Step in Tine: Forking Processes in Functional Choreographies

ASHLEY SAMUELSON, University of Wisconsin-Madison, USA
ANDREW K. HIRSCH, University at Buffalo, SUNY, USA
ETHAN CECCHETTI, University of Wisconsin—Madison, USA

Traditional concurrent-programming techniques require programmers to painstakingly write programs for
each participant in a concurrent system. Choreographic programming, in contrast, allows a programmer to
write one centralized program and compile it to the individual programs. This approach simplifies critical
properties like deadlock freedom, but it complicates forking new processes, a core primitive in concurrent
programming. This work addresses that gap with the choreographic fork calculus A, the first functional
choreographic language with process forking. At provides a deadlock-freedom guarantee while allowing pro-
grams to dynamically determine when to spawn new processes, what they will do, and who will communicate
with them. In doing so, it supports practical algorithms like parallel divide-and-conquer.

CCS Concepts: » Theory of computation — Functional constructs; Type structures; » Computing method-
ologies — Concurrent programming languages.

Additional Key Words and Phrases: Concurrency, Choreographies, Functional programming

1 Introduction

As nearly every computer system has come to rely on parallelism for efficiency, the difficulty of
writing correct concurrent code has become an increasing concern. Complex interactions between
processes can lead to subtle bugs such as deadlocks, where two or more processes are waiting on
each other, preventing the system from progressing. Choreographic programming [Montesi 2023]
has recently emerged as a promising tool to address this challenge. Instead of writing separate
programs for each process, the choreographic paradigm allows programmers to specify the behavior
and interactions of all processes in a single, top-level program called a choreography. A compiler
then produces code for each process using a procedure called endpoint projection (EPP). This global
specification allows programmers to reason about the system as a whole and leads to deadlock
freedom by design, eliminating a common source of bugs in concurrent programs.

While early works on choreographic programming built a promising foundation [Carbone
and Montesi 2013; Montesi 2013], they lacked the language features necessary for the paradigm
to be used in modern software engineering. A flurry of recent papers have been adding these
capabilities to choreographic calculi, including higher-order programming [Cruz-Filipe et al. 2022;
Giallorenzo et al. 2023; Hirsch and Garg 2022], process polymorphism [Graversen et al. 2024;
Samuelson et al. 2025], and multiply-located values [Bates et al. 2025; Samuelson et al. 2025]. While
these features have made choreographic programming more expressive, they still lack important
features, including the ability to dynamically fork processes. This ability is key to many concurrent
applications, as was recognized by early choreographic work [see e.g., Carbone and Montesi 2013;
Cruz-Filipe and Montesi 2016a,b]. These early calculi, however, focused on simpler languages
lacking important functionality needed for modern software engineering.

This work presents A (pronounced “lambda-fork”) to bridge this gap by integrating dynamic
process forking with the powerful features mentioned above. To see how these capabilities combine,

Authors’ Contact Information: Ashley Samuelson, University of Wisconsin—-Madison, Madison, Wisconsin, USA, ashley.
samuelson@wisc.edu; Andrew K. Hirsch, University at Buffalo, SUNY, Buffalo, New York, USA, akhirsch@buftalo.edu;
Ethan Cecchetti, University of Wisconsin-Madison, Madison, Wisconsin, USA, cecchetti@wisc.edu.

https://orcid.org/0009-0001-8800-2590
https://orcid.org/0000-0003-2518-614X
https://orcid.org/0000-0001-7900-8328
https://orcid.org/0009-0001-8800-2590
https://orcid.org/0000-0003-2518-614X
https://orcid.org/0000-0001-7900-8328

2 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

consider the following recursive divide-and-conquer algorithm to sum a list of integers.
recursiveSum : V7. list(int) @f — int@?

recursiveSum ¢ XS = if £.(len XS < localMaxLen)

then £.sum(XS)

else let (£.xsq, £.xs;) = L.split(XS)
a = t.fork()
a.sp = recursiveSum a (£.xs; ~> a)
£.s5 := recursiveSum ¢ £.xs,
£.51 = .51 W {

inf.(s; +s7)

This choreography finds the sum of the list XS owned by ¢, indicated by the type list(int)@7.
The first line checks if XS is long enough to be worth parallelizing; otherwise, £ sums the list
locally. For longer lengths, ¢ splits XS into two halves, xs; and xs;, recursively summing each half in
parallel. To perform this parallelism, ¢ uses the syntax ¢.fork() to spawn a new thread « to sum xs;
while £ sums xs,. Once « is spawned, £ sends it the first half of XS using the notation £.xs; v a,
which produces a value located at a. The new thread a then calls recursiveSum using this value,
potentially spawning its own children to sum its half of the list.

Though they are separate processes, both £ and & can call recursiveSum with their respective lists
because it is process polymorphic—can execute with any location—as indicated by the V¢ preceding
its type. After both processes have summed their halves, @ sends its sum s; to £. At this point, the
thread « falls out of scope and (implicitly) dies. Finally, ¢ returns the sum s; + s;.

The fork construct—a core contribution of An—allows ¢ to spawn a new thread, binding a variable
to its name. This child thread is treated like any other process: while its name is in scope, it may
be asked to execute single-threaded computations, perform control flow to sequence multiple
computations, communicate with other processes, and spawn further threads. Moreover, the fork
construct eases programmers’ administrative burden. First, the programmer does not need to
explicitly state what code a thread will run when it is spawned; EPP extracts the code for the new
thread automatically. Second, because process names are scoped, new threads implicitly die when
their name is no longer in scope.

Retaining core properties like deadlock freedom in A requires careful design. Combining fork
with closures and (first-class) location polymorphism poses a particular challenge not raised by
prior work. A function F that closes over the name « of a spawned process could persist beyond
the scope of a. Applying F could then cause a live process to attempt to communicate with «a,
immediately producing a deadlock. Am prevents such situations through careful tracking of spawned
location names in the type system.

Section 2 reviews background, Section 3 defines the system model underlying Am. Then, the main
contributions of this work are presented as follows:

e Section 4 presents A, the first functional choreographic language to allow forking and killing
child threads. An also includes first-class process names, enabling parent processes to notify
other locations when they have spawned a child.

e Section 4.3.2 formulates a type system for A that tracks which processes might participate in a
choreography to ensure that no process needs to perform computation after it dies.

e Section 6 defines endpoint projection (EPP), a procedure to compile a choreography into a
target-language program (Section 5) for each process, and characterizes EPP’s correctness with
respect to a top-level operational semantics. This result combines with the soundness of the type
system to prove that executing a projected system will never cause a deadlock.

Step in Tine: Forking Processes in Functional Choreographies 3

Finally, Section 7 reviews related work, and Section 8 concludes.

2 Background

To better situate the contributions of our work, we first review the design, features, and limitations
of prior choreographic programming languages.

2.1 Functional Choreographies

Our language primarily extends AQc [Samuelson et al. 2025], which in turn extends Pirouette [Hirsch
and Garg 2022], the first functional choreographic programming language. Like most choreographic
languages, AQc prefixes each local operation with the process that performs it. For example, to
specify that location A should compute 1+3 and send the result to B, one would write A.(1+3) ~» B.
To differentiate operations, we write source programs using a sans-serif font, with location constants
in red, local operations in green, and choreographic operations in blue. Local programs such as
“1+ 3” can be specified in nearly any language, so long as it is equipped with a substitution-based
operational semantics, a sound type system, and its values can be shared via message-passing.
Network-level constructs such as send (), on the other hand, are determined by the choreographic
language.

While the choreographic and local operations are separate, the choreography can sequence local
computations using features such as let-expressions. For example, the output of A.(1+ 3) ~» B is
an integer located at B, which can then be used in a subsequent local computation at B by binding
the result to a (local) variable x as follows: let B.x := A.(1+ 3) ~» B in B.(x — 2).

