 ↦→ 𝐿]) ⊆ {𝐿} ∪ NL(𝜌) ⊆ {𝐿} ∪ Ω = Ω′

(4) SL(kill 𝐿′ after 𝐶′) \ SL(let (𝛼, 𝑥) B 𝐿.fork() in 𝐶) = {𝐿′} = Ω′ \ Ω
(5) SL(let (𝛼, 𝑥) B 𝐿.fork() in 𝐶) \ SL(kill 𝐿′ after 𝐶′) = ∅ = Ω \ Ω′

(6) As 𝐿 ∈ Ω but 𝐿′ ∉ Ω, we must have 𝐿′ ≠ 𝐿. As well, because NL(𝜌) ⊆ Ω, it follows
that 𝐿′ ∉ NL(𝜌). Therefore

({𝐿′} ∪ NL(𝜌 [𝛼 ↦→ 𝐿′])) \ ({𝐿} ∪ NL(𝜌)) = ({𝐿′} ∪ NL(𝜌)) \ ({𝐿} ∪ NL(𝜌))
= {𝐿′} \ ({𝐿} ∪ NL(𝜌))
= {𝐿′} = Ω′ \ Ω

(7) This conclusion holds trivially because Ω \ Ω′ = ∅.
• (C-Kill) The assumptions are that Θ ⊢ 𝑉 : 𝜏 ▷ ∅, Θ ⊢ 𝑉 loc-ok, Val(𝑉), and 𝐿 ∈ Ω.

(1) Clearly 𝑉 is well-typed.

(2) Clearly the spawned locations in 𝑉 are well-scoped.

(3) As there are no participants in 𝑉 because it is a value, clearly ∅ ⊆ Ω′ = Ω \ 𝐿.
(4) SL(𝑉) \ SL(kill 𝐿 after 𝑉) = ∅ \ {𝐿} = ∅ = Ω′ \ Ω
(5) SL(kill 𝐿 after 𝑉) \ SL(𝑉) = {𝐿} = Ω \ Ω′

(6) ∅ \ {𝐿} = ∅ ⊆ Ω′ \ Ω = ∅
(7) {𝐿} \ ∅ = {𝐿} ⊇ Ω \ Ω′ = {𝐿}

• (C-KillI) The assumptions are that Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 , Θ ⊢ 𝐶 loc-ok, {𝐿} ∪ NL(𝜌) ⊆ Ω, and
𝐿 ∉ cloc(𝐶).
(1) Clearly 𝐶 is well-typed.

(2) Clearly the spawned locations in 𝐶 are well-scoped.

(3) By assumption, NL(𝜌) ⊆ Ω. As well, by Lemma 30 we can say that 𝐿 ∉ NL(𝜌), and so

NL(𝜌) ⊆ Ω \ {𝐿} = Ω′
.

(4) SL(𝐶) \ SL(kill 𝐿 after 𝐶) = ∅ = Ω′ \ Ω
(5) SL(kill 𝐿 after 𝐶) \ SL(𝐶) = {𝐿} = Ω \ Ω′

54 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

(6) NL(𝜌) \ ({𝐿} ∪ NL(𝜌)) = ∅ ⊆ Ω′ \ Ω = ∅
(7) ({𝐿} ∪ NL(𝜌)) \ NL(𝜌) = {𝐿} ⊇ Ω \ Ω′ = {𝐿}

□

Theorem 6 (Type Preservation). If Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 , Θ ⊢ 𝐶 loc-ok, NL(𝜌) ⊆ Ω, and ⟨𝐶,Ω⟩ =⇒∗
𝑐

⟨𝐶′,Ω′⟩, then there is some 𝜌 ′ such that all of the following properties hold.
(1) Θ ⊢ 𝐶′

: 𝜏 ▷ 𝜌 ′

(2) Θ ⊢ 𝐶′ loc-ok
(3) NL(𝜌 ′) ⊆ Ω′

(4) SL(𝐶′) \ SL(𝐶) = Ω′ \ Ω
(5) SL(𝐶) \ SL(𝐶′) = Ω \ Ω′

(6) NL(𝜌 ′) \ NL(𝜌) ⊆ Ω′ \ Ω
(7) Ω \ Ω′ ⊆ NL(𝜌) \ NL(𝜌 ′)

Proof. By induction on the length of the reduction sequence. If the reduction is of length 0, the

conclusion is immediate. Otherwise suppose that ⟨𝐶1,Ω1⟩ =⇒∗
𝑐 ⟨𝐶2,Ω2⟩ =⇒𝑐 ⟨𝐶3,Ω3⟩, where we

can apply the inductive hypothesis to the first reduction sequence, and then apply Theorem 31 to

the last step. (1–3) hold by the conclusion of Theorem 31.

(4) We show that SL(𝐶3) \SL(𝐶1) ⊆ Ω3 \Ω1, with the opposite direction following a symmetric

argument. Let 𝐿 ∈ SL(𝐶3) \ SL(𝐶1). In the case that 𝐿 ∈ SL(𝐶2), we have that 𝐿 ∈ SL(𝐶2) \
SL(𝐶1), so 𝐿 ∈ Ω2 \ Ω1 by (4) of the inductive hypothesis. It must be the case that 𝐿 ∈ Ω3,

for otherwise 𝐿 ∈ Ω2 \ Ω3, which implies that 𝐿 ∈ SL(𝐶2) \ SL(𝐶3) by (5) of Theorem 31, a

contradiction. Therefore 𝐿 ∈ Ω3 \ Ω1 as desired. Now consider the case when 𝐿 ∉ SL(𝐶2).
Then 𝐿 ∈ SL(𝐶3) \ SL(𝐶2), so 𝐿 ∈ Ω3 \ Ω2 by (4) of the last step. It must be the case that

𝐿 ∉ Ω1, for otherwise 𝐿 ∈ Ω1 \ Ω2, which implies that 𝐿 ∈ SL(𝐶1) \ SL(𝐶2) by (5) of the

induction, a contradiction. Therefore 𝐿 ∈ Ω3 \ Ω1 as desired.

(5) Symmetric to the argument for (4).

(6) Suppose that 𝐿 ∈ NL(𝜌3) \ NL(𝜌1). In the case that 𝐿 ∈ NL(𝜌2), then 𝐿 ∈ NL(𝜌2) \ NL(𝜌1),
so 𝐿 ∈ Ω2\Ω1 by (6) of the induction. 𝐿 ∈ NL(𝜌3), so 𝐿 ∈ Ω3 by (2) of the last step, and hence

𝐿 ∈ Ω3 \ Ω1 as desired. Otherwise in the case that 𝐿 ∉ NL(𝜌2), then 𝐿 ∈ NL(𝜌3) \ NL(𝜌2),
so 𝐿 ∈ Ω3 \ Ω2 by (6) of the last step. 𝐿 cannot be in Ω1, for otherwise 𝐿 ∈ Ω1 \ Ω2, which

by (7) of the inductive hypothesis would imply that 𝐿 ∈ NL(𝜌1) \ NL(𝜌2), a contradiction.
Therefore 𝐿 ∈ Ω3 \ Ω1 as (6) requires.

(7) Suppose that 𝐿 ∈ Ω1 \Ω3. If 𝐿 ∈ Ω2, by (7) of the last step we have 𝐿 ∈ NL(𝜌2) \NL(𝜌3). We

must have that 𝐿 ∈ NL(𝜌1), for otherwise 𝐿 ∈ Ω2\Ω1 by (6) of the induction, a contradiction.

Thus 𝐿 ∈ NL(𝜌1), and 𝐿 ∈ NL(𝜌1) \ NL(𝜌3), as desired. Otherwise suppose that 𝐿 ∉ Ω2. In

this case, 𝐿 ∈ NL(𝜌1) \ NL(𝜌2) by (7) of the induction. We must have that 𝐿 ∉ NL(𝜌3), for
otherwise 𝐿 ∈ Ω3 \Ω2 by (6) of the last step, a contradiction. Therefore 𝐿 ∈ NL(𝜌1) \NL(𝜌3)
as (7) requires.

□

Theorem 7 (Type Preservation). If Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 , Θ ⊢ 𝐶 loc-ok, NL(𝜌) ⊆ Ω, and ⟨𝐶,Ω⟩ =⇒∗
𝑐

⟨𝐶′,Ω′⟩, then there is some 𝜌 ′ such that Θ ⊢ 𝐶′
: 𝜏 ▷ 𝜌 ′, Θ ⊢ 𝐶′ loc-ok, and NL(𝜌 ′) ⊆ Ω′.

Proof. An immediate corollary of Theorem 6. □

Theorem 8 (Progress). If ⊢ 𝐶 : 𝜏 ▷ 𝜌 then either 𝐶 is a value, or there is some 𝐶′, Ω′, and 𝑅 such

that ⟨𝐶,Ω⟩ 𝑅
=⇒𝑐 ⟨𝐶′,Ω′⟩.

Proof. By induction on the typing derivation ⊢ 𝐶 : 𝜏 ▷ 𝜌 .

Step in Tine: Forking Processes in Functional Choreographies 55

• (T-Var) This case is impossible as the context is empty.

• (T-Done) By local progress.

• (T-Fun) This choreography is already a value.

• (T-App) If either𝐶1 or𝐶2 can take a step, then take it. Otherwise if both𝐶1 and𝐶2 are values,

then apply C-App.

• (T-TFunLoc, T-TFun) This choreography is already a value.

• (T-TAppLoc, T-TApp) If the function 𝐶1 can take a step, then take it. Otherwise if 𝐶1 is a

type function, then apply C-TApp.

• (T-Pair) If either 𝐶1 or 𝐶2 can take a step, then take it. Otherwise if both 𝐶1 and 𝐶2 are

values, then the pair is a value.

• (T-Inl, T-Inr, T-Fold) If the argument can take a step, then take it. Otherwise if it is a value,

then the program is a value.

• (T-Fst, T-Snd, T-Unfold, T-Case, T-LocalCase) If the argument can take a step, then take

it. Otherwise if it is a value, then apply the appropriate elimination rule.

• (T-LetLocal, T-LetLoc, T-LetLocSet) If the head can take a step, then take it. Otherwise if

it is a value, then bind the variable as appropriate.

• (T-Send) If the argument can take a step, then take it. Otherwise if it is a value, then apply

C-SendV.

• (T-Sync) Apply C-Sync.

• (T-Fork) Apply C-Fork. By the assumptions of our system and local language, there should

always be another unused thread name, and a representation of that name.

• (T-Kill) Apply C-Kill.

□

Corollary 4 (Type Soundness). If ⊢ 𝐶 : 𝜏 ▷ 𝜌 , ⊢ 𝐶 loc-ok, and NL(𝜌) ⊆ Ω, then for any
reachable configuration ⟨𝐶,Ω⟩ =⇒∗

𝑐 ⟨𝐶′,Ω′⟩, either 𝐶′ is a value or there is some 𝐶′′, Ω′′, and 𝑅

where ⟨𝐶′,Ω′⟩ 𝑅
=⇒𝑐 ⟨𝐶′′,Ω′′⟩.

Theorem 2 (Type Soundness). If ⊢ 𝐶 : 𝜏 ▷ 𝜌 , every location literal in 𝐶 is in Ω, and 𝐶 contains no
kill-after expressions, then whenever ⟨𝐶,Ω⟩ =⇒∗

𝑐 ⟨𝐶′,Ω′⟩, either 𝐶′ is a value, or ⟨𝐶′,Ω′⟩ can step.

Proof. A direct consequence of Corollary 4. □

E.3 Bisimulation Relation
Lemma 32 (Less-Than is Reflexive). 𝐸 ⪯ 𝐸 for all network programs 𝐸.

Lemma 33 (Less-Than is Transitive). If 𝐸1 ⪯ 𝐸2 and 𝐸2 ⪯ 𝐸3 then 𝐸1 ⪯ 𝐸3.

Lemma 34 (Less-Than Relation Preserves Free Variables). If 𝐸1 ⪯ 𝐸2 then fv(𝐸1) ⊆ fv(𝐸2).
Lemma 35 (Merging Produces an Upper-Bound). If 𝐸1 ⊔ 𝐸2 = 𝐸, then 𝐸1 ⪯ 𝐸 and 𝐸2 ⪯ 𝐸.

Lemma 36 (Location Substitutions Preserve Less-Than). For any location substitution 𝜎 , if 𝐸1 ⪯ 𝐸2
then 𝐸1 [𝜎] ⪯ 𝐸2 [𝜎].
Lemma 37 (Type Substitutions Preserve Less-Than). For any type substitution 𝜎 , if 𝐸1 ⪯ 𝐸2 then
𝐸1 [𝜎] ⪯ 𝐸2 [𝜎].
Lemma 38 (Local Substitutions Preserve Less-Than). For any local substitution 𝜎 , if 𝐸1 ⪯ 𝐸2 then
𝐸1 [𝜎] ⪯ 𝐸2 [𝜎].
Lemma 39 (Substitutions Preserve Less-Than). For any pair 𝜎1, 𝜎2 of variable substitutions such
that 𝜎1 (𝑋) ⪯ 𝜎2 (𝑋) for all 𝑋 , if 𝐸1 ⪯ 𝐸2, then 𝐸1 [𝜎] ⪯ 𝐸2 [𝜎].

56 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

Corollary 5. If 𝐸1 ⪯ 𝐸2 and 𝑉1 ⪯ 𝑉2, then 𝐸1 [𝑋 ↦→ 𝑉1] ⪯ 𝐸2 [𝑋 ↦→ 𝑉2].

Definition 6 (Network Program Collapsing). Let collapse(𝐸) be the structurally homomorphic

function on network programs such that collapse(𝐸1 ; 𝐸2) = collapse(𝐸1) # collapse(𝐸2). For
instance, collapse(let 𝑥 B 𝐸1 in 𝐸2) = let 𝑥 B collapse(𝐸1) in collapse(𝐸2).

Lemma 40 (Collapsing Function is Less-Than). collapse(𝐸) ⪯ 𝐸.

Proof. By induction on 𝐸. The only interesting case is when 𝐸 = 𝐸1 ; 𝐸2, which holds by

induction and as # preserves ⪯. □

Lemma 41 (Program Merging on Values). If 𝐸1 ⊔ 𝐸2 = 𝐸, then 𝐸1 is a value ⇔ 𝐸2 is a value ⇔ 𝐸 is
a value.

Proof. By induction on 𝐸1, and analyzing the possible cases of 𝐸2. □

Lemma42 (Collapsing Preserves ProgramMerging). If𝐸1⊔𝐸2 = 𝐸 then collapse(𝐸1)⊔collapse(𝐸2) =
collapse(𝐸).

Proof. By induction on the definition of the merge function. The only interesting case is

when 𝐸1 = 𝐸1,1 ; 𝐸1,2, 𝐸2 = 𝐸2,1 ; 𝐸2,2, and 𝐸 = (𝐸1,1 ⊔ 𝐸2,1) ; (𝐸1,2 ⊔ 𝐸2,2). First suppose that

collapse(𝐸1,1) is a value, in which case by Lemma 41 and the inductive hypothesis collapse(𝐸2,1)
and collapse(𝐸1,1) ⊔ collapse(𝐸2,1) are also values. This implies that

collapse(𝐸1) ⊔ collapse(𝐸2) = (collapse(𝐸1,1) # collapse(𝐸1,2)) ⊔ (collapse(𝐸2,1) # collapse(𝐸2,2))
= collapse(𝐸1,2) ⊔ collapse(𝐸2,2)
= (collapse(𝐸1,1) ⊔ collapse(𝐸2,1)) # (collapse(𝐸1,2) ⊔ collapse(𝐸2,2))
= collapse(𝐸1,1 ⊔ 𝐸2,1) # collapse(𝐸1,2 ⊔ 𝐸2,2)
= collapse((𝐸1,1 ⊔ 𝐸2,1) ; (𝐸1,2 ⊔ 𝐸2,2))
= collapse(𝐸).

Now if collapse(𝐸1,1) is not a value, we similarly have that

collapse(𝐸1) ⊔ collapse(𝐸2) = (collapse(𝐸1,1) # collapse(𝐸1,2)) ⊔ (collapse(𝐸2,1) # collapse(𝐸2,2))
= (collapse(𝐸1,1) ; collapse(𝐸1,2)) ⊔ (collapse(𝐸2,1) ; collapse(𝐸2,2))
= (collapse(𝐸1,1) ⊔ collapse(𝐸2,1)) ; (collapse(𝐸1,2) ⊔ collapse(𝐸2,2))
= (collapse(𝐸1,1) ⊔ collapse(𝐸2,1)) # (collapse(𝐸1,2) ⊔ collapse(𝐸2,2))
= collapse(𝐸1,1 ⊔ 𝐸2,1) # collapse(𝐸1,2 ⊔ 𝐸2,2)
= collapse((𝐸1,1 ⊔ 𝐸2,1) ; (𝐸1,2 ⊔ 𝐸2,2))
= collapse(𝐸).

□

Lemma 43 (Less-Than Relation Reflects Network-Program Merging). If 𝐸′
1

⪯ 𝐸1, 𝐸′
2

⪯ 𝐸2,
collapse(𝐸′

1
) = 𝐸′

1
, collapse(𝐸′

2
) = 𝐸′

2
, and 𝐸1 ⊔ 𝐸2 = 𝐸, then there is some 𝐸′ ⪯ 𝐸 such that

𝐸′
1
⊔ 𝐸′

2
= 𝐸′.

Proof. By induction and case analysis of ⪯. The only interesting scenario is when the network

programs are allow-choice expressions or sequencing operations.

Step in Tine: Forking Processes in Functional Choreographies 57

First consider the case when

allow ℓ choice
| L ⇒ 𝐸′

1

⪯
allow ℓ choice
| L ⇒ 𝐸1
| R ⇒ 𝐸3

allow ℓ choice
| R ⇒ 𝐸′

2

⪯
allow ℓ choice
| L ⇒ 𝐸4
| R ⇒ 𝐸2

and

𝐸 =

allow ℓ choice
| L ⇒ 𝐸1 ⊔ 𝐸4
| R ⇒ 𝐸3 ⊔ 𝐸2

Then we have that

allow ℓ choice
| L ⇒ 𝐸′

1

⊔ allow ℓ choice
| R ⇒ 𝐸′

2

=

allow ℓ choice
| L ⇒ 𝐸′

1

| R ⇒ 𝐸′
2

This suffices because by Lemma 35, 𝐸′
1
⪯ 𝐸1 ⪯ 𝐸1 ⊔ 𝐸4, and 𝐸′

2
⪯ 𝐸2 ⪯ 𝐸3 ⊔ 𝐸2. Now consider the

case when

allow ℓ choice
| L ⇒ 𝐸′

1,1

| R ⇒ 𝐸′
1,2

⪯
allow ℓ choice
| L ⇒ 𝐸1,1
| R ⇒ 𝐸1,2

allow ℓ choice
| L ⇒ 𝐸′

2,1

| R ⇒ 𝐸′
2,2

⪯
allow ℓ choice
| L ⇒ 𝐸2,1
| R ⇒ 𝐸2,2

and

𝐸 =

allow ℓ choice
| L ⇒ 𝐸1,1 ⊔ 𝐸2,1
| R ⇒ 𝐸1,2 ⊔ 𝐸2,2

Then by induction, there is some 𝐸3 ⪯ 𝐸1,1 ⊔ 𝐸2,1 where 𝐸
′
1,1 ⊔ 𝐸′

1,2 = 𝐸3, and some 𝐸4 ⪯ 𝐸1,2 ⊔ 𝐸2,2
where 𝐸′

2,1 ⊔ 𝐸′
2,2 = 𝐸4. Then the term

allow ℓ choice
| L ⇒ 𝐸3
| R ⇒ 𝐸4

⪯ 𝐸

suffices. The other allow-choice cases are analogous to these two.

For sequencing operations, we note that the rule𝐸1 ⪯ 𝑉 ; 𝐸2 does not apply because collapse(𝑉 ; 𝐸2) =
𝐸2 ≠ 𝑉 ; 𝐸2, which violates the assumptions. Therefore the only possible scenario is 𝐸′

1,1 ; 𝐸
′
1,2 ⪯

𝐸1,1 ; 𝐸1,2 and 𝐸
′
2,1 ; 𝐸

′
2,2 ⪯ 𝐸2,1 ; 𝐸2,2, where 𝐸 = (𝐸1,1 ⊔ 𝐸2,1) ; (𝐸1,2 ⊔ 𝐸2,2). Then by induction, there

is some 𝐸3 ⪯ 𝐸1,1 ⊔ 𝐸2,1 where 𝐸
′
1,1 ⊔ 𝐸′

1,2 = 𝐸3, and some 𝐸4 ⪯ 𝐸1,2 ⊔ 𝐸2,2 where 𝐸
′
2,1 ⊔ 𝐸′

2,2 = 𝐸4, so

the term 𝐸3 ; 𝐸4 suffices. □

Lemma 44 (Less-Than Reflects Values). If 𝐸1 ⪯ 𝐸2 and Val(𝐸2), then Val(𝐸1).

Proof. By induction on the relation 𝐸1 ⪯ 𝐸2. Note that the case when 𝐸1 ⪯ 𝑉 ; 𝐸2 is impossible,

because the right-hand side is not a value. The other cases are straightforward, as all other rules

(except allow-choice expressions, which are also not values) are homomorphic. □

58 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

Lemma 45 (Merging Preserves Steps). If 𝐸1
𝑙
=⇒ 𝐸′

1
, 𝐸2

𝑙
=⇒ 𝐸′

2
, and 𝐸1 ⊔ 𝐸2 = 𝐸, then there is some

𝐸′ and 𝐸′′ such that 𝐸′ ⪯ 𝐸′′, 𝐸
𝑙
=⇒ 𝐸′′, and 𝐸′

1
⊔ 𝐸′

2
= 𝐸′.

Proof. The interesting scenarios are for sequencing expressions and allow-choice expressions.

Indeed, when 𝐸1,1 ; 𝐸2,1
𝑙
=⇒ 𝐸′

1,1 ; 𝐸2,1 and 𝐸2,1 ; 𝐸2,2
𝑙
=⇒ 𝐸′

2,1 ; 𝐸2,2, we can directly apply induction.

Otherwise if 𝐸2,1 ; 𝐸2,2
𝜄

=⇒ 𝐸2,2 because Val(𝐸2,1), then by Lemma 41 𝐸1,1 is a value, and hence this

is the only step the left-hand side can take, so the result is immediate. The same is symmetrically

true if 𝐸1,1 is a value.

For allow-choice expressions, note that the label 𝑙 of each step is identical. This means that

both 𝐸1 and 𝐸2 receive the same direction 𝑑 , and because they are required to have that case defined,

must both have at least this case defined. □

Lemma 46 (Simulating Less-Than is a Subrelation of Less-Than). If 𝐸1 ≾ 𝐸2 then 𝐸1 ⪯ 𝐸2.

Lemma 47 (Simulating Less-Than is Reflexive). 𝐸 ≾ 𝐸 for all network programs 𝐸.

Lemma 48 (Simulating Less-Than is Transitive). If 𝐸1 ≾ 𝐸2 and 𝐸2 ≾ 𝐸3 then 𝐸1 ≾ 𝐸3.

Lemma 49 (Location Substitutions Preserve Simulating Less-Than). For any location substitution
𝜎 , if 𝐸1 ≾ 𝐸2 then 𝐸1 [𝜎] ≾ 𝐸2 [𝜎].

Lemma 50 (Type Substitutions Preserve Simulating Less-Than). For any type substitution 𝜎 , if
𝐸1 ≾ 𝐸2 then 𝐸1 [𝜎] ≾ 𝐸2 [𝜎].

Lemma 51 (Local Substitutions Preserve Simulating Less-Than). For any local substitution 𝜎 , if
𝐸1 ≾ 𝐸2 then 𝐸1 [𝜎] ≾ 𝐸2 [𝜎].

Lemma 52 (Substitutions Preserve Simulating Less-Than). For any pair 𝜎1, 𝜎2 of variable substitu-
tions such that 𝜎1 (𝑋) ⪯ 𝜎2 (𝑋) for all 𝑋 , if 𝐸1 ≾ 𝐸2, then 𝐸1 [𝜎] ⪯ 𝐸2 [𝜎].

Corollary 6. If 𝐸1 ≾ 𝐸2 and 𝑉1 ⪯ 𝑉2, then 𝐸1 [𝑋 ↦→ 𝑉1] ⪯ 𝐸2 [𝑋 ↦→ 𝑉2].

Lemma 53 (Simulating Less-Than Preserves and Reflects Values). If 𝐸1 ≾ 𝐸2, then Val(𝐸1) ⇔
Val(𝐸2).