Choreography-level control flow is supported by the expression if C then C; else C;, where C
evaluates to a boolean value known to some process ¢. As others outside of £ cannot see the output
of C, they cannot determine which branch to execute. To allow other locations to participate in
this branch, AQc includes a selection statement £[d]| ~» p ; C in which £ communicates the chosen
branching direction d € {L, R} of Left or Right to all locations in the set p.

AQc supports multiply-located values (MLVs) [Bates et al. 2025; Sweet et al. 2023], which are local
values known to multiple locations and ensure all parties agree. For instance, {A, B}.(3 > 1) {A}»» C
first instructs A and B to compute the local operation 3 > 1, and then instructs A to send the result
to C. The result is the multiply-located value {A, B, C}.true. MLVs can be used as an alternative
to synchronization messages for branching. For instance, the following choreography ensures all
three locations branch in the same direction: if (s g cy {A,B}.(3 > 1) {A}»> C then C; else C,. Note
that when using MLVs, it often becomes necessary to annotate e.g., who is sending a value or
participating in an if expression.

Endpoint Projection. Like most choreographies, AQc defines a compilation procedure called
endpoint projection (EPP) that translates a choreography into a separate program for each participant.
EPP is a syntax-guided translation that extracts the actions that a single location needs to perform
from the choreography. The location being projected to is denoted by a subscript to the compilation
operator, as in [C]4 and [C]p. For instance, consider the choreography

C=A(2%4)~C;B.(3+2) wC

in which A and B each compute a value and then send it to C. The only actions that A and B need
to perform are computing the value and sending it, while C needs to receive both values:

recv fromA ;

[C]\ =sendret(2x4) toC [Clg =sendret(3+2) toC [Cle = recy from B

The target (network) language is written using an orange teletype font.

4 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

Aqc also defines a top-level operational semantics directly on choreographies, allowing developers
to reason about the behavior of the system as a whole. This choreographic semantics allows for
out-of-order execution, so long as the order of operations for each individual location is respected.
For instance, note that if we execute the projected programs shown above concurrently, either A
or B could perform their local computation first, but C must receive the values in the specified
order. This means that A and B can compute 8 and 5, respectively, in any order in choreography C,
even though B’s computation is after the semicolon. C, conversely, must receive 8 before 5. The
top-level choreographic semantics allows any of these orderings.

As EPP and the top-level semantics provide two different interpretations of the same choreog-
raphy, it is important that their results are equivalent. Samuelson et al. [2025] show that these
two semantics are bisimilar for AQc, and so will always produce the same value. Besides allowing
developers to soundly reason about the execution of a system using the top-level semantics, this
property also guarantees that any concurrent execution of a projected choreography is deadlock-
free, meaning that no process will wait indefinitely for a message that will never arrive due to a
mismatch between the expected send and receive operations.

2.2 Process Polymorphism

Process polymorphism [Graversen et al. 2024] allows choreographies to abstract over their partici-
pants. Analogously to type polymorphism, process polymorphism in AQc is implemented with a
process abstraction Af. C, where variable ¢ represents a generic process name bound in the scope
of C, allowing it to be instantiated with different participants. For example, a programmer could
write a process function in which ¢ computes the sum of two numbers and sends the result to A as
F=Af.£.(1+43) > A, and later instantiate ¢ to B with the syntax F B.

While process polymorphism allows for choreographies to be instantiated with different par-
ticipants, it does not—on its own—allow for the names of processes to be treated in a first-class
manner. First-class process names [Samuelson et al. 2025; Sweet et al. 2023] solve this problem by
allowing local computations to generate, examine, and send process names as values. For example,
the expression A.(if e then [B] else [C]) selects between the process names B and C based on the
value of the boolean e known to A. The output of this computation can then be shared with B and C
so they are aware of who should perform the subsequent computation, and bound to a variable ¢
using AQC’s type-let expression as follows:

let {A,B,C}.¢ = A.(if e then [B] else [C]) » {B,C}
inf.(1+3) ~ A

2.3 Process Spawning

While A is the first functional choreographic language to include the ability to spawn and kill child
threads, previous procedural and imperative choreographic languages have included this feature.
For example, the language introduced by Cruz-Filipe and Montesi [2016a] allows programmers to
write a recursive divide-and-conquer implementation of merge sort, similar to that in Section 1.
However, the features of their language are heavily restricted: each process stores a single memory
cell holding a value of a fixed type, and the value of the memory cell may only be modified by calling
a local procedure or accepting a value from another process. The early choreographic language
constructed by Carbone and Montesi [2013] includes process spawning and allows more expressive
local computations. However, their language lacks process polymorphism and higher-orderedness—
eroding modularity and precluding the recursive divide-and-conquer approach.

Step in Tine: Forking Processes in Functional Choreographies 5

3 System Model

Amassumes the underlying system contains a set of potential computational units (threads, processes,
etc.), which we refer to as locations, and each location has a unique name from a space L. The
number of locations executing at any given time is finite, but programs may spawn an unbounded
number of new locations and each name must be unique, so £ must be infinite.

As noted in Section 2.1, An follows Pirouette [Hirsch and Garg 2022] and AQc [Samuelson et al.
2025] and allows local programs to be specified in nearly any language. This local language must
only satisfy a set of rules common to most expression-based languages. Our assumptions on the local
language are nearly identical to those in AQc and Pirouette, although we make some generalizations.

3.1 Local Operational Semantics

We require that the local language be presented as a set of expressions coupled with a small-step
operational semantics, a distinguished set of values, and a type system. We write e; — e, to denote
that the expression e; steps to e; in the local language’s operational semantics. The semantics must
satisfy the following two properties.

(1) Values cannot step: if Val(v), then there is no e such thatv — e.

(2) The semantics satisfies the diamond property: if e; — e; and e; — es, then either e; = e3
or there is some e, such that e, — e4 and e3 — ey.

Property (1) is a standard assumption about the set of values in the language, and property (2)
ensures multiply-located computations produce the same result at each location they execute at.
While property (2) may seem restrictive, it is satisfied by any deterministic language. Thus, large
subsets of industrial-strength functional languages can be used for local computations.

3.2 Local Type System

Just as the syntax of a choreography depends on the syntax of the local language, the choreographic
type system depends on the local language specifying a type system. The local type system must
include both a kinding judgment and a typing judgement. This allows, but does not require, the local
type system to be polymorphic. The type system must also be sound with respect to the operational
semantics. Specifically, it should satisfy the standard progress and preservation properties.

We denote a local kinding judgment I' I+ ¢ :: *,. We assume for simplicity there is a single
local kind #,, but our results generalize to languages with multiple kinds. We denote local typing
judgements I'; A I e : t where I' is again a kinding context and A is a typing context. To distinguish
these judgments from the choreographic type system, we use a green double-vertical turnstile I-.

To support choreographic control-flow branching, we generalize Pirouette and AQc. Instead
of requiring a local boolean type, we allow an arbitrary (user-defined) predicate isSumd(s, t1, t3)
indicating that every value of type s can be interpreted as either a t; or a t;. For instance, the local
language can specify isSum(bool, unit, unit) and interpret true as inl () and false as inr (). The only
requirement is that there is a deterministic partial function getCase called the extraction function.
We require that, if isSum(s, t1,£;) and I v : s for a value v, then either getCase(v) = inl(v;) with
IF 01 : t; or getCase(v) = inr(v;) with I v, : t;. On other expressions, it may be undefined.