Lemma 54 (Simulating Less-Than is Reachable from Less-Than). If 𝐸1 ⪯ 𝐸2 then there is some 𝐸′
2

such that 𝐸1 ≾ 𝐸′
2
and 𝐿 ⊲ 𝐸2

𝜄
=⇒∗ 𝐸′

2
for any location 𝐿. That is, 𝐸2 can reach 𝐸′

2
through a series of

internal steps.

Proof. By induction on the definition of ⪯. For the case when 𝐸1 ⪯ 𝑉 ; 𝐸2, we can first step

𝑉 ; 𝐸2
𝜄

=⇒ 𝐸2, and then by induction we can step 𝐸2
𝜄

=⇒∗ 𝐸′
2
, where 𝐸1 ≾ 𝐸′

2
, which is satisfactory.

For those cases with a single head in the expression, apply the inductive hypothesis to the head

of the expression, which is satisfactory. Lastly, for those cases with multiple evaluation positions

(function applications and pairs), first apply the inductive hypothesis to the left expression. If it

yields a non-value expression, this should suffice. Otherwise if it yields a value, also apply the

inductive hypothesis to the right expression. □

Lemma 55 (Lifting Property). If 𝐸1
𝑅
=⇒ 𝐸′

1
and 𝐸1 ≾ 𝐸2, then there is some 𝐸′

2
such that 𝐸′

1
⪯ 𝐸′

2
,

and 𝐸2
𝑅
=⇒ 𝐸′

2
. That is, the following diagram holds:

Step in Tine: Forking Processes in Functional Choreographies 59

𝐸2

𝐸1

𝐸′
2

𝐸′
1

𝑅

𝑅

≿ ⪰

Proof. By induction on the definition of ≾. Each case follows by either applying the inductive

hypothesis, or by recalling that substitution (of each sort) preserves the relation, or produces terms

which are related by ⪯. □

E.4 Endpoint Projection
The following lemmas relate EPP to the substitution operations and the type system. Notably, we

show that EPP is preserved under each of the sorts of variable substitution, with some specific

conditions on the substitution depending on the sort.

Lemma 56 (Values Project to Values). If Val(𝑉) then Val(J𝑉 K𝐿) for any 𝐿.

Proof. By induction on 𝑉 . □

Lemma 57 (EPP Reduces Free Variables). fv(J𝐶K𝐿) ⊆ fv(𝐶).

Proof. By induction on 𝐶 . □

Lemma 58 (Location Substitution Preserves EPP). If J𝐶K𝐿 = 𝐸 and 𝐿 ∉ 𝜎 , then J𝐶 [𝜎]K𝐿 = 𝐸 [𝜎].

Proof. By induction on 𝐶 . Each case follows directly by induction, noting that Lemmas 11 and

12 guarantee that the same sub-case of EPP will be selected by J𝐶K𝐿 and J𝐶 [𝜎]K𝐿 . □

Lemma 59. If J𝐶K𝛼 = 𝐸 and NL(𝐶) ∉ 𝜎 then J𝐶 [𝜎]K𝜎 (𝛼) = 𝐸 [𝜎].

Proof. Similar to Lemma 58. By induction on 𝐶 , noting that the same sub-case of EPP will

be selected by J𝐶K𝛼 and J𝐶 [𝜎]K𝜎 (𝛼) because like location constants, variables are equal only to

themselves, and because any value 𝛼 may resolve to does not appear in𝐶 by assumption, and so may

only appear in 𝐶 [𝜎] in places where 𝛼 appears in 𝐶 . For example, in the case of 𝐶 = 𝜌.𝑒 , if 𝛼 ∈ 𝜌 ,

and hence 𝛼 ∈ fv(𝜌), we have that J𝜌.𝑒K𝛼 [𝜎] = ret(𝑒) [𝜎] = ret(𝑒 [𝜎]). Then because 𝜎 (𝛼) ∈ 𝜌 [𝜎],
we have that J𝜌 [𝜎] .𝑒 [𝜎]K𝜎 (𝛼) = ret(𝑒 [𝜎]) as expected. Otherwise if 𝛼 ∉ 𝜌 , and hence 𝛼 ∉ fv(𝜌),
we have that J𝜌.𝑒K𝛼 [𝜎] = () [𝜎] = (). Then because both 𝛼 ∉ fv(𝜌) and 𝜎 (𝛼) ∉ NL(𝜌.𝑒) = NL(𝜌),
we have that 𝜎 (𝛼) ∉ 𝜌 [𝜎], and so J𝜌 [𝜎] .𝑒 [𝜎]K𝜎 (𝛼) = () as expected. □

Corollary 7. If J𝐶K𝛼 = 𝐸 and 𝐿 ∉ NL(𝐶) then J𝐶 [𝛼 ↦→ 𝐿]K𝐿 = 𝐸 [𝛼 ↦→ 𝐿].

Lemma 60 (Type Substitution Preserves EPP). If J𝐶K𝐿 = 𝐸, then for any type variable substitution
𝜎 we have that J𝐶 [𝜎]K𝐿 = 𝐸 [𝜎].

Proof. By induction on 𝐶 . All cases follow directly by induction, noting that no location or

location set in 𝐶 will be affected by the substitution, so the same sub-case of EPP is selected. □

Lemma 61 (EPP is Fully Collapsed). If J𝐶K𝐿 = 𝐸 then collapse(𝐸) = 𝐸.

Proof. By induction on𝐶 . Note that in the definition of EPP, the collapsing sequencing function

is always used instead of the primitive ; for sequencing two programs. Therefore each case

follows directly by induction, and specifically because of the logic that if collapse(𝐸1) = 𝐸1 and

collapse(𝐸2) = 𝐸2, then collapse(𝐸1 # 𝐸2) = collapse(𝐸1) # collapse(𝐸2) = 𝐸1 # 𝐸2. □

60 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

Lemma 62 (Member Local Substitution Preserves EPP). If J𝐶K𝐿 = 𝐸 and 𝐿 ∈ 𝜌 , then for any local
variable substitution 𝜎 we have that J𝐶 [𝜌 |𝜎]K𝐿 = collapse(𝐸 [𝜎]).

Proof. By induction on 𝐶 , noting that no location or location sets in 𝐶 will be affected by the

substitution. The interesting cases are for 𝜌 ′ .𝑒 and when ; can appear in the projection of 𝐶 , such

as 𝐶 = let 𝜌 ′ .𝑥 B 𝐶1 in 𝐶2.

• If 𝜌.𝑒 and 𝐿 ∈ 𝜌 ′, we have that

J(𝜌 ′ .𝑒) [𝜌 |𝜎]K𝐿 = J𝜌 ′ .𝑒 [𝜎]K𝐿 = ret(𝑒 [𝜎]) = collapse(ret(𝑒 [𝜎])).
Otherwise if 𝐿 ∉ 𝜌 ′ then J𝜌 ′ .𝑒 [𝜎]K𝐿 = () = collapse(()).

• For let 𝜌 ′ .𝑥 B 𝐶1 in 𝐶2 and 𝐿 ∈ 𝜌 ′, we have that

J(let 𝜌 ′ .𝑥 B 𝐶1 in 𝐶2) [𝜌 |𝜎]K𝐿 = Jlet 𝜌 ′ .𝑥 B 𝐶1 [𝜌 |𝜎] in 𝐶2 [𝜌 |𝜎]K𝐿
= let 𝑥 B J𝐶1 [𝜌 |𝜎]K𝐿 in J𝐶2 [𝜌 |𝜎]K𝐿
= collapse(let 𝑥 B J𝐶1 [𝜌 |𝜎]K𝐿 in J𝐶2 [𝜌 |𝜎]K𝐿)
= collapse(let 𝑥 B J𝐶1K𝐿 [𝜎] in J𝐶2K𝐿 [𝜎])
= collapse((let 𝑥 B J𝐶1K𝐿 in J𝐶2K𝐿) [𝜎]).

Otherwise if 𝐿 ∉ 𝜌 ′ then using Lemma 61 we see that

Jlet 𝜌 ′ .𝑥 B 𝐶1 [𝜌 |𝜎] in 𝐶2 [𝜌 |𝜎]K𝐿 = J𝐶1 [𝜌 |𝜎]K𝐿 # J𝐶2 [𝜌 |𝜎]K𝐿
= collapse(J𝐶1K𝐿 [𝜎]) # collapse(J𝐶1K𝐿 [𝜎])
= collapse((J𝐶1K𝐿 # J𝐶2K𝐿) [𝜎]) .

• For case𝜌 ′ 𝐶 of (inl 𝑋 ⇒ 𝐶1) (inr 𝑌 ⇒ 𝐶2), if 𝐿 ∈ 𝜌 ′ the argument is straightforward by

induction. Now consider the case when 𝐿 ∉ 𝜌 ′. We have that

u

v©­«
case𝜌 ′ 𝐶 of
| inl 𝑋 ⇒ 𝐶1

| inr 𝑌 ⇒ 𝐶2

ª®¬ [𝜌 |𝜎]
}

~

𝐿

=

u

v
case𝜌 ′ 𝐶 [𝜌 |𝜎] of
| inl 𝑋 ⇒ 𝐶1 [𝜌 |𝜎]
| inr 𝑌 ⇒ 𝐶2 [𝜌 |𝜎]

}

~

𝐿

= J𝐶 [𝜌 |𝜎]K𝐿 # J𝐶1 [𝜌 |𝜎]K𝐿 ⊔ J𝐶2 [𝜌 |𝜎]K𝐿
= collapse(J𝐶K𝐿 [𝜎]) # collapse(J𝐶1K𝐿 [𝜎]) ⊔ collapse(J𝐶2K𝐿 [𝜎])
= collapse((J𝐶K𝐿 # J𝐶1K𝐿 ⊔ J𝐶2K𝐿) [𝜎]),

where the final equality uses Lemma 42.

□

Lemma 63 (Non-Member Local Substitution Preserves EPP). If J𝐶K𝐿 = 𝐸 and 𝐿 ∉ 𝜌 , then for any
local variable substitution 𝜎 we have that J𝐶 [𝜌 |𝜎]K𝐿 = 𝐸.

Proof. The proof is nearly identical to Lemma 62. □

Corollary 8 (Local Substitution Preserves EPP). If J𝐶K𝐿 = 𝐸, then for any local variable substitution
𝜎 there is some 𝐸′ ⪯ 𝐸 such that J𝐶 [𝜌 |𝜎]K𝐿 = 𝐸′.

Proof. If 𝐿 ∈ 𝜌 then by Lemmas 40 and 62, 𝐸′ = collapse(𝐸 [𝜎]) suffices. Otherwise if 𝐿 ∉ 𝜌 ,

then by Lemma 63 and reflexivity of ⪯, 𝐸′ = 𝐸 suffices. □

Definition 7. For a choreographic variable substitution 𝜎1 and a network-program variable

substitution 𝜎2, say that J𝜎1K𝐿 = 𝜎2 if and only if J𝜎1 (𝑋)K𝐿 = 𝜎2 (𝑋) for all program variables 𝑋 .

Lemma64 (Substitution Preserves EPP). If J𝐶K𝐿 = 𝐸 and J𝜎1K𝐿 = 𝜎2, then J𝐶 [𝜎1]K𝐿 = collapse(𝐸 [𝜎2]).

Step in Tine: Forking Processes in Functional Choreographies 61

Proof. By induction on 𝐶 .

• If 𝐶 = 𝑋 , then J𝑋 [𝜎1]K𝐿 = J𝜎1 (𝑋)K𝐿 = 𝜎2 (𝑋) by the assumption and by Lemma 61.

• Let 𝐶 = let 𝜌.𝑥 B 𝐶1 in 𝐶2. If 𝐿 ∈ 𝜌 , the conclusion follows immediately by induction.

Otherwise if 𝐿 ∉ 𝜌 , then

J(let 𝜌.𝑥 B 𝐶1 in 𝐶2) [𝜎1]K𝐿 = Jlet 𝜌.𝑥 B 𝐶1 [𝜎1] in 𝐶2 [𝜎1]K𝐿
= J𝐶1 [𝜎1]K𝐿 # J𝐶2 [𝜎1]K𝐿
= collapse(J𝐶1K𝐿 [𝜎2]) # collapse(J𝐶2K𝐿 [𝜎2])
= collapse((J𝐶1K𝐿 # J𝐶2K𝐿) [𝜎2])
= collapse(Jlet 𝜌.𝑥 B 𝐶1 in 𝐶2K𝐿 [𝜎2]).

• Let𝐶 = case𝜌 𝐶 of (inl𝑋 ⇒ 𝐶1) (inr 𝑌 ⇒ 𝐶2). If 𝐿 ∈ 𝜌 , the conclusion follows immediately

by induction. Otherwise if 𝐿 ∉ 𝜌 then, noting that 𝑋 ∉ fv(J𝐶1K𝐿) and 𝑌 ∉ fv(J𝐶2K𝐿), we
have that

u

v©­«
case𝜌 𝐶 of
| inl 𝑋 ⇒ 𝐶1

| inr 𝑌 ⇒ 𝐶2

ª®¬ [𝜎1]
}

~

𝐿

=

u

v
case𝜌 𝐶 [𝜎1] of
| inl 𝑋 ⇒ 𝐶1 [𝑋 ↦→ 𝑋,𝑌 ↦→ 𝜎1 (𝑌)]
| inr 𝑌 ⇒ 𝐶2 [𝑋 ↦→ 𝑋,𝑌 ↦→ 𝜎1 (𝑌)]

}

~

𝐿

= J𝐶 [𝜎1]K𝐿 # J𝐶1 [𝑋 ↦→ 𝑋,𝑌 ↦→ 𝜎1 (𝑌)]K𝐿 ⊔ J𝐶2 [𝑋 ↦→ 𝑋,𝑌 ↦→ 𝜎1 (𝑌)]K𝐿
= collapse(J𝐶K𝐿 [𝜎2]) # collapse(J𝐶1K𝐿 [𝜎2]) ⊔ collapse(J𝐶2K𝐿 [𝜎2])
= collapse((J𝐶K𝐿 # J𝐶1K𝐿 ⊔ J𝐶2K𝐿) [𝜎2]).

by applying Lemma 42.

• The other cases follow similar logic to those above.

□

Corollary 9. J𝐶 [𝑋 ↦→ 𝑉]K𝐿 ⪯ J𝐶K𝐿 [𝑋 ↦→ J𝑉 K𝐿].

Lemma 65 (Projection of Non-Participants). If Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 , 𝐿 ∉ 𝜌 , and J𝐶K𝐿 = 𝐸, then Val(𝐸).

Proof. By induction on the typing derivation Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 . Most cases are straightforward or

follow similar logic to a case shown below.

• (T-Var) We have J𝑋 K𝐿 = 𝑋 , which is a value.

• (T-Done) If the MLV is a value, we have either J𝜌.𝑣K𝐿 = ret(𝑣) or J𝜌.𝑣K𝐿 = (), which is a

value in either case. Otherwise if the MLV is not a value then 𝐿 ∉ 𝜌 , so J𝜌.𝑒K𝐿 = ().
• (T-Fun) If Jfun𝜌 𝐹 (𝑋) B 𝐶K𝐿 is defined, then it is either fun or (), both of which are values.

• (T-App) Let Θ ⊢ 𝐶1 : 𝜏1
𝜌
−→ 𝜏2 ▷ 𝜌1, Θ ⊢ 𝐶2 : 𝜏2 ▷ 𝜌2, and 𝜌 ′ = tloc(Θ;𝜏1) ∪ tloc(Θ;𝜏2) ∪ 𝜌 .

By assumption 𝐿 ∉ 𝜌 ′ ∪ 𝜌1 ∪ 𝜌2, so we can apply induction to 𝐶1 and 𝐶2 to see that

J𝐶1 $𝜌 ′ 𝐶2K𝐿 = J𝐶1K𝐿 # J𝐶2K𝐿 # () = () as both J𝐶1K𝐿 and J𝐶2K𝐿 are values.

• (T-TFunLoc) If Jtfun𝜌 𝐹 (𝛼) B 𝐶K𝐿 is defined, then it is either tfun or (), both of which are

values.

• (T-TAppLoc) Let Θ ⊢ 𝐶1 : ∀𝛼 :: ∗loc [𝜌] . 𝜏 ▷ 𝜌1, Θ ⊢ ℓ :: ∗loc, and 𝜌 ′ = tloc(Θ;𝜏1 [𝛼 ↦→ ℓ]) ∪
𝜌 [𝛼 ↦→ ℓ]. By assumption 𝐿 ∉ 𝜌 ′ ∪ 𝜌1, so we can apply induction to 𝐶1 to see that

J𝐶1 $𝜌 ′ ℓK𝐿 = J𝐶1K𝐿 # () = ().
• (T-Pair) Let Θ ⊢ 𝐶1 : 𝜏1 ▷ 𝜌1 and Θ ⊢ 𝐶2 : 𝜏1 ▷ 𝜌2. By induction, both J𝐶1K𝐿 and J𝐶2K𝐿 are

values. Therefore because either J(𝐶1,𝐶2)𝜌K𝐿 = J𝐶1K𝐿 # J𝐶2K𝐿 = J𝐶2K𝐿 if 𝐿 ∉ 𝜌 or otherwise

J(𝐶1,𝐶2)𝜌K𝐿 = (J𝐶1K𝐿, J𝐶2K𝐿), in either case the projection is a value. The argument for

other introduction forms are identical.

62 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

• (T-Case) Let Θ ⊢ 𝐶 : 𝜏1 +𝜌 ′ 𝜏2 ▷ 𝜌 , Θ, 𝑋 :𝜏1 ⊢ 𝐶1 : 𝜏 ▷ 𝜌1, and Θ, 𝑌 :𝜏2 ⊢ 𝐶2 : 𝜏 ▷ 𝜌2. As

𝐿 ∉ 𝜌 ∪ 𝜌1 ∪ 𝜌2 ∪ 𝜌 ′, we can apply induction to all of𝐶 ,𝐶1, and𝐶2. Therefore the projection

is Jcase𝜌 ′ 𝐶 of (inl 𝑋 ⇒ 𝐶1) (inr 𝑌 ⇒ 𝐶2)K𝐿 = J𝐶K𝐿 # J𝐶1K𝐿 ⊔ J𝐶2K𝐿 = J𝐶1K𝐿 ⊔ J𝐶2K𝐿 . By
the assumption that the projection exists, it must be that 𝑋 ∉ fv(J𝐶1K𝐿), 𝑌 ∉ fv(J𝐶2K𝐿), and
the merge J𝐶1K𝐿 ⊔ J𝐶2K𝐿 exists. Using Lemma 41, we find that J𝐶1K𝐿 ⊔ J𝐶2K𝐿 is also a value.

The argument for other elimination forms are identical.

• (T-LetLocal, T-LetLoc, T-LetLocSet) Let Θ ⊢ 𝐶1 : 𝑡𝑒@𝜌 ▷ 𝜌1 and Θ, 𝜌 ′ .𝑥 :𝑡𝑒 ⊢ 𝐶2 : 𝜏 ▷ 𝜌2.

The assumption is that 𝐿 ∉ 𝜌 ′ ∪ 𝜌1 ∪ 𝜌2, so by induction Jlet 𝜌 ′ .𝑥 :𝑡𝑒 B 𝐶1 in𝐶2K𝐿 = J𝐶1K𝐿 #
J𝐶2K𝐿 = J𝐶2K𝐿 , which is a value or variable. The same argument applies to the type-let

expression.

• (T-Fork) Let Θ, 𝛼 ::∗loc, {ℓ, 𝛼}.𝑥 : loc𝛼 ⊢ 𝐶 : 𝜏 ▷ 𝜌 and Θ ⊢ 𝜏 :: ∗𝜌𝑡 . If 𝐿 ∉ {ℓ} ∪ (𝜌 \ {𝛼}),
then Jlet (𝛼, 𝑥) B ℓ .fork() in 𝐶K𝐿 = J𝐶K𝐿 . By assumption, J𝐶K𝐿 must be defined. As well,

since 𝐿 ≠ 𝛼 , we have that 𝐿 ∉ 𝜌 , so we can apply induction to 𝐶 as desired.

• (T-Kill) Let Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 , and 𝐿 ∉ 𝜌 ∪ {𝐿′}. Then Jkill 𝐿′ after 𝐶K𝐿 = J𝐶K𝐿 is a value or

variable by induction.

□

Lemma 66 (Projection of Non-Owners). If Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 , 𝐿 ∉ 𝜌 ∪ tloc(Θ;𝜏), and J𝐶K𝐿 = 𝐸, then
𝐸 = () or 𝐸 = 𝑋 .

Proof. By induction on the typing derivation Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 . Most cases are straightforward or

follow similar logic to a case shown below.

• (T-Var) J𝑋 K𝐿 = 𝑋 .

• (T-Done) If 𝐿 ∉ 𝜌 then J𝜌.𝑒K𝐿 = ().
• (T-Fun) If Jfun𝜌 𝐹 (𝑋) B 𝐶K𝐿 is defined and 𝐿 ∉ 𝜌 , then it projects to ().
• (T-App) Let Θ ⊢ 𝐶1 : 𝜏1

𝜌
−→ 𝜏2 ▷ 𝜌1, Θ ⊢ 𝐶2 : 𝜏2 ▷ 𝜌2, and 𝜌

′ = tloc(Θ;𝜏1) ∪ tloc(Θ;𝜏2) ∪𝜌 . By

assumption 𝐿 ∉ 𝜌 ′ ∪ 𝜌1 ∪ 𝜌2, so as 𝐿 ∉ tloc(Θ;𝜏2) and 𝐿 ∉ tloc(Θ;𝜏1
𝜌
−→ 𝜏2) = tloc(Θ;𝜏1) ∪

tloc(Θ;𝜏2) ∪𝜌 we can apply induction to𝐶1 and𝐶2 to see that J𝐶1 $𝜌 ′𝐶2K𝐿 = J𝐶1K𝐿 # J𝐶2K𝐿 #
() = ().

• (T-TFunLoc) This case is vacuous as we can never have 𝐿 ∉ tloc(Θ;∀𝛼 ::𝜅ℓ [𝜌] . 𝜏) = ⊤.
• (T-TFun) If 𝐿 ∉ tloc(Θ;∀𝛼 ::𝜅 [𝜌] . 𝜏) = 𝜌 ∪ tloc(Θ, 𝛼 ::𝜅;𝜏) = 𝜌 ′, then Jtfun𝜌 ′ 𝐹 (𝛼) B 𝐶K𝐿 =

().
• (T-TAppLoc, T-TApp) LetΘ ⊢ 𝐶1 : ∀𝛼 ::𝜅ℓ [𝜌] . 𝜏 ▷ 𝜌1,Θ ⊢ ℓ :: ∗loc, and 𝜌 ′ = tloc(Θ;𝜏 [𝛼 ↦→ ℓ])∪

𝜌 [𝛼 ↦→ ℓ]. By assumption, 𝐿 ∉ 𝜌 ′∪𝜌1. Then by Lemma 65, J𝐶1K𝐿 must be a value. Therefore

J𝐶1 $𝜌 ′ ℓK𝐿 = J𝐶1K𝐿 # () = (). The argument for T-TApp is analogous.

• (T-Pair) Let Θ ⊢ 𝐶1 : 𝜏1 ▷ 𝜌1 and Θ ⊢ 𝐶2 : 𝜏2 ▷ 𝜌2. As 𝐿 ∉ tloc(Θ;𝜏1 × 𝜏2) = tloc(Θ;𝜏1) ∪
tloc(Θ;𝜏2) = 𝜌 , by induction, both𝐶1 and𝐶2 project to () or a variable. Therefore J(𝐶1,𝐶2)𝜌K𝐿 =

J𝐶1K𝐿 # J𝐶2K𝐿 is a value or variable. The argument for the other introduction forms is similar.

• (T-Case) Let Θ ⊢ 𝐶 : 𝜏1 +𝜌 ′ 𝜏2 ▷ 𝜌 , Θ, 𝑋 :𝜏1 ⊢ 𝐶1 : 𝜏 ▷ 𝜌1Θ2, and Θ, 𝑌 :𝜏2 ⊢ 𝐶2 : 𝜏 ▷ 𝜌2.

By assumption 𝐿 ∉ 𝜌 ∪ 𝜌1 ∪ 𝜌2 ∪ 𝜌 ′ ∪ tloc(Θ;𝜏), so we can apply induction to 𝐶1 and 𝐶2.

By Lemma 65, J𝐶K𝐿 must be a value. Therefore the projection is Jcase𝜌 ′ 𝐶 of (inl 𝑋 ⇒
𝐶1) (inr 𝑌 ⇒ 𝐶2)K𝐿 = J𝐶K𝐿 # J𝐶1K𝐿 ⊔ J𝐶2K𝐿 = J𝐶1K𝐿 ⊔ J𝐶2K𝐿 . By the assumption that the

projection exists, it must be that 𝑋 ∉ fv(J𝐶1K𝐿), 𝑌 ∉ fv(J𝐶2K𝐿), and the merge J𝐶1K𝐿 ⊔ J𝐶2K𝐿
exists. If either J𝐶1K𝐿 or J𝐶2K𝐿 equals (), they both must be, and hence their merge equals

(). If either is a variable, they both must be the same variable by the fact that the merge

exists, and hence their merge is a variable. The argument for the other elimination forms is

similar.