We support first-class process names identically to AQc. Specifically, the local language has two
types loc, and locset,, defining first-class representations of location names and sets of locations,
respectively. As with the sum types above, the local language must be able to uniquely reify
any well-typed representation into a corresponding kind. For instance, if the set £ of locations
consists of all possible strings (e.g., “Alice”, “Bob”, and “Charlie”), we could directly represent a
location by its string. We write representations using the syntax [A]| (which here is syntactic sugar
for “Alice”) and [{A, B}] (which is {“Alice”, “Bob”}) to distinguish them from the actual location

6 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

A € L or location set {A, B} € L. Since a spawned thread could take any name, we require each
location L € L to have at least one representation [L | to ensure our choreographies do not become
stuck when spawning a thread. We do not require there to be any representation for a given set of
locations, however, as this is not a safety concern.

The subscript p to the types loc,, and locset, provides an upper-bound on the set of locations
to which an expression of that type might resolve to. As an example, we could assign both [A |
and if e then [A] else [B] to the type locgs gy, but [C] cannot be assigned this type. Different
local languages may determine different values for p depending on the strength of their type
system and static-analysis abilities. The precision of this bound will not affect the operational
semantics of any choreography, but it may force the programmer to add additional operations to
some choreographies in order to satisfy the type system.

3.3 Example Local Languages

Many A-calculi satisfy our requirements with minor, but standard, modifications. Below we present
two example local langauges—one extending the simply-typed A-calculus, and the other System F.

Example 1 (Simply-Typed A-Calculus). Assuming that L is the set of all strings, we extend the
simply-typed, call-by-value A-calculus to obtain our first example local language. First, we extend
it with sum types, and define isSum(s, t1, t;) to hold precisely when s = t; + f,, and define the
extraction function as

inl(v) e=inlo
getCase(e) = § inr(v) e=inro
undefined otherwise

We further include primitive strings and define [L] as the string-primitive version of L. In
addition to the type string of all strings, we include a type loc(;) containing only [L] for every
location L. We also let locset,, be empty for every p and loc, be empty when |p| # 1.

The representations defined above demonstrate that the local language need only perform a very
simple static analysis to determine the bound p on the type loc,. While this design simplifies the
language significantly, it precludes expressions such as if e then [A] else [B | from having interesting
types like locya gy, instead forcing them to be typed with string. To address this shortcoming,
we make our final extension to STLC: a primitive function casty : string — unit + locy, that
dynamically checks if a primitive string argument is equal to [L], casting it to type loc() if so and
otherwise returning a unit. This allows dynamic analysis to replace the potentially complex static
analysis that otherwise might seem unavoidable. In this instance, by attempting to cast the result
of the if-expression above to both loc(a} and loc(gy—and chaining the output of the casts—we can
realize the type unit + loc(a} + loc(gy, allowing for this dynamically generated representation to
be used at the choreographic level by separately handling the cases when it resolves to A, B, or
another location—which will never occur.

Example 2 (System F). For an example of a more-expressive local langauge, System F with algebraic
and recursive data types, and primitive strings representing locations, satisfies our requirements.
Since we do not require that all local expressions terminate, there is no issue with including named
recursive functions and unrestricted recursive types. We use lists of strings (defined using recursive
data types) to represent location sets. Having multiple list permutations represent the same set of
locations is also not a concern, since we do not require representations to be unique. The syntax of

Step in Tine: Forking Processes in Functional Choreographies 7

this potential local language is shown below.

Types t = a|string | loc, | locset, | ty =ty | i+t | iy Xty | Ya.t | pa.t
Expressions e = x |sestr| funf(x:t):=e | e e | Aa.e | et

| inle | inre | caseeof (inlx = e) (inry = e;)
| (e, ez) | fste | snde | folde | unfolde

To provide a nontrivial static upper-bound on representations of locations, this local language
includes subtyping, and allows the type loc, to be inhabited by any string in the set p—and similarly
for the locset,, type—using the rules shown below.

T'rFA s € str IAke:ty h<it p1 S p2 p1 € p2

;A s - locggy [ARe:ty locy, <:locp, locset,, <: locset,,

4 The At Language

We now present Am, the first functional choreographic programming language that can dynamically
spawn threads. As previously mentioned, we inherit the core of our language from AQc [Samuelson
et al. 2025]—including features such as algebraic and recursive data types, multiply-located local
computations, process polymorphism, and first-class process names—and retain the traditional
deadlock-freedom guarantee of choreographic languages.

4.1 AnSyntax

Figure 1 presents the full syntax of Ah. As in AQc, we write choreographic program variables in
uppercase Roman characters (X, Y, F, .. .), local program variables in lowercase Roman characters
(x,y, f,...), and type, location, and location set variables in lowercase Greek characters (a, f, . . .).
The metavariable ¢ denotes a location, p a set of locations, 7 a choreographic type, t. a local type,
and « a kind.

Most constructs in A are standard for a functional language, consisting of operations on data
types appropriately generalized to choreographies, but there are some key differences. The ex-
pression p.e denotes a local program e that is executed by all locations in the (non-empty) set p.
In cases where p = {f} is a singleton, we use the shorthand f.e. Local programs like e can use
variables bound in the scope of the choreography, which are prepended with the location(s) that
bind(s) them. For instance, A.x denotes variable x in the namespace of location A, which is distinct
from a variable B.x in the namespace of B, and this is reflected in our substitution semantics. If
a local variable is bound in the scope of multiple locations, we write p.x to mean that x is in the
namespace of all locations in p. Local variables (resp. type variables) can be bound to the result of a

Selection Labels d
Choreographies C

LR

X | pe

let p.x:te == CrinCy | let p.aux = CyinCy

Cltlhwp | £[d] »p;C

fun, F(X) :==C | C;$,Cy | tfun, F(azx) =C | C$,t
localCase, C of (inl x = Cy) (inry = C3)

inl, C | inr, C | case, Cof (inlX = Cy) (inrY = Cy)
fold, C | unfold, C | (C1,C2), | fst, C | snd, C

let (a,x) = ¢.fork() in C | kill L after C

Fig. 1. Syntax of Choreographies in A

8 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

choreography using a let expression let p.x:t, := C; in C; (resp. let p.a::x := Cy in Cy). In both of
these expressions, p may be a subset of the locations who know the output of C;.

Data can be shared between locations using the operation C {¢}»> p, in which the output of
choreography C is sent by ¢ to all locations in the set p via message passing. The output of C must
be a local value known to ¢, although it may also be known to others. For notational simplicity,
we elide the ¢ and write C ~» p when C is known only to £. Since the sender, all recipients, and
anyone else who knew the value of a message will all agree on it afterward, the semantics of
sends are collecting—the output is a value located at all relevant locations. For instance, the send
{A,B}.(4 — 2) {A}» {C, D} results in the multiply-located value {A, B, C, D}.2. A separate use of
message passing is selection statements £[d] ~» p’ ; C, which can be used to synchronize on the
branch d € {L, R} taken in a case expression—described below—with the locations in p’.

Named recursive functions are written as fun, F(X) := C, where F is the name of the function,
X is its argument, and C is the body of the function. The additional parameter p is the set of
locations that may be involved in executing the body of the function and is needed to ensure that
spawned process names do not persist beyond the lifetime of the process. It also constrains who
knows the function definition and is dually reflected in the syntax for function application, written
C1 $, C,, which contains an annotation to convey that only those locations in p need to perform
the application. As with message sending syntax, we elide the $, when p is clear from context.

Polymorphism is implemented in A using type functions and type applications. Type functions,
written tfun, F(a::k) = C, are similar to the type abstractions Aa.C found in System F and
previous chreographies [Graversen et al. 2024; Samuelson et al. 2025], but allow the function F to
be recursively defined. All kinds « of the language may be abstracted over in type functions, and
similarly to standard functions, the set of locations p tracks which locations know the definition of
the type function. Type applications, written C $, t, mirror function applications explained above.

Advincludes two separate forms of branching: local case-expressions and choreographic case-
expressions. Local case-expressions, written localCase,, C of (inl x = Cy) (inry = C), generalize
the if-expressions found in prior work [e.g., Cruz-Filipe et al. 2022; Graversen et al. 2024; Hirsch and
Garg 2022; Samuelson et al. 2025], and branch the choreography on the result of a local computation.
Here C must produce a value of local type t known to p where isSum(t, 3, £;) holds. The local
variables x and y are bound for all locations in p with types #; and t,, respectively. To inform
additional locations p” which branch is taken, a programmer has two options. First, they can share
the value of C using the send operation C {¢}»> p’ and branch on the resulting collected value.
Alternatively, they can include selection statements in the branches to inform locations in p” which
branch was taken. In the second case, the value of C is not available to the additional locations,
which may be desirable for security or performance reasons.

Choreographic case-expressions, written case, C of (inl X = Cy) (inrY = C;), are conceptually
similar to local case-expressions, but instead branch the choreography on a choreographic sum—
either of the form inl, V; or inr, V,. This means that V; or V; could be a more complex data type,
such as a choreographic pair or list containing multiple local values, rather than just a single local
value. Selection statements can also be used in the branches of choreographic case-expressions to
allow locations outside of p to know which branch to take.

Similar to case-expressions, choreographic pairs and recursive data types act like their usual
functional-programming counterparts. but with an annotation p describing who knows about the
data. As with other such annotations, we elide them when they are clear from context.

Fork and Kill Expressions. The key addition of An is the fork expression, which allows dynamic
spawning of new locations. Specifically, the expression let (a, x) := £.fork() in C instructs location ¢
to spawn a child process and binds its name to the type variable «, allowing the new location to

Step in Tine: Forking Processes in Functional Choreographies 9

perform computations in the body C. The variable x is bound at locations & and ¢ to a first-class local
representation of the name «, allowing ¢ to notify other locations of the new child and facilitating
direct communication between o and any other location.

We include two notational shortcuts for fork. First, if x is not free in C, we simplify the binding
and write let @ = £.fork() in C. Second, the notation let & := ¢.fork() ~> p in C is sugar for

let (L, x) = £.fork() in (let a := x {t}»> p in C)

which shares the name @ of the newly spawned process with everyone in p, as well as ¢ and « itself.
The construct kill L after C serves as a dual to the fork expression, and is used to track which
threads are currently spawned and differentiate them from other non-ephemeral processes. Infor-
mally, this is not intended to be in the surface language used by programmers. Specifically, when a
new thread L is spawned by a fork expression with body C, the body will simply be placed within
a kill-after expression while executing to denote the fact that L will die once C finishes execution.
Example 3, shown below, demonstrates how the fork expression can be used in tandem with other
language features such as case-expressions, process polymorphism, and the type-let expression.

Example 3 (Load Balancer). Consider a cloud computing application where a client C wishes to
outsource an expensive computation F with input X. The below function runWithWorker shows
how C can run F on a generic worker node W using process polymorphism. Once the worker has
computed F X, they will inform a manager process M, who will execute a callback function onFinish.

runWithWorker : YW. (t = t')@C — t@C — (unit — unit)@M — t'@C

runWithWorker W F X onFinish =let W.f = F ~ W
Wx =X~»W
C.res .= W.(f x) »» C
in W.“done” ~» M ; M.(onFinish ()) ; C.res

The above function does not actually select a worker node; that job falls to M, which maintains a
pool of permanent workers, and selects an available worker dynamically to process each request.
However, if all workers are busy, M will spawn an ephemeral worker using fork that terminates
after a single job. The handleRequest function below implements this functionality.

handleRequest : (t — t")@C — t@C — t'@C

handleRequest F X = localCase (M.acquireWorker() ~» {C} U pool) of
| some(w) = let W = w
in runWithWorker W F X M.(A_. releaseWorker w)
| none = let W := M.fork() ~» C
in runWithWorker W F X M.(A_.())

M uses acquireWorker, which searches for a free worker and returns some(w) if it finds a free
worker w and none otherwise. After alerting all relevant parties to the result, the choreography
branches. If the job is run on a free worker, M releases that worker afterward. If not, there is nothing
to do afterward, as the newly-spawned process falls out of scope and automatically terminates.

Note that this example critically relies on the ability, inherited from AQc [Samuelson et al. 2025],
to send and receive first-class location name representations and reify them into type-level location
names. Both the output of acquireWorker and the spawned location name are sent as messages,
and the final worker identity is bound to a type-level location.

10 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

Redices R == p.(e; > e2) | App, | Caselnl, | L.m ~» p | Ly.fork(L,,C)
Hoc(p.(e1 — €2)) 2 p oo
tloc(Appy) = p cloc(fun, F(X) = C) o
rrllc())cc((ffnsijlg : ?L}Up cloc(C1 $p Cz) = cloc(Cy) U cloc(Cz) U p
Hoe(Lfork(L7.C)) = {L} cloc(let p.a::#)pe == C1 in Cp) % cloc(C1) U (cloc(Ce) \ {a}) U p

cloc(let (a, x) := t.fork() in C) {t} U (cloc(C) \ {a})

Fig. 2. Selected Redices and Location Function Rules. Here m is either a local value v or a selection label d.

4.2 Operational Semantics

The operational semantics of Ah consists of a small-step relation using a labeled-transition system

of the form (Cy, Q1) éc (C3, Q7). The label R represents a redex that tracks the specific reduction
occurring. The parameters Q; and Q, track the locations who are executing the choreography
before and after the step, respectively, and are used to track which locations remain alive.

Choreographies describe concurrent computation, so the operational semantics includes out-
of-order reductions to reflect the ability of locations to execute independently. These steps allow
unrelated actions to occur in different orders, so long as the order of operations for each individual
location is respected. The redices in the step relation specify the step taken and the locations
involved, and a step may only be reordered when any computations it is jumping ahead of involve
a disjoint set of locations.

We compute the locations involved in a step using the redex locations function rloc(R), and
the locations (possibly) involved in an entire choreography using the choreography locations
function cloc(C). For example, the redex A.v ~» B denotes that A sends v to B. Since pre-
cisely A and B participate in this step, rloc(A.v ~» B) = {A, B}. The function cloc(C), on the
other hand, captures all locations that may eventually participate in a step made by C. Thus
cloc(let A.x == A.2in (A.(2 +x) ~» B)) = {A, B}, even though A must take multiple steps before B
gets involved. Figure 2 shows selected redices and definitions for both location functions.

These two functions together determine when it is safe to reorder steps. Specifically, a step R
can execute before an entire computation C if the set of participants in the two are disjoint—
cloc(C) N rloc(R) = @—even if a standard in-order semantics would execute C to completion
before R. The following out-of-order rule for let-expressions is an example of such a step.