Step in Tine: Forking Processes in Functional Choreographies 63

• (T-LetLocal, T-LetLoc, T-LetLocSet) Let Θ ⊢ 𝐶1 : 𝑡𝑒@𝜌 ▷ 𝜌1 and Θ, 𝜌 ′ .𝑥 :𝑡𝑒 ⊢ 𝐶2 : 𝜏 ▷ 𝜌2.

The assumption is that 𝐿 ∉ 𝜌 ′ ∪ 𝜌1 ∪ 𝜌2 ∪ tloc(Θ;𝜏), so by induction J𝐶2K𝐿 is () or a variable,
and by Lemma 65 J𝐶1K𝐿 must be a value. Therefore Jlet 𝜌 ′ .𝑥 :𝑡𝑒 B 𝐶1 in 𝐶2K𝐿 = J𝐶1K𝐿 #
J𝐶2K𝐿 = J𝐶2K𝐿 . The same argument applies to the type-let expression.

• (T-Fork) Let Θ, 𝛼 ::∗loc, {ℓ, 𝛼}.𝑥 : loc𝛼 ⊢ 𝐶 : 𝜏 ▷ 𝜌 and Θ ⊢ 𝜏 :: ∗𝜌𝑡 . If 𝐿 ∉ {ℓ} ∪ (𝜌 \ {𝛼}) ∪
tloc(Θ;𝜏), then Jlet (𝛼, 𝑥) B ℓ .fork() in 𝐶K𝐿 = J𝐶K𝐿 . By assumption, J𝐶K𝐿 must be defined.

As well, since 𝐿 ≠ 𝛼 , we have that 𝐿 ∉ 𝜌 ∪ tloc(Θ;𝜏), so we can apply induction to 𝐶 as

desired.

• (T-Kill) Let Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 , and 𝐿 ∉ 𝜌 ∪ {𝐿′} ∪ tloc(Θ;𝜏). Then Jkill 𝐿′ after 𝐶K𝐿 = J𝐶K𝐿
which satisfies the requirement by induction.

□

Lemma 67 (Projection of Non-Participant Values). If Θ ⊢ 𝑉 : 𝜏 ▷ 𝜌 , Val(𝑉) and 𝐿 ∉ tloc(Θ;𝜏),
then J𝑉 K𝐿 = ().

Proof. By induction on the typing derivation Θ ⊢ 𝑉 : 𝜏 ▷ 𝜌 , similarly to Lemma 65. Note,

however, that this Lemma is different than Lemma 65 because that there we pre-suppose that J𝐶K𝐿
exists, whereas here we do not. □

Lemma 68. If 𝐿 ∉ cloc(𝐶) and J𝐶K𝐿 = 𝐸, then Val(𝐸).

Proof. By induction on 𝐶 . □

E.5 Completeness, Soundness, and Deadlock-Freedom

Lemma 69 (Labels Uniquely Determine Active Locations). If 𝐿 ⊲ ⟨𝐸1,Ω⟩
𝑙
=⇒ ⟨𝐸′

1
,Ω′

1
⟩ and 𝐿 ⊲

⟨𝐸2,Ω⟩
𝑙
=⇒ ⟨𝐸′

2
,Ω′

2
⟩ then Ω′

1
= Ω′

2
.

Proof. By induction on the step, noting that the only times that Ω changes is when 𝑙 =

fork(𝐿′, 𝐸). But in this case, as the labels on the steps are identical, the same location must

be added to Ω in both steps. □

Lemma 70 (Non-Participant Local Completeness). If Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 , ⟨𝐶,Ω⟩ 𝑅
=⇒𝑐 ⟨𝐶′,Ω′⟩,

𝐿 ∈ Ω \ rloc(𝑅), and J𝐶K𝐿 = 𝐸, then there is some 𝐸′ ⪯ 𝐸 such that J𝐶′K𝐿 = 𝐸′. That is, the following
diagram holds.

𝐶 𝐶′

𝐸 𝐸′

𝐿 ∉ 𝑅

𝑐

J·K𝐿 J·K𝐿

⪰

Proof. By induction on the step ⟨𝐶,Ω⟩ 𝑅
=⇒𝑐 ⟨𝐶′,Ω′⟩.

• (C-Ctx) Straightforward by induction.

• (C-Done) Both sides of the step project to ().
• (C-App) Let Θ, 𝐹 :𝜏1

𝜌1−→ 𝜏2, 𝑋 :𝜏1 ⊢ 𝐶 : 𝜏2 ▷ 𝜌1, tloc(Θ;𝜏1) ∪ tloc(Θ;𝜏2) ∪ 𝜌1 = 𝜌 , and

Θ ⊢ 𝑉 : 𝜏1 ▷ 𝜌2. By Lemma 67, the left side of the step projects to

q
𝑓 $𝜌 𝑉

y
𝐿
= () # J𝑉 K𝐿 # () = () # () # () = (),

64 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

where 𝑓 = fun𝜌 𝐹 (𝑋) B 𝐶 and 𝐿 ∉ 𝜌 . By Lemma 22, Θ ⊢ 𝐶 [𝐹 ↦→ 𝑓 , 𝑋 ↦→ 𝑉] : 𝜏2 ▷ 𝜌1.

Therefore as J𝐶K𝐿 must exist by the definition of EPP on fun, by Lemma 65 J𝐶 [𝐹 ↦→ 𝑓 , 𝑋 ↦→
𝑉]K𝐿 is either a unit () or variable 𝑍 , both of which are satisfactory because 𝑍 ⪯ () and
() ⪯ ().

• (C-TApp) We handle the case when the function’s type variable is a location. The as-

sumptions are that Θ, 𝐹 :∀𝛼 ::∗loc [𝜌1] . 𝜏, 𝛼 ::∗loc ⊢ 𝐶 : 𝜏 ▷ 𝜌1, Θ ⊢ ℓ :: ∗loc, and 𝐿 ∉ 𝜌 =

tloc(Θ;𝜏 [𝛼 ↦→ ℓ]) ∪ 𝜌1 [𝛼 ↦→ ℓ]. The left side of the step projects to J𝑓 $𝜌 ℓK𝐿 = () # () = (),
where 𝑓 = tfun𝜌 𝐹 (𝛼) B 𝐶 . By Lemma 22, Θ, 𝛼 ::∗loc ⊢ 𝐶 [𝐹 ↦→ 𝑓] : 𝜏 ▷ 𝜌1, and by

Lemma 17, Θ ⊢ 𝐶 [𝐹 ↦→ 𝑓 , 𝛼 ↦→ ℓ] : 𝜏 [𝛼 ↦→ ℓ] ▷ 𝜌1 [𝛼 ↦→ ℓ]. Therefore as J𝐶K𝐿 must exist

by the definition of EPP on tfun, by Lemma 65 J𝐶 [𝐹 ↦→ 𝑓 , 𝛼 ↦→ ℓ]K𝐿 is either a unit or

variable. The arguments when the function’s type variable is a location set, program type,

or local type are analogous.

• (C-UnfoldFold) By Lemma 67, the left side projects to Junfold𝜌 (fold𝜌 𝑉)K𝐿 = J𝑉 K𝐿 # () =
(). The right side also projects to J𝑉 K𝐿 = ().

• (C-FstPair, C-SndPair) By Lemma 67, the left side projects to Jfst𝜌 (𝑉1,𝑉2)𝜌K𝐿 = J𝑉1K𝐿 #
J𝑉2K𝐿 # () = (). The right side also projects to J𝑉1K𝐿 = (). The case for C-SndPair is

symmetric.

• (C-CaseInl, C-CaseInr) By Lemma 67, the left side projects to

q
case𝜌 (inl𝜌 𝑉) of (inl 𝑋 ⇒ 𝐶1) (inr 𝑌 ⇒ 𝐶2)

y
𝐿
= J𝑉 K𝐿 # J𝐶1K𝐿 ⊔ J𝐶2K𝐿 = J𝐶1K𝐿 ⊔ J𝐶2K𝐿 .

As 𝑋 ∉ fv(J𝐶1K𝐿) by the above projection and by Lemma 64, the right side projects to

J𝐶1 [𝑋 ↦→ 𝑉]K𝐿 ⪯ J𝐶1K𝐿
[
𝑋 ↦→ J𝑉 K𝐿

]
= J𝐶1K𝐿 ⪯ J𝐶1K𝐿 ⊔ J𝐶2K𝐿 .

The case for C-CaseInr is symmetric.

• (C-LetV) The left side projects to Jlet 𝜌1.𝑥 B 𝜌2.𝑣 in 𝐶K𝐿 = J𝜌2.𝑣K𝐿 # J𝐶K𝐿 = J𝐶K𝐿 . By
Lemma 63, the right side projects to J𝐶 [𝜌1 |𝑥 ↦→ 𝑣]K𝐿 = J𝐶K𝐿 .

• (C-TyLetV) The left side projects to

Jlet 𝜌2 .𝛼 ::∗loc B 𝜌3.⌈𝐿′⌋ in 𝐶K𝐿 = J𝜌3 .⌈𝐿′⌋K𝐿 # J𝐶K𝐿 = J𝐶K𝐿 .

By soundness of the local loc type, we must have that 𝐿′ ∈ 𝜌1 ⊆ 𝜌2 ⊆ 𝜌3, and hence 𝐿 ≠ 𝐿′.
Therefore by Lemma 58, and as 𝛼 ∉ fv(J𝐶K𝐿), the right side projects to J𝐶 [𝛼 ↦→ 𝐿′]K𝐿 =

J𝐶K𝐿 [𝛼 ↦→ 𝐿′] = J𝐶K𝐿 which suffices. The cases when the type variable is a location set is

analogous.

• (C-SendV) The left side projects to J𝜌1.𝑣 {𝐿′ }⇝ 𝜌2K𝐿 = J𝜌1 .𝑣K𝐿 , and the right side projects to
J(𝜌1 ∪ 𝜌2).𝑣K𝐿 . Because 𝐿 ∉ 𝜌2, whether or not 𝐿 ∈ 𝜌1 we have that projections are identical.

• (C-Sync) The left and right side both project to J𝐿′ [𝑑] ⇝ 𝜌 ; 𝐶K𝐿 = J𝐶K𝐿 .
• (C-Fork) Let 𝐿′′ be the newly spawned location. As 𝐿 ∈ Ω but 𝐿′′ ∉ Ω, we have that 𝐿 ≠ 𝐿′′.
Therefore by Lemmas 58 and 63, and as 𝛼, 𝑥 ∉ fv(J𝐶K𝐿), we have that

Jlet (𝛼, 𝑥) B 𝐿′ .fork() in 𝐶K𝐿 = J𝐶K𝐿
= J𝐶K𝐿 [𝛼 ↦→ 𝐿′′, 𝑥 ↦→ ⌈𝐿′′⌋]
= J𝐶 [𝛼 ↦→ 𝐿′′, {𝐿, 𝐿′}.𝑥 ↦→ ⌈𝐿′′⌋]K𝐿 ,

which suffices.

• (C-Kill) For 𝐿 ≠ 𝐿′, we directly have that Jkill 𝐿′ after 𝑉 K𝐿 = J𝑉 K𝐿 , so the conclusion is

satisfied by reflexivity of ⪯.
• (C-KillI) Suppose the step is ⟨kill 𝐿′ after 𝐶,Ω⟩ 𝑅

=⇒𝑐 ⟨𝐶,Ω \ {𝐿′}⟩ with 𝐿′ ∉ cloc(𝐶) and
𝐿 ≠ 𝐿′. Then Jkill 𝐿′ after 𝐶K𝐿 = J𝐶K𝐿 , so the conclusion similarly follows.