R
(C2, Q) = (€3, Q")
cloc(Cy1) Nrloc(R) = @ pNrloc(R) =@ tv(p) =2

[C-LeTI] R
(let p.x:te = Cqin Ca, Q) =, <Iet px:ite :=CyinCy, Q')

This rule also prohibits the out-of-order step R in the body from including locations binding a
variable in the let, and ensures that all locations binding the let have been resolved by requir-
ing fv(p) = @. The second requirement prevents a situation where a location variable later resolves

to a location appearing in the step, meaning C-LETI would have rearranged their operations.
Out-of-order execution can similarly occur in branches of case- and localCase-expressions before
fully evaluating the scrutinee, with some extra requirements on the steps. Specifically, stepping
in the branches is safe when both (1) the locations involved in the step are disjoint from those
computing the scrutinee (similarly to C-LeTI), and (2) the step will occur regardless of the branch

Step in Tine: Forking Processes in Functional Choreographies 11

cQ =fun, F(X) =C Val(V cQ
[C-DoNE] ae p [C-App] f i *) al(v) P
p-(e1—ez) ApP,
<p,el, Q) z}c <p,62, Q> (f $p V, Q> Z}C <C[F = f, X [V], Q)

Val(v) Liepy LieQ p2CQ

[C-SENDV]
Li.ovpy
(p1:0 {Li}w> p2, Q) === ((p1 U p2).0, Q)

L’ globally fresh fv(C') =@ LeQ

C'=Cla— L, xm[L]] Val(V) LeQ

[C-Fork] [C-Kirp]
(let (a, x) := L.fork() in C, Q)

L.fork(L",C’
) (ill L after C,Q U {L'})

(kill L after V, Q) 2&0 (V,Q\ {L})

Fig. 3. Selected Am Operational Semantics

taken. The latter point is enforced by requiring identical redices and updates to the set of executing
locations in the step in both branches. The result is the following C-LocaLCaskl rule, with an
analogous rule for choreographic case expressions.

(CLO) = (Cl.Q) (CorQ) =5 (Ch)
cloc(C) Nrloc(R) = @ pNrloc(R) =@ fv(p) =02

[C-LocaLCAsEI]
localCase, C of localCase, C of
R

|inlx = C linlx=C] @
|inry = Co |inry = C,

To see this rule in action, consider the following out-of-order step.

localCasea gy (A.e ~ B) of localCasea gy (A.e ~ B) of
|[inlx=B.(1+x) »A;C.3+2) =, |inlx=B.(1+x)»»A;C5
|infry = C.(3+2) |inry = C.5

Although the scrutinee A.e ~» B is not yet evaluated, C will run the same program 3 + 2 on either
branch, and C is neither involved in computing the scrutinee nor will their control flow branch. It
is thus safe to reduce C.(3 + 2) to C.5 in both branches. However, no out-of-order step is available
in the following choreography.

localCasep (let A.x = (B.6 »» A) in A.(inl (x — 3))) of
linl_= B.(3+2)
| inr_ = B.(3+2)

Although B executes identical expressions in both branches and will not branch, executing the
computation in the branches before the send B.6 ~» A in the condition would reorder B’s local
operations, which is disallowed.

Figure 3 contains a selection of additional rules (the rest can be found in Appendix A). C-DoNE
lifts the local-language semantics to choreographies, C-App applies a function to its argument,
and C-SENDV formalizes the multiply-located semantics of message-passing. These steps require
p € Q which ensures that all participants are known and running, meaning everyone who needs
to perform this action is able to do so now.

The final two rules formalize how Ah spawns and kills new locations. To spawn a location, C-Fork
selects a globally fresh location name L” and binds « to L’ and x to its representation [L’| in the

12 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

body of the fork expression. It checks that the substituted body C’ is closed to ensure that L’—which
has no access to any enclosing scope—does not attempt to execute a program with free variables.
Finally, it wraps C’ in a kill-after term to denote that L’ should be killed after the computation
completes and adds L’ to the set Q of executing locations. Once the computation completes, C-KiLL
kills the spawned location by removing it from Q and returning the output of the computation.
There is also an out-of-order version of C-KirL that allows a spawned thread L to terminate early
when its part of the inner computation C is complete; that is, when L ¢ cloc(C).

4.3 Static Semantics

The static semantics of our language is defined by a kinding judgment and a typing judgment.

4.3.1 Am Kinding System. To support polymorphism, we define a kinding judgment IT" - ¢ :: x, where
I is a kinding context, t is a type, and x is a kind. The kind « classifies ¢ as either a location (xo¢),
a set of locations (#jocset), @ local program type (x.), or a program type (*,). Figure 4 presents the
syntax for these types and kinds.

The kind #|. represents location names, which can refer to either concrete locations L € L or
in-context location variables, while the kind #o¢set classifies (non-empty) finite sets of location
names, which can be either a type variable, a singleton set ({£}), or a union of sets (p; U p2). Types
of kind *, are precisely the types included in the local language under a given type variable context.

The kind #, of program types is similar to the standard program type * of System F and Aqc, but
is parameterized over a set of locations p bounding the locations referenced in a type of that kind.
For instance, the type t.@p has kind *,, as any value of this type is known by all of the locations
in p. The idea for other types is similar: if 7 has kind *,, then only locations in p may know any
part of a value of this type. The K-ProDp and K-Sum rules give two examples of this principle.

T Forpoxp, Tk,
CForpuoxp [k, T'Fp o #jocset p1Upa Cp
[K-Prop] [K-Sum]
TFr X1i#p0p, FEo+p 2%,

In K-Prop, if a location knows (part of) either side of a pair, then they know part of the entire pair.

One may expect K-Sum to follow a similar rule: collect the annotations on each side. However,
sums carry information beyond the underlying types; they also convey if the value is an inl or an inr.
The p on the plus describes who knows which side the value is on, which may include more people
than know the data on each side. For instance, a value of type (int@A +(ap c} int@B) :: (55}
could be an int at either A or B, but all of A, B, and C know which. Requiring p; U p; C p ensures
that everyone who might hold data knows whether or not they need to hold that data.

For types including location (set) variables, it is impossible to know which location(s) will
be involved. We thus introduce a special value T that may appear as part of p denoting as-yet-
unresolved locations. For instance, in the rule K-ArLLoc for forall types, variable « may appear
free in the set of latent participants p (described in Section 4.3.2) and the kind *,_ of the type 7. To

Kinds K 5= Hoe | *locset | *e | *p

Local Program Types t, = a | loc, | locset, | ...
Locations LLAB,... € L

Choreography Types ¢, p,7,t = a|t@p | i 4o | Ya:x[p].T

| axn oty | mpwar| L] {}]|pUp;

Fig. 4. Syntax of Types and Kinds. Here « is a type variable.

Step in Tine: Forking Processes in Functional Choreographies 13

assign a kind to the forall type which captures all referenced locations, we collect the locations
in p and p, and replace the bound variable « with T. Since & could resolve to any variable, this
matches our intuition for T.

Ke € {*loc> *locset } Nack, b7 *p
T,azx b p i #ocset P =pUp)\a)UT
I'vVYazke[p]. 7y

[K-ArLLoc]

This parameterized kind means At supports a form of bounded polymorphism. If & :: *,, then «
is restricted in what types it may take on to only those whose participants are in p. These bounds
make it possible to precisely track the locations that may be involved in a computation, even in
the presence of polymorphism. As we will see in Section 4.3.2 below, this tracking is critical to
ensuring deadlock freedom with Am’s combination of closures and thread spawning.

4.3.2 At Type System. Typing judgments in An take the form © + C : 7 > p, where © =T; A,; A is
a three-part context of type, local, and choreographic variables, C is a choreography, 7 is a program
type, and p is a set of participants who may be involved in computing C.

Participant Tracking. Just as the participant parameter p on the kind *, bounds the types of that
kind, the participant parameter p in the typing judgment bounds the locations actively participating
in the choreography C. This information is used to ensure that a thread, once killed, will not be
asked to perform further computation. To see the challenge in enforcing this guarantee, consider
the following program:

let a := A.fork()

let F := in (A_.let Ax == (a.(1+2) » A) in Ax)

in FA.()

Here A spawns a thread @ who then immediately dies, as the body of the fork expression—the
A-abstraction—is a value. However, the returned abstraction closes over @ and, when applied,
asks a—which is now dead—to send a message to A, causing deadlock.

The An type system has two key features to prevent this scenario. First, it uses p to track which
locations might participate in a choreography. For instance, the body of the A-abstraction above
types as

az#oc F (let Ax = (a.(1+2) » A) in Ax) : int@A > {a,A}.
indicating that & and A might participate in the function body, but nobody else will.

Second, we augment function types to include the set of locations who might participate in the
body—the function’s latent participants. Here, for instance, the full A-abstraction is typed as

A
Az B (A let Ax = (a.(1+2) » A) in Ax) : unit@A & int@A > @

with latent participants {e, A} located above the function arrow. Note that p = @ here since an
abstraction is a value so no locations are involved in computing it. Because the type variable « is

free in the function type, the type system can rule out the enclosing fork expression.

AB
By contrast, the program below is valid, since the type unit@A u) int@A of the fork’s body

does not contain «, indicating that it is safe to use the value after « is killed.

leta = Afork() ~ B
Flet F = By=a.(14+2)» B in FA.() : int@A > {A, B}
in (A_.let Ax == (B.y » A) in A.x)
Type abstractions binding location (set) variables complicate tracking, leading to the use of T

described above. However, such bindings create no deadlock concerns as the type system can
guarantee that, when the abstraction is applied, the resolved location(s) are alive.

14 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

Typing Rules. The rules T-Fun and T-App formalize the intuition above.

@,F:T]ifz,X:Tl}-Cifsz G)I—C1:r1£>1'2>p1 OrCr:Ty > py
OF 1 xp, OF g i #p, OF 1 #p, OF 13 1 %p,
"= paUppU "=palppV
[TFun] p =paYppYp [TArr] p =paYppYp
P OFrC1$, Co o> prUpaUp’
Orfuny F(X) =C:11 > 12> 19pr L2 T2 > p1Yp2lp

To type a function, we check that the body C is well-typed with both the function’s name F and
argument X in scope, and require the participants in the body of the function be the same as
the latent participants in the function type. The other three premises of T-FUN ensure that every
location who might know the input or the output, or who might participate in the function body,
knows the definition of the function.

The application rule T-Arp ensures that the function is well-typed, and that its argument has
the required input type. Similarly to the T-Fun rule, we must ensure that every location who is
involved with its body, input, or output performs the application. Lastly, the locations involved in
the entire expression are collected from those who are involved in computing C; or C;, and anyone
else who performs the application.

T-Fork types the new fork expression. The first two premises are straightforward: the body of the
expression must be well-typed with the new location variable « and its first-class representation x
in scope, and the parent location £ must be well-kinded as a location.

O, a:¥gc, {6, at.x:locg FC:T > p
OF £ ¥ G OrC:7>p
[T-Forxk] [T-KiLL]
O r let (a,x) = tfork()inC: 7> {f} U (p\) O+ kill L after C: 7> pU{L}

The third requirement—that the type 7 of the body is well-kinded without a in scope—serves
two purposes. First, it prevents type dependency. As the name of the spawned thread is chosen at
runtime, we cannot know a-priori which name « will resolve to, so we cannot assign a coherent
type to the overall fork expression if that type may depend on the thread’s name. Second, it prevents
spawned threads from being asked to perform computation after they are killed. Because our type
system tracks latent participants, the kinding judgement ensures that the type does not refer to
any out-of-scope locations even in pending computations inside (type) functions. The rule T-KiLL is
comparatively straightforward, and simply adds the spawned thread to the set of participants.

The T-TFunLoc and T-TAprLoc rules show how the type system uses T in tracking when
abstracting over locations.

[T-TAprLocC]
[T-TFunLoc] K € {*locs *locset }
ke € {*loc *locset | pl=(p\a)uUT OFrC:Va:ke[pl.t> p1 OFt:kp
O,F:Va:ke[pl.t,aukp - C:t1> p OFt[amt] %y, o' =pUplamt]
O + tfuny F(a:ke) = C:Va:xe[pl.7> 2 OFCS$yt:rlart]>prUp

In T-Fun above, the location annotation on the function had to identically match the latent par-

ticipants in the body. When abstracting over (sets of) locations, however, the latent participants

can include a, which is free outside the body of the abstraction. We therefore replace « in the

annotation on tfun with T to indicate an unresolved location (set). The rest of the rule is standard.
The type application rule T-TAprprLoc is similar to the standard application rule, but since & may

be free in type 7 and the latent participants p of C, we substitute it for the now-resolved variable.
The remaining typing rules can be found in Appendix B.

Example 4 (Fork Bomb). Althought it will run forever and generate an exponentially large number
of spawned threads as it runs, a fork bomb does not produce any deadlocks, so the example shown

Step in Tine: Forking Processes in Functional Choreographies 15

below is well-typed in our language.

forkBomb = tfun+ F(£::%0c) = let a := £.fork()
B = t.fork()
inF$ya;F$g Y

Specifically, it types as + forkBomb : Vf::xo [£]. unit@f > @. Applying the type function to A
starts the fork bomb and results in a choreography with the type + forkBomb $4 A : unit@A > {A}.
Here A is the only participant because no other location has yet been spawned.

4.3.3 Type Soundness. The type system described above enjoys two important notions of soundness:
the parameter p in the typing judgment captures all locations who may take a step, and the standard
guarantee that a well-typed choreography does not get stuck.

To formalize the first notion, recall from Section 4.2 that each step includes a redex R and
the rloc(R) function computes the set of locations involved in R. We therefore show that p \ T
contains all locations in R for any step. Removing T is a technical detail to make the theorem
meaningful, as all locations are considered to be in p if it includes T.

Theorem 1 (Sound Participant Sets). If® + C : 7 > p and (C, Q) éc (C’,QY"), thenrloc(R) C p\T.

Note that the soundness of p does not extend to multiple steps; if the step spawns a thread, then
the participants in the choreography may increase. Our full type preservation theorem, found in
Appendix E.2, ensures that C’ can always be typed at some set p’, meaning our type system will
always yield a sound set of participants at any given moment in time.

Standard type soundness requires two simple additional premises. First, all locations mentioned
in the initial choreography must be running. Second, since kill-after expressions are not intended
to be available at the surface level, we only consider choreographies that start without them. The
execution may generate kill-after statements without losing any guarantees.

Theorem 2 (Type Soundness). If + C : > p, every location literal in C is in Q, and C contains no
kill-after expressions, then whenever (C, Q) =7 (C’, Q’), either C’ is a value, or (C’, Q") can step.

Note that in Appendix E.2, we have more-traditional progress and preservation theorems. How-
ever, our preservation theorem needs significant technical machinery to account for kill-after
expressions, so we present only full type soundness here.

5 Network Language

To compile a choreography into multiple programs that a system can execute concurrently, we need
to specify the target language that nodes of this system will run. This network language proscribes
the actions of each individual location in the system, and gives a concurrent operational semantics
to describe the execution of the entire system.

5.1 Network Language Syntax

The network language is a concurrent A-calculus with messages from the same space as in
choreographies—local language values and selection messages. The syntax, given in Figure 5,
closely mirrors our choreographic syntax, except we split message sends—including selection
messages—into two separate constructs to account for the sender and recipient(s).

The return expression ret(e) is used to execute and yield the output of a local expression e,
mirroring the choreographic MLV p.e. To account for a location L ¢ p—who should not execute e—
and other scenarios where a location is not involved in part of the overall choreography, we include
a unit value () which does nothing.

16 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

To model message-passing, we need two separate constructs for the sender and recipient(s) of
a message. Specifically, the send expression send E to p multicasts the result of program E to
every location in p (and also has the sender yield the output of E), and the dual receive expres-
sion recv from £ waits to receive a local value from ¢. Since only local values can be sent, send
may only send a value ret(v), while other forms such as send () to p will be stuck.

(Type) let-expressions, (type) functions, case, localCase, and algebraic and recursive data types
are included in the network language identically to in choreographies, less some un-needed location
(set) annotations. The sequencing construct E; ; E; is standard.