Step in Tine: Forking Processes in Functional Choreographies 65

• (C-CaseI) First consider the case when 𝐿 ∉ 𝜌 . We can apply the inductive hypothesis to 𝐶1

and 𝐶2 to see that

q
case𝜌 𝐶 of (inl 𝑋 ⇒ 𝐶1) (inr 𝑌 ⇒ 𝐶2)

y
𝐿
= J𝐶K𝐿 # J𝐶1K𝐿 ⊔ J𝐶2K𝐿
⪰ J𝐶K𝐿 # J𝐶′

1
K𝐿 ⊔ J𝐶′

2
K𝐿

=
q
case𝜌 𝐶 of (inl 𝑋 ⇒ 𝐶′

1
) (inr 𝑌 ⇒ 𝐶′

2
)
y
𝐿
,

where the inequality holds because of Lemmas 43 and 61. The second equality holds because

𝑋 ∉ fv(J𝐶′
1
K𝐿) and 𝑌 ∉ fv(J𝐶′

2
K𝐿) by Lemma 34 and the assumption that the original

choreography projects. In the alternate case that 𝐿 ∈ 𝜌 the logic is straightforward:

q
case𝜌 𝐶 of (inl 𝑋 ⇒ 𝐶1) (inr 𝑌 ⇒ 𝐶2)

y
𝐿
= case J𝐶K𝐿 of (inl 𝑋 ⇒ 𝐶1) (inr 𝑌 ⇒ 𝐶2)
⪰ case J𝐶K𝐿 of (inl 𝑋 ⇒ 𝐶′

1
) (inr 𝑌 ⇒ 𝐶′

2
)

=
q
case𝜌 𝐶 of (inl 𝑋 ⇒ 𝐶′

1
) (inr 𝑌 ⇒ 𝐶′

2
)
y
𝐿
.

The other out-of-order steps follow similar logic.

□

Corollary 10. If Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 , ⟨𝐶,Ω⟩ 𝑅
=⇒𝑐 ⟨𝐶′,Ω′⟩, 𝐿 ∈ Ω \ rloc(𝑅), and J𝐶K⋔

𝐿
= 𝐸, then there is

some 𝐸′ ⪯ 𝐸 such that J𝐶′K⋔
𝐿
= 𝐸′.

Proof. If 𝐿 ∉ SL(𝐶), then this follows immediately by Lemma 70. Otherwise if 𝐿 ∈ SL(𝐶), then
it either follows by setting 𝐸′ = 𝐸 in the case that the reduction does not occur in the scope of

the kill expression that 𝐿 is executing, and otherwise if it does, the result also follows by applying

Lemma 70 to that subexpression. □

Definition 8. For Ω a set of locations, let Ω |𝐿 be the subset of Ω representing the children of 𝐿.

That is, 𝐿′ ∈ Ω |𝐿 if and only if 𝐿′ ∈ Ω and 𝐿 has spawned 𝐿′.

Lemma 71 (Participant Local Completeness). IfΘ ⊢ 𝐶 : 𝜏 ▷ 𝜌 , ⟨𝐶,Ω⟩ 𝑅
=⇒𝑐 ⟨𝐶′,Ω′⟩, 𝐿 ∈ Ω∪rloc(𝑅),

𝑅 is not a kill step, and J𝐶K𝐿 = 𝐸, there is some 𝐸′
1
and 𝐸′

2
such that 𝐸′

1
⪯ 𝐸′

2
, J𝐶′K𝐿 = 𝐸′

1
, and

𝐿 ⊲ ⟨𝐸, Ω |𝐿⟩
J𝑅K𝐿
====⇒+ ⟨𝐸′

2
, Ω′ |𝐿⟩. That is, the following diagram holds.

𝐶 𝐶′

𝐸 𝐸′ ⪰ J𝐶′K𝐿

𝐿 ∈ 𝑅
𝑐

J·K𝐿 J·K𝐿

J𝑅K𝐿 +

Proof. By induction on the step ⟨𝐶,Ω⟩ 𝑅
=⇒𝑐 ⟨𝐶′,Ω′⟩.

• (C-Ctx) Straightforward by induction.

• (C-Done) Apply N-Ret.

• (C-App) The left side of the step projects to

q
𝑓 $𝜌 𝑉

y
𝐿
= (fun 𝐹 (𝑋) B J𝐶K𝐿) J𝑉 K𝐿 .

We can apply N-App to step to J𝐶K𝐿 [𝐹 ↦→ J𝑓 K𝐿, 𝑋 ↦→ J𝑉 K𝐿], which is satisfactory by

Lemma 64.

66 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

• (C-TApp) We consider the case when the type variable is a location. The left side of the step

projects to

q
𝑓 $𝜌 ℓ

y
𝐿
= (tfun 𝐹 (𝛼) B AmI 𝛼 then J𝐶 [𝛼 ↦→ 𝐿]K𝐿 else J𝐶K𝐿) ℓ .

We first apply N-TApp to step to

AmI ℓ then J𝐶 [𝛼 ↦→ 𝐿]K𝐿
[
𝐹 ↦→ J𝑓 K𝐿

]
else J𝐶K𝐿

[
𝐹 ↦→ J𝑓 K𝐿 , 𝛼 ↦→ ℓ

]
.

If 𝐿 = ℓ , we apply N-IAmIn to then step to

J𝐶 [𝛼 ↦→ 𝐿]K𝐿
[
𝐹 ↦→ J𝑓 K𝐿

]
⪰ J𝐶 [𝐹 ↦→ 𝑓 , 𝛼 ↦→ 𝐿]K𝐿 = J𝐶′K𝐿 .

Otherwise suppose 𝐿 ≠ ℓ . We apply N-IAmNotIn to step to J𝐶K𝐿 [𝐹 ↦→ J𝑓 K𝐿, 𝛼 ↦→ ℓ], and
by Lemmas 58 and 64 have that

J𝐶′K𝐿 = J𝐶 [𝐹 ↦→ 𝑓 , 𝛼 ↦→ ℓ]K𝐿 = J𝐶 [𝐹 ↦→ 𝑓]K𝐿 [𝛼 ↦→ ℓ] ⪯ J𝐶K𝐿
[
𝐹 ↦→ J𝑓 K𝐿 , 𝛼 ↦→ ℓ

]
as required. The argument when the type variable is a location set, program type, or local

type are analogous.

• (C-CaseInl, C-CaseInr) The left side projects to

u

v
case𝜌 (inl𝜌 𝑉) of
| inl 𝑋 ⇒ 𝐶1

| inr 𝑌 ⇒ 𝐶2

}

~

𝐿

=

case inl J𝑉 K𝐿 of
| inl 𝑋 ⇒ J𝐶1K𝐿
| inr 𝑌 ⇒ J𝐶2K𝐿

We apply N-CaseInl to step to J𝐶1K𝐿 [𝑋 ↦→ 𝑉], which is satisfactory by Lemma 64. The

argument for C-CaseInr is symmetric.

• (C-LetV) The left side projects to Jlet 𝜌1.𝑥 B 𝜌2.𝑣 in 𝐶K𝐿 = let 𝑥 B ret(𝑣) in J𝐶K𝐿
because 𝐿 ∈ 𝜌1 ⊆ 𝜌2. We apply N-Let to step to J𝐶K𝐿 [𝜌1 |𝑥 ↦→ 𝑣], which is satisfactory by

Corollary 8.

• (C-TyLetV) We consider the case when the type variable is a location. The left side of the

step projects to

Jlet 𝜌2.𝛼 B 𝜌3.⌈𝐿′⌋ in 𝐶K𝐿 = let 𝛼 B ret(⌈𝐿′⌋) in AmI 𝛼 then J𝐶 [𝛼 ↦→ 𝐿]K𝐿 else J𝐶K𝐿
because 𝐿 ∈ 𝜌2 ⊆ 𝜌3. We first apply N-TyLet to step to

AmI 𝐿′ then J𝐶 [𝛼 ↦→ 𝐿]K𝐿 else J𝐶K𝐿 [𝛼 ↦→ 𝐿′] .
If 𝐿 = 𝐿′, we apply N-IAmIn to then step to

J𝐶 [𝛼 ↦→ 𝐿]K𝐿 = J𝐶 [𝛼 ↦→ 𝐿′]K𝐿 = J𝐶′K𝐿 .

Otherwise if 𝐿 ≠ 𝐿′ we apply N-IAmNotIn to step to J𝐶K𝐿 [𝛼 ↦→ 𝐿′], and by Lemma 58 we

have that

J𝐶′K𝐿 = J𝐶 [𝛼 ↦→ 𝐿′]K𝐿 = J𝐶K𝐿 [𝛼 ↦→ 𝐿′]
as required. The argument when the type variable is a location set or local type are analogous.

• (C-Fork) Let 𝐿′ be the newly spawned location. As 𝐿 ∈ Ω but 𝐿′ ∉ Ω, we have that 𝐿 ≠ 𝐿′.
Thus the left side of the step projects to

Jlet (𝛼, 𝑥) B 𝐿.fork() in 𝐶K𝐿 = let (𝛼, 𝑥) B fork(J𝐶K𝛼) in J𝐶K𝐿 .

By applying N-Fork we can step to J𝐶K𝐿 [𝛼 ↦→ 𝐿′, 𝑥 ↦→ ⌈𝐿′⌋], and by Lemma 58 and

Corollary 8

J𝐶′K𝐿 = J𝐶 [𝛼 ↦→ 𝐿′, {𝐿, 𝐿′}.𝑥 ↦→ ⌈𝐿′⌋]K𝐿 ⪯ J𝐶K𝐿 [𝛼 ↦→ 𝐿′, 𝑥 ↦→ ⌈𝐿′⌋]
as required.

Step in Tine: Forking Processes in Functional Choreographies 67

• (C-CaseI) We can apply the inductive hypothesis to 𝐶1 and 𝐶2 to find some 𝐸1 and 𝐸2 such

that J𝐶′
1
K𝐿 ⪯ 𝐸1, J𝐶′

2
K𝐿 ⪯ 𝐸2, ⟨J𝐶1K𝐿,Ω⟩

J𝑅K𝐿
====⇒+ ⟨𝐸1,Ω′⟩, and ⟨J𝐶2K𝐿,Ω⟩

J𝑅K𝐿
====⇒+ ⟨𝐸2,Ω′⟩,

where the Ω′
are equivalent by Lemma 43. Because 𝜌 ∩ rloc(𝑅) = ∅ and 𝐿 ∈ rloc(𝑅), we

must have that 𝐿 ∉ 𝜌 . Similarly because cloc(𝐶) ∩ rloc(𝑅) = ∅, we have that 𝐿 ∉ cloc(𝐶).
Thus by Lemma 68, J𝐶K𝐿 is a value. Then the projection of the left-hand side is

u

v
case𝜌 𝐶 of
| inl 𝑋 ⇒ 𝐶1

| inr 𝑌 ⇒ 𝐶2

}

~

𝐿

= J𝐶K𝐿 # J𝐶1K𝐿 ⊔ J𝐶2K𝐿 = J𝐶1K𝐿 ⊔ J𝐶2K𝐿 ,

and the projection of the right-hand side is

u

v
case𝜌 𝐶 of
| inl 𝑋 ⇒ 𝐶′

1

| inr 𝑌 ⇒ 𝐶′
2

}

~

𝐿

= J𝐶K𝐿 # J𝐶′
1
K𝐿 ⊔ J𝐶′

2
K𝐿 = J𝐶′

1
K𝐿 ⊔ J𝐶′

2
K𝐿 .

Using Lemma 45 allows the required steps to be made on the right-hand side. The other

out-of-order steps follow similar logic.

□

Corollary 11. If Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 , ⟨𝐶,Ω⟩ 𝑅
=⇒𝑐 ⟨𝐶′,Ω′⟩, 𝐿 ∈ Ω ∪ rloc(𝑅), 𝑅 is not a kill step, and

J𝐶K⋔
𝐿
= 𝐸, there is some 𝐸′

1
and 𝐸′

2
such that 𝐸′

1
⪯ 𝐸′

2
, J𝐶′K⋔

𝐿
= 𝐸′

1
, and 𝐿 ⊲ ⟨𝐸, Ω |𝐿⟩

J𝑅K𝐿
====⇒+ ⟨𝐸′

2
, Ω′ |𝐿⟩.

Proof. If 𝐿 ∉ SL(𝐶), then this follows immediately by Lemma 71. Otherwise if 𝐿 ∈ SL(𝐶), then
the reduction must occur in the scope of the kill expression that 𝐿 is executing, and the result also

follows by applying Lemma 71 to that subexpression. □

Lemma 72 (Kill-Step Local Completeness). If Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 , ⟨𝐶,Ω⟩
kill(𝐿)
=====⇒𝑐 ⟨𝐶′,Ω′⟩, 𝐿 ∈ Ω, and

J𝐶K⋔
𝐿
= 𝐸, then 𝐸

exit
====⇒ ().