On top of these relatively familiar expressions, there are a two (groups of) constructions that
are standard in (process-polymorphic) choreographies. Recall that a location can participate in a
case or localCase expression if it either knows the data being branched on or synchronization
messages are inserted telling it which way to go. In the second case, we need some way to represent
that location branching on the result of waiting for a synchronization message. We do this using
allow-choice expressions. Specifically, allow ¢ choice (L = E;) (R = E,) is the program that
waits for a synchronization message from ¢. If it is L, then it continues as E;; otherwise, it continues
as E,. Note that if a synchronization message in a choreography is used outside of a branch, then we
statically know what message will be received. In this case, we allow an allow-choice expression
to only have one branch. Such a term receiving the wrong synchronization message becomes stuck.

Next, “Aml-In” expressions were introduced by AQc as a generalization of a similar “AmI” con-
struct found in PolyChorA [Graversen et al. 2024]. Intuitively, it represents a process’s knowledge of
its own name, and is used to implement process polymorphism. In particular, AmIe p then E; else E,
continues as E; if the process running it is in p, and as E, otherwise.

Finally, we implement process forking using fork and exit expressions. The network-level fork
expression let (a,x) = fork(E;) in E; spawns a new thread with the network code Ej, called the
thread task. The name of this thread is then bound to a while a local representation of this name is
bound to x, similar to fork expressions in choreographies. Note that, unlike in a choreography, the
thread task is explicitly specified in the term, rather than being implicit from scoping. Dually, the
exit command halts execution, removing the location from the system.

5.2 Network Language Operational Semantics

I
The labeled transition system L> E; = E, gives the operational semantics of the network language,
where L is the location executing the program and [is the label on the step. Selected transition
labels and rules are shown in Figure 6.

Network Program E = X | ret(e) | () | sendE top | recv from¢

| Ei:E | funF(X) =E | E,E, | tfunF(a) =E | Et

| letx:=E{inE, | letauk = E; inE,

| foldE | unfoldE | (E,E;) | fstE | sndE

| inlE | inrE | case Eof (inl X = E;) (inr Y = E,)

| localCase E of (inl x = E;) (inry = Ey)

| allow¢choice (d = E) | allow ¢ choice (L= E;) (R = E,)
| choosed for p;E | Amle p then Ej else E,

| let (a,x) = fork(E;) in E; | exit

Systems I1 Li>E||...|| L, > E,

Fig. 5. Selected Network Program Syntax. Here L € L is a concrete location name.

Step in Tine: Forking Processes in Functional Choreographies 17

Transition Labels [= 1| m~ p | Lm | fork(L,E) | exit
e — e f=funF(X) =E Val(V)
[N-RET] ; [N-Arp] ;
L>ret(e;) = ret(ez) Lo fV=E[FH f,X— V]
Val(v) fv(p) =0 Val(v) L'#L
[N-SEND] O [N-REcV] T
[O
L»sendret(v) top LA N ret(v) Lvrecv fromnLl! =— ret(v)
fv(p) =@ L'#L
[N-CHOOSE] [N-ArrowL] I -
L v choose d for o - E dp\{L} E allow L’ choice L
P L |L=E —= F
| R= EZJ_

E| =E; [0{ L, x e fL'J] L’ globally fresh

Ey=Eam L', x— [L']] fv(E}) =@
[N-Forxk] [N-Ex1t]
fork(L’,E}) .oexi .
Lvlet (a,x) = fork(Ey) in B =———= E, Leexit = ()

Fig. 6. Selected Network Language Operational Semantics

»

There are five forms of transition labels, corresponding to five different sorts of steps. The “iota
label 1 denotes an internal step, in which the network program or a local program reduces without
interaction between other locations.

The send m ~> p and receive L.m ~ labels account for message-passing steps, including
selection messages. As recipients cannot know the contents of a message in advance, the rules
N-Recv and N-ArLowL (as well as the omitted N-ALLowR rule) are non-deterministic, and allow
any value to arrive. The sender follows the N-SEND and N-CHOOSE rules, which ensure that the
contents of the transition label match the message and recipients specified by the program. The
system semantics defined below ensures the sender and recipient agree on the message, resolving
the recipient’s non-determinism.

The label fork(L, E) indicates the spawning of a new thread and includes the name L of the
thread and its thread task E. Note that the N-Fork rule, like the choreographic counterpart C-Fork,
ensures that the name L is globally fresh. The dual label exit denotes when a thread is killed. While
the rule N-Ex1T has no special effect in this single-location semantics, the corresponding rule in
the system semantics below will entirely remove the thread from the system.

5.2.1 Network Systems. Since network programs represent the isolated execution of a single
program at a given location, while choreographies represent an entire concurrent system, we need
to lift the semantics of our network programs to model an entire system. Formally, we represent
a system Il = ||Leq (L > EL) as a map from each location L in a finite set Q C L to the network
program Ej it is currently executing.

The operational semantics of systems are shown in Figure 7. These rules lift the single-location
semantics into a concurrent composition using four rules. The INTERNAL rule allows one location
to independently take an internal step. Comm models message passing, and requires the sender and
all recipients to simultaneously step with the same message value. Fork spawns a new child thread
with a fresh name L’, allowing the parent to specify which code the child should run as long as all

18 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

System Label Is == i | Ly.m~~ p | L.fork(L’,E) | kill(L)

m-wp
Lié¢p Li» (L) == E

Ly.m~
LDH(L);:,E VLEp(LDH(L)lZ>EL)
[INTERNAL] — [Comm] T
I =g II[L > E] M =22 [y > Ey, p > Ef]
L’ globally fresh fv(E1) =02
fork(L’,Ey) exit

LrTI(L) ——= E, L>TI(L) —= E
[Fork] K] ——————

L.fork(L',E;) i] kill(L)
I =————=g II|[L' — (E; : exit), L > Ey] I—=sI\L

Fig. 7. System Semantics and Labels

variables are resolved. Finally, Kirr kills a thread by removing it from the system. Notationally,
II[p +— E;] denotes the updated system mapping L to E if L € p and II(L) otherwise, and IT \ L
denotes the system which is identical to II, but removes L from its domain.

6 Endpoint Projection

Having defined our target language, we can now formalize the endpoint projection (EPP) procedure
which translates a choreography into a system of concurrently executing locations.

6.1 Network Program Merging

To keep EPP simple and scalable, we would like it to be compositional. However, the case and
localCase expressions complicate this desire when non-branching locations participate in the
branches. The synchronization messages £[d] ~ p inform these parties which branch to take, but
projecting the branches to a single program requires a merge operator. To understand this process,
consider the following choreography C.

localCase A.e of (inl _= A[L] ~ B;B.1) else (inr_ = A[R] ~» B ;B.2) = C

HBI [H]BI [H]BI
allow A choice

| L = ret(1)
| R = ret(2)

allow A choice allow A choice
| L= ret(1) | R = ret(2)

If the case that the inl branch is executed, A will always send B the selection message L. Therefore
in the projection of this branch, B should wait to receive L and then return 1. If instead B receives R
in this branch, there are no instructions for what to do (and this can never happen), so the side
for R in the allow-choice is missing. Symmetrically if the inr branch is executed, B will only ever
receive R, so the R side of this allow-choice returns 2, while the L side is missing.

However, the overall localCase expression contains both branches, so B’s projection of this
expression must handle both cases. To combine both branches into a single program, we use
the merge operator E; Ll E,: an idempotent binary partial function defined homomorphically on
matching network programs. Importantly, this function collects allow-choice branches that exist
on only one side, and merges those that exist in both. Our merge operator is identical to the one in

Step in Tine: Forking Processes in Functional Choreographies 19

B |L=>E1

(allow ¢ choice) ¥ (allow ¢ choice
|R:>E2

allow £ choice
| L=E |R=>E2)

(allow £ choice) (allow ¢ choice) . allow ¢ choice

| L= Eq |L=E] | L= EjUE]
. allow £ choice allow £ choice
allow ¢ choice , . ,
IL=E Ul [L=E] = |L=E UE]
' |R= E; |R = Ej

Fig. 8. Selected Merge Operator Definitions

AqQc [Samuelson et al. 2025], accounting for the added fork and exit constructs. Figure 8 shows
the most insight-generating rules, with the full definition available in Appendix D.1.