Proof. By induction on the step, similarly to Lemma 71. For the step C-Killwhere ⟨ kill𝐿 after𝑉 ,Ω⟩ 𝑅
=⇒𝑐

⟨𝑉 ,Ω\{𝐿}⟩, the projection for 𝐿 simply steps as J𝑉 K𝐿 # exit = exit
exit
====⇒ () because by Lemma 56,

J𝑉 K𝐿 is a value. If instead the step C-KillI occurs and ⟨kill 𝐿 after 𝐶,Ω⟩ 𝑅
=⇒𝑐 ⟨𝐶,Ω \ {𝐿}⟩, the

projection for 𝐿 steps as J𝐶K𝐿 # exit = exit
exit
====⇒ () because by Lemma 68, J𝐶K𝐿 is a value. □

Definition 9 (System Label Extraction). The label extraction function ⌊𝑙𝑆⌋𝐿 is a partial function

which maps system labels to network program labels as follows:

⌊𝜄𝐿1⌋𝐿 =

{
𝜄 if 𝐿 = 𝐿1

undefined otherwise

⌊𝐿1.𝑚⇝ 𝜌2⌋𝐿 =


𝑚⇝ 𝜌2 if 𝐿 = 𝐿1

𝐿1.𝑚⇝ if 𝐿 ≠ 𝐿1 and 𝐿 ∈ 𝜌2

undefined otherwise

⌊𝐿1.fork(𝐿2, 𝐸)⌋𝐿 =

{
fork(𝐿2, 𝐸) if 𝐿 = 𝐿1

undefined otherwise

⌊kill(𝐿1)⌋𝐿 =

{
exit if 𝐿 = 𝐿1

undefined otherwise

Lemma 73 (Single System Step Combining). For all system labels 𝑙𝑆 that are not fork or kill, if

(1) for all locations 𝐿 such that ⌊𝑙𝑆⌋𝐿 = 𝑙 , both 𝐿 ∈ Ω and 𝐿 ⊲ ⟨Π(𝐿), Ω |𝐿⟩
𝑙
=⇒ ⟨Π′ (𝐿), Ω |𝐿⟩,

68 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

(2) for all locations 𝐿 such that ⌊𝑙𝑆⌋𝐿 = undefined, either 𝐿 ∉ Ω or Π(𝐿) = Π′ (𝐿),

then Π
𝑙𝑆
=⇒𝑆 Π′, where Ω = dom(Π) = dom(Π′).

Proof. By case analysis of the label 𝑙𝑆 , noting that ⌊𝑙𝑆⌋𝐿 is defined precisely for those locations

that will participate in the step. □

Definition 10 (catMaybes). Let catMaybes : list(maybe(𝑡)) → list(𝑡) be the function which

selects all defined entries in a list. For instance,

catMaybes([1 , undefined , 2 , 3 , undefined]) = [1 , 2 , 3] .
Corollary 12 (System Step Combining). For all sequences of system labels 𝑙𝑆,1 , 𝑙𝑆,2 , . . . , 𝑙𝑆,𝑛 which
are not fork or kill, if

(1) 𝐿 ⊲ ⟨Π(𝐿), Ω |𝐿⟩
catMaybes([⌊𝑙𝑆,1 ⌋𝐿 , ⌊𝑙𝑆,2 ⌋𝐿 , ... , ⌊𝑙𝑆,𝑛 ⌋𝐿])
=====================================⇒∗ ⟨Π′ (𝐿), Ω |𝐿⟩ for all 𝐿 ∈ dom(Π) = Ω,

(2) 𝐿 ∈ Ω for all 𝐿 such that at least one of the ⌊𝑙𝑆,𝑖⌋𝐿 is defined,

then Π
𝑙𝑆,1 , 𝑙𝑆,2 , ... , 𝑙𝑆,𝑛
===============⇒∗

𝑆
Π′.

Proof. By induction on the length of the reduction, applying Lemma 73 repeatedly. □

Lemma 74 (Redex Projection Commutes). For all locations 𝐿 and redices 𝑅,

catMaybes([⌊𝑙𝑆⌋𝐿 | 𝑙𝑆 ∈ J𝑅KL]) = J𝑅K𝐿 .

That is, the subsequence of system labels in J𝑅KL which involve a location 𝐿 is given precisely by the
single-location projection J𝑅K𝐿 .

Proof. By induction on 𝑅. □

Lemma 75. If ⟨𝐶,Ω⟩
𝐿.fork(𝐿′,𝐶 ′′)
============⇒𝑐 ⟨𝐶′,Ω′⟩, Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 , Θ ⊢ 𝐶 loc-ok, NL(𝜌) ⊆ Ω, and

J𝐶K𝐿 = 𝐸, then there is some 𝐸′′ such that J𝐶′′K𝐿′ ⪯ 𝐸′′ and J𝐶′K⋔
𝐿′ = J𝐶′′K𝐿′ # exit.

Proof. By induction on the step. The out-of-order steps and steps in an evaluation context

follow by induction, noting that 𝐿′ ∉ Ω, and hence 𝐿′ ∉ SL(𝐶), so no other kill expressions than
the one created by this step may contain 𝐿′. For a C-Fork step let (𝛼, 𝑥) B 𝐿.fork() in 𝐶′′ =⇒𝑐

kill 𝐿′ after 𝐶′′ [𝛼 ↦→ 𝐿′, 𝑥 ↦→ ⌈𝐿′⌋] with 𝐿′ ∉ NL(𝐶′′), the assumption that the left-hand side

projects for 𝐿 means that J𝐶′′K𝛼 must exist. Then by Lemmas 59 and 62, we have that

J𝐶′′ [𝛼 ↦→ 𝐿′, 𝑥 ↦→ ⌈𝐿′⌋]K𝐿′ ⪯ J𝐶′′ [𝛼 ↦→ 𝐿′]K𝐿′ [𝑥 ↦→ ⌈𝐿′⌋]
= J𝐶′′K𝛼 [𝛼 ↦→ 𝐿′, 𝑥 ↦→ ⌈𝐿′⌋]

which, as desired, is defined, and ⪰ the required projections. □

Lemma 76 (Single-Step Completeness). IfΘ ⊢ 𝐶 : 𝜏 ▷ 𝜌 ,Θ ⊢ 𝐶 loc-ok,NL(𝜌) ⊆ Ω, J𝐶K⋔Ω = Π, and

⟨𝐶,Ω⟩ 𝑅
=⇒𝑐 ⟨𝐶′,Ω′⟩, then there is some Π′

1
and Π′

2
such that Π′

1
⪯ Π′

2
, J𝐶′K⋔Ω′ = Π′

1
, and Π

J𝑅KL
====⇒+

𝑆
Π′
2
.

That is, the following diagram holds.

𝐶 𝐶′

Π Π′ ⪰ J𝐶′K⋔Ω′

𝑅
𝑐

J·K⋔Ω J·K⋔Ω′

J𝑅KL +

Step in Tine: Forking Processes in Functional Choreographies 69

Proof. First the case for steps which are not fork or kill. By Corollary 12 and Lemma 74, it

suffices to prove that

𝐿 ⊲ ⟨J𝐶K⋔𝐿 , Ω |𝐿⟩
J𝑅K𝐿
====⇒∗ ⟨Π′

2
(𝐿), Ω |𝐿⟩

and J𝐶′K⋔
𝐿
⪯ Π′

2
(𝐿) for each location 𝐿 ∈ Ω. If 𝐿 ∉ rloc(𝑅), this holds by Corollary 10, noting that

J𝑅K𝐿 is empty. Otherwise if 𝐿 ∈ rloc(𝑅), this is precisely Corollary 11. To apply Corollary 12 we

also need to show that rloc(𝑅) ⊆ Ω. This follows by soundness of participants (Theorem 1), and as

NL(𝜌) ⊆ Ω by assumption. That is, 𝐿 ∈ rloc(𝑅) ⊆ NL(𝜌) ⊆ Ω. As well, there is always at least one
location in the system that makes a step.

For the case of a 𝐿.fork(𝐿′,𝐶′′) step, for each location already in the system—in Ω—we can either

apply Corollary 10 for 𝐿′′ ≠ 𝐿, 𝐿′, or Corollary 11 for 𝐿. The new thread 𝐿′ does not need to make a

step, but we must show that J𝐶′K⋔
𝐿′ ⪯ J𝐶′′K𝐿′ ; exit, and that this projection exists—this is precisely

Lemma 75.

For a kill(𝐿) step, for each location 𝐿′ ≠ 𝐿, we apply Corollary 10. For 𝐿, since they were removed

from Ω and the system, we do not need to worry about their projection, and can simply apply

Lemma 72 to allow the system to perform a kill(𝐿) step. □

Lemma 77 (System Single-Step Lifting). If Π1

𝑙
=⇒𝑆 Π′

1
and Π1 ≾ Π2 then there is some Π′

2
such

that Π2

𝑙
=⇒𝑆 Π′

2
and Π′

1
⪯ Π′

2
.

Proof. Follows via a case analysis of the step and using Lemma 55, noting that by definition if

Π1 ≾ Π2 then dom(Π1) = dom(Π2), so for the fork and kill steps, the respective systems after

the steps will still have the same domains, and the network program of any spawned thread will be

identical in Π′
1
and Π′

2
. □

Corollary 13. If Π1 ⪯ Π2 then there is some Π′
2
such that Π1 ≾ Π′

2
and Π2 =⇒∗

𝑆
Π′
2
.

Proof. Follows by Lemmas 54 and 73, noting that the reduction sequence taken by each location

are all 𝜄 steps, and hence can all happen independently. □

Lemma 78 (System Lifting Property). If Π1 =⇒𝑛
𝑆
Π′
1
and Π1 ⪯ Π2 then there is some Π′

2
and 𝑘 ≥ 𝑛

such that Π2 =⇒𝑘
𝑆
Π′
2
and Π′

1
⪯ Π′

2
.

Proof. By induction on the length 𝑛 of the initial reduction sequence. If 𝑛 = 0 the conclusion is

trivial by choosing 𝑘 = 0 and Π′
2
= Π2. Otherwise suppose the reduction is Π1 =⇒𝑛

𝑆
Π′
1
=⇒𝑆 Π′′

1
.

By induction, there is some Π′
2
and 𝑘 ≥ 𝑛 where Π2 =⇒𝑘

𝑆
Π′
2
and Π′

1
⪯ Π′

2
. By Corollary 13, we

can step Π′
2
=⇒∗

𝑆
Π′′
2
where Π′

1
≾ Π′′

2
. By Lemma 77, we can take a step Π′′

2
=⇒𝑆 Π′′′

2
to some Π′′′

2

where Π′′
1
⪯ Π′′′

2
. Then the reduction sequence Π2 =⇒𝑘

𝑆
Π′
2
=⇒∗

𝑆
Π′′
2
=⇒𝑆 Π′′′

2
is precisely as is

required. □

Theorem 9 (Completeness). If Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 , Θ ⊢ 𝐶 loc-ok, NL(𝜌) ⊆ Ω, ⟨𝐶,Ω⟩ =⇒𝑛
𝑐 ⟨𝐶′,Ω′⟩,

and J𝐶K⋔Ω = Π, then there is some 𝑘 ≥ 𝑛, Π′
1
, and Π′

2
such that Π′

1
⪯ Π′

2
, J𝐶′K⋔Ω′ = Π′

1
, and Π =⇒𝑘

𝑆
Π′
2
.

Proof. By induction on the number of steps 𝑛. The case when 𝑛 = 0 is trivial. For 𝑛 > 0, we

have a reduction sequence of the form

⟨𝐶1,Ω1⟩ =⇒𝑛
𝑐 ⟨𝐶2,Ω2⟩ =⇒𝑐 ⟨𝐶3,Ω3⟩.

By the inductive hypothesis, there is some 𝑘 ≥ 𝑛 and Π2 where J𝐶2K⋔Ω2

⪯ Π2 and J𝐶1K⋔Ω1

=⇒𝑘
𝑆
Π2.

By Type Preservation (Theorem 7), 𝐶2 is typed as Θ ⊢ 𝐶2 : 𝜏 ▷ 𝜌2 for some 𝜌2, Θ ⊢ 𝐶2 loc-ok,
and NL(𝜌2) ⊆ Ω2. Thus we can apply Lemma 76 to 𝐶2 to find some Π3 such that J𝐶3K⋔Ω3

⪯ Π3

70 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

and J𝐶2K⋔Ω2

=⇒+
𝑆
Π3. By Lemma 78, there is some Π′

3
⪰ Π3 such that Π2 =⇒+

𝑆
Π′
3
. Then Π′

3
is

satisfactory, as J𝐶1K⋔Ω1

=⇒𝑘
𝑆
Π2 =⇒+

𝑆
Π′
3
and J𝐶3K⋔Ω3

⪯ Π3 ⪯ Π′
3
. The argument is summarized by

the following diagram.

J𝐶1K⋔Ω1

Π2

J𝐶2K⋔Ω2

Π′
3

Π3

J𝐶3K⋔Ω3

𝑘 +

+

⪰ ⪰
⪰

□

Theorem 3 (Completeness). If Θ ⊢ 𝐶 : 𝜏 ▷ 𝜌 , every location literal in 𝐶 is in Ω, and 𝐶 contains no
kill-after expressions, then whenever ⟨𝐶,Ω⟩ =⇒∗

𝑐 ⟨𝐶′,Ω′⟩, there is some Π′ such that J𝐶K⋔Ω =⇒∗
𝑆
Π′

and J𝐶′K⋔Ω′ ⪯ Π′.

Proof. Follows directly from Theorem 9. □

Lemma 79 (Network Program Diamond Lemma). If 𝐿 ⊲ ⟨𝐸1,Ω1⟩
𝑙1
=⇒ ⟨𝐸2,Ω2⟩ and 𝐿 ⊲ ⟨𝐸1,Ω1⟩

𝑙2
=⇒

⟨𝐸3,Ω3⟩, where 𝐸2 ≠ 𝐸3, then either both steps are message receives from the same sender, or we can

find some 𝐸4 and Ω4 such that 𝐿 ⊲ ⟨𝐸2,Ω2⟩
𝑙2
=⇒ ⟨𝐸4,Ω4⟩ and 𝐿 ⊲ ⟨𝐸3,Ω3⟩

𝑙1
=⇒ ⟨𝐸4,Ω4⟩,

Proof. By induction on the first step, and case analysis of the second step. The only interesting

cases are when both reductions are 𝜄 steps to reduce the same local program. If this is the case,

because we assume the diamond lemma (Property (2)) for local programs, we can reduce the local

programs—and hence network programs—to a common reduct. □

Lemma 80 (System Diamond Lemma). If Π1 =⇒𝑆 Π2 and Π1 =⇒𝑆 Π3, where Π2 ≠ Π3, then there
is some Π4 where Π2 =⇒𝑆 Π4 and Π3 =⇒𝑆 Π4.

Proof. By case analysis of the steps. If both steps are different cases (i.e., an 𝜄 step and message

receive), or when both steps are 𝜄, kill, or fork, we can apply Lemma 79. Note for fork steps that

there is non-determinism in the choice of spawned thread name. This is not an issue, as we can

simply equate two systems modulo a permutation given by the choice of spawned thread name.

Now consider the case when both steps are message sends of the form 𝐿1.𝑚1 ⇝ 𝜌1 and 𝐿2.𝑚2 ⇝
𝜌2. We must have that 𝐿1 ≠ 𝐿2, for otherwise as there is exactly one message the sender can send,

we would have𝑚1 =𝑚2 and 𝜌1 = 𝜌2, which violates the assumption that Π2 ≠ Π3. But in this case

we can simply apply Lemma 79 as the senders are distinct. □

Lemma 81. If Π1 =⇒𝑆 Π2 and Π1 =⇒𝑛
𝑆
Π3, then either Π2 =⇒𝑛−1

𝑆
Π3, or there is some Π4 such that

Π2 =⇒𝑛
𝑆
Π4 and Π3 =⇒𝑆 Π4

Proof. By induction on 𝑛. If the second reduction sequence is of length 0, we trivially satisfy

the second case as Π3 = Π1. Otherwise suppose the reduction sequence is of the form Π1 =⇒𝑛
𝑆

Π3 =⇒𝑆 Π4. We can apply induction to the pair Π2 and Π3. In the first case, where Π2 =⇒𝑛−1
𝑆

Π3,

the first case also applies for the larger reduction sequence with the witness Π2 =⇒𝑛−1
𝑆

Π3 =⇒𝑆 Π4

of length 𝑛. Otherwise suppose that there is some Π5 where Π2 =⇒𝑛
𝑆
Π5 and Π3 =⇒𝑆 Π5.

Step in Tine: Forking Processes in Functional Choreographies 71

First suppose that Π4 ≠ Π5. Then by Lemma 80, we can find some Π6 such that Π4 =⇒𝑆 Π6 and

Π5 =⇒𝑆 Π6, which is satisfactory with the witness reduction sequence Π2 =⇒𝑛
𝑆
Π5 =⇒𝑆 Π6 of

length 𝑛 + 1.

Otherwise let Π4 = Π5. But then we have a reduction Π2 =⇒𝑛
𝑆
Π4, which is satisfactory. □

Lemma 82 (System Confluence). If Π1 =⇒𝑚
𝑆
Π2 and Π1 =⇒𝑛

𝑆
Π3, then there is some Π4,𝑚′, and 𝑛′

where Π2 =⇒𝑛′

𝑆
Π4, Π3 =⇒𝑚′

𝑆
Π4,𝑚′ ≤ 𝑚, 𝑛′ ≤ 𝑛, and𝑚′ ≥ 𝑚 − 𝑛.

Proof. By induction on 𝑛. If 𝑛 = 0, the conclusion follows by choosing Π4 = Π2. Otherwise

suppose the second reduction sequence is of the form Π1 =⇒𝑛
𝑆
Π3 =⇒𝑆 Π4. First we apply the

inductive hypothesis to find some Π5, 𝑚
′
, and 𝑛′ with the required properties. Now we apply

Lemma 81 to the two reductions Π3 =⇒𝑆 Π4 and Π3 =⇒𝑚′

𝑆
Π5.

First the case where Π4 =⇒𝑚′−1
𝑆

Π5. The reduction sequences Π2 =⇒𝑛′

𝑆
Π5 and Π4 =⇒𝑚′−1

𝑆
Π5

are satisfactory because𝑚′ − 1 < 𝑚′ ≤ 𝑚, 𝑛′ ≤ 𝑛, and𝑚′ ≥ 𝑚 − 𝑛 ⇒𝑚′ − 1 ≥ 𝑚 − (𝑛 + 1).
Now consider the case when there is some Π6 where Π4 =⇒𝑚′

𝑆
Π6 and Π5 =⇒𝑆 Π6. Then the

reduction sequences Π2 =⇒𝑛′

𝑆
Π5 =⇒𝑆 Π6 and Π4 =⇒𝑚′

𝑆
Π6 are satisfactory because 𝑚′ ≤ 𝑚,

𝑛′ ≤ 𝑛 ⇒ 𝑛′ + 1 ≤ 𝑛 + 1, and𝑚′ ≥ 𝑚 − 𝑛 ⇒𝑚′ ≥ 𝑚 − (𝑛 + 1). □

Theorem 4 (Soundness). If ⊢ 𝐶 : 𝜏 ▷ 𝜌 , every location literal in 𝐶 is in Ω, 𝐶 contains no kill-after
expressions, and J𝐶K⋔Ω =⇒∗

𝑆
Π where Π is final, then ⟨𝐶,Ω⟩ =⇒∗

𝑐 ⟨𝑉 ,Ω′⟩ where J𝑉 K⋔Ω′ ⪯ Π.

Proof. First we claim that 𝐶 must terminate. Indeed, if it did not, then by Corollary 4, it will

loop. But then by completeness (Theorem 9) and confluence (Lemma 82), Π must be able to take a

step, contradicting the fact that it is final.

Now suppose that that𝐶 is executed as ⟨𝐶,Ω⟩ =⇒∗
𝑐 ⟨𝑉 ,Ω′⟩. Then by completeness, there is some

Π′ ⪰ J𝑉 K⋔Ω′ such that J𝐶K⋔Ω =⇒∗
𝑆
Π′
. By confluence, there is then some Π′′

where Π =⇒∗
𝑆
Π′′

and

Π′ =⇒∗
𝑆
Π′′

. However, both Π and Π′
are final, and hence equivalent, so that 𝑉 is satisfactory. □

Theorem 10 (Deadlock Freedom). If ⊢ 𝐶 : 𝜏 ▷ 𝜌 , ⊢ 𝐶 loc-ok, NL(𝜌) ⊆ Ω, J𝐶K⋔Ω = Π, and
Π =⇒∗

𝑆
Π′, then either Π′ is a value for every location, or there is some Π′′ such that Π′ =⇒𝑆 Π′′.

Proof. By Corollary 4, 𝐶 either terminates or loops forever. First the case if 𝐶 terminates,

where the argument is similar to Theorem 4. If ⟨𝐶,Ω⟩ evaluates to ⟨𝑉 ,Ω′⟩, then by Completeness

there is some Π𝑉 ⪰ J𝑉 K⋔Ω′ such that Π =⇒∗
𝑆
Π𝑉 . By Lemma 54, we can step Π𝑉 =⇒∗

𝑆
Π′
𝑉
where

Π′
𝑉
≿ J𝑉 K⋔Ω′ . By Confluence (Lemma 82), we can step Π′ =⇒∗

𝑆
Π′
𝑉
. Then by Lemmas 53 and 56, Π′

𝑉

is a value. Lastly, there is either at least one step in the reduction sequence Π′ =⇒∗
𝑆
Π′
𝑉
satisfying

the conclusion, or there are no steps, in which case Π′
is itself a value, satisfying the theorem in

either case.

Now the case when 𝐶 loops forever. Suppose that the reduction sequence Π =⇒𝑛
𝑆
Π′

is of length

𝑛. Then we can find some𝐶′′
and Ω′′

where ⟨𝐶,Ω⟩ =⇒1+𝑛
𝑐 ⟨𝐶′′,Ω′′⟩. By Completeness (Theorem 9),

we can step Π =⇒𝑘
𝑆
Π′′

where 𝑘 ≥ 1 + 𝑛 and J𝐶′′K⋔Ω′′ ⪯ Π′′
. By Confluence (Lemma 82), Π′′

can

then make at least 𝑘 − 𝑛 ≥ 1 + 𝑛 − 𝑛 = 1 steps, satisfying the theorem. □

Theorem 5 (Deadlock Freedom). If ⊢ 𝐶 : 𝜏 ▷ 𝜌 , every location literal in 𝐶 is in Ω, and 𝐶 contains
no kill-after expressions, then whenever J𝐶K⋔Ω =⇒∗

𝑐 Π, either Π is final or it can step.

Proof. Follows directly from Theorem 10. □

	Abstract
	1 Introduction
	2 Background
	2.1 Functional Choreographies
	2.2 Process Polymorphism
	2.3 Process Spawning

	3 System Model
	3.1 Local Operational Semantics
	3.2 Local Type System
	3.3 Example Local Languages

	4 The Lambda-Fork Language
	4.1 Lambda-Fork Syntax
	4.2 Operational Semantics
	4.3 Static Semantics

	5 Network Language
	5.1 Network Language Syntax
	5.2 Network Language Operational Semantics

	6 Endpoint Projection
	6.1 Network Program Merging
	6.2 Endpoint Projection Definition
	6.3 Soundness, Completeness, and Deadlock Freedom

	7 Related Work
	7.1 Functional Choreographic Programming
	7.2 Process Spawning in Choreographies
	7.3 Process Spawning in (Multiparty) Session Types

	8 Conclusion
	References
	A Choreography Operational Semantics
	A.1 Choreography Values
	A.2 Redices and Evaluation Contexts
	A.3 Projection of a Redex
	A.4 Redex Blocked Locations
	A.5 Choreography Blocked Locations
	A.6 Redex for an Evaluation Context
	A.7 Location Set Relations
	A.8 Choreography Operational Semantics

	B Static Semantics
	B.1 Lambda-Fork Kinding System
	B.2 Lambda-Fork Type System
	B.3 Spawned Thread Well-Scopedness Judgment

	C Network Language
	C.1 Network Language Expressions
	C.2 Transition Labels and Evaluation Contexts
	C.3 Network Language Operational Semantics

	D Compilation
	D.1 Network Program Merging
	D.2 Endpoint Projection
	D.3 Locations Named by a Type or Choreography
	D.4 Spawned Locations in a Choreography
	D.5 The Less-Than Relation
	D.6 The Simulating Less-Than Relation

	E Proofs
	E.1 Substitution Lemmas
	E.2 Type Soundness
	E.3 Bisimulation Relation
	E.4 Endpoint Projection
	E.5 Completeness, Soundness, and Deadlock-Freedom