6.2 Endpoint Projection Definition

With the merge operator in-hand, we can now define EPP. The projection of a choreography C for
a location L, denoted [C]y, is the network program that executes the actions involving L in C. EPP
is partial, both because the merge operator is partial, and because EPP ensures that variables are
only used in locations that have bound them. We denote the cases where a choreography fails to
project with the notation “undefined,” leaving failures due to the merge operator implicit.

EPP is defined in a structurally-recursive manner over the syntax of choreographies. The rules
are very similar to those of Agc, with the exception of functions and applications, where we must
account for the annotations which allow a subset of locations to participate in a function body. The
majority of rules simply convert choreographic syntax into the network language equivalent, but
in some cases—such as those shown in Figure 9—there is more complexity.

For the MLV p.e, only locations in p should compute e while others do nothing. For functions
whose bodies may involve locations from p, only those locations in p project to a function, while
others can simply project to a unit value (). The projection of function applications is similar, where
locations involved in the function body should apply the function, while other locations can simply
sequence the function and its argument, afterwards returning a unit value.

Type functions project to network type functions, but those that abstract over locations (and
location sets) must behave differently depending on whether or not the variable « resolves to L.
Following Graversen et al. [2024] and Samuelson et al. [2025], we use AmI to branch on the identity
of the current process. In the then branch, when the locations match, we substitute a with ¢ in
the body C before projecting C. In the else branch, we project the body directly. Because location
variables are equal only to themselves, this projection correctly treats a # L.

For the send C {¢}»> p, all locations first execute their projection of C, then location ¢ multicasts
the output of C to the locations in p, who receive it. For the selection statement ¢[d] ~» p ; C,
location ¢ sends the choice d to all in p, who condition on this choice using an allow-choice. As
explained in Section 6.1, because the choice is guaranteed, allow-choice only has that branch.

For localCase expressions, first all locations execute the program in the guard, then locations
in p branch, while the merge operator combines the branches for others. Since non-branching
locations will not know the scrutinee, we also need to ensure that local variables x and y are not
free in the projection of the branches. The choreographic case expressions has identical rules.

For the new fork expression, the parent location ¢ projects to a network fork expression with
two pieces of code. The body is the projection of the fork’s body to ¢, and the thread task is the

20 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

ret(e) ifLep

lp-el;

otherwise

[Ci]e [Cale ifLep
[CilL ¢ [C2]r ¢ () otherwise

11>

[[Cl $p CZ]]L

funF(X) =[C]L ifLep
[fun, F(X) = C]]L 240 if L ¢ p and [C] # undefined

undefined otherwise

tfunF(a) = Amlc {a} then [Cla — L]]p else [C]y ifLep
0 if L ¢ p and [C]L, [C[a — L]]L # undefined

11>

[[tfunp F(a:xpe) = C]]L
undefined otherwise

[C {eyw pllp 2 1[C]L s recv frome ifL#tandL € p

[ClL otherwise

choose d for p; [C]L ifL=¢
allow ¢ choice (d = [C]p) ifL+#fandLe€p
[C]L otherwise

[e[d] ~ p s Cly

localCase [C]L of (inlx = [C1]r) (inry = [C2]L) ifLep
[CIL ¢ ([C1]L u [C2]L) ifL ¢ pandx ¢ fv([C1]L) and y ¢ fv([C2] L)
undefined otherwise

localCase, C of
|inlx = C; 2
|inry = Cy

>

L

let (a,x) = fork([Cle) in [C]L ifL=¢
[C]L if L+ ¢and a,x ¢ fv([C]L)

undefined otherwise

[let (a,x) = £.fork() in C] .

[ClL sexit ifL=1L’
[C]L otherwise

>

[kill L” after C]; =

o
|
|
|
|
|
|
|

Fig. 9. Selected EPP Definitions

projection of the body to the child thread «. That is, the parent projects the body twice: once for its
own role, and a second time for the role of the spawned thread. Locations not equal to the parent
can simply project to the body of the fork expression, ensuring that neither of the two variables
bound in the body are free. The projection of the kill-after expression is simple: everyone performs
their role to execute the body, and then the thread associated with the kill-after expression must
exit, while others continue on.

Instead of directly using the sequencing primitive E; ; E;, note that EPP must use the collapsing
sequencing function E; § E; introduced by Samuelson et al. [2025], which is defined as

E2 if Val(El)
Ei $E; = .
E, : E; otherwise.

Step in Tine: Forking Processes in Functional Choreographies 21

It may seem that this function is only an optimization, but it is actually required to ensure projected
programs can simulate the out-of-order choreographic steps mentioned in Section 4.2. For instance,
these steps allow the program C = let A.x := A.e in B.(1 + 2) to reduce B’s local computation to B.3.
If EPP used the primitive ; rather than §, then C would project to () ; ret(1 + 2) for B, preventing
this step. In reality we project C to ret(1 + 2) so the step can immediately occur.

Combining this collapsing sequencing operator with the involved location tracking necessary to
maintain deadlock freedom also allows us to project entire choreographies to () for uninvolved
parties. We therefore, essentially for free, achieve most of the goals of modular endpoint projec-
tion [Cruz-Filipe et al. 2023]—that [C]s should not depend on parts of C that do not involve A.

Projecting Functions. There are two important notes to be made about the projection of functions
and type functions. First, if the latent-participants annotation p includes T then an unresolved
location needs to participate. Since it could resolve to any running location, everyone must perform
the computation. We thus consider L € T for all L.

Second, if L ¢ p, the function projects to () because L will not participate in the body, but we
still require [C] to be defined. This requirement may seem unnecessary; if L does not participate
in the body, one might hope that the body would always project, preferably to (). Unfortunately
this is not so, which can cause otherwise-projectable choreographies to step to non-projectable
ones. To see why, consider the type function

C = tfungayur G(£::%0c) = ifp X then £.4 else £.(3 * 2),

which has type V£:: o [A, £]. int@¢ in context X :bool@A. While C projects for A, it does not
project for any other location—for instance, B. The then branch of the resulting AmI would need to
merge ret(4) LU ret(3 = 2), which is undefined. Wrapping C in a function and applying it gives the
well-typed choreography (funa F(X) := C $5 A) $a A.true involving only A. If we did not check
that B could project the body, it would project for everyone, but after a f-reduction, it no longer
projects for B.

(funa F(X) == C$5 A) $4 A.true —_— C[X + A.true] $4 A

Jus Jus
0s050=0 undefined
B’s projection of the type application is [C[X > A.true]]s § (), as, in general, B may participate
in C even without participating in the final application. However, T appears in the participant

annotation of the tfun, forcing everyone, including B, to project its body, which is not possible. By
(unsuccessfully) checking that [C]p is defined initially, we reject the program before the step.

Projecting Systems and Active Threads. While the above EPP definition produces a network
program for a single location, choreographies specify the behavior of many participants. Matching
the definition in Section 5 of a system of network programs running concurrently, we aim to lift
EPP point-wise to a finite set of locations Q c L. For locations with access to the full choreography,
this approach works well. For spawned locations, however, it fails to recognize that they only have
code for their thread task, not the whole choreography. Consider the following scenario.

22 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

let a := A.fork() .
= . . _ > . . =
C ((ina.(1+1) w A),A3)A > (kill B after B.(1+1) ~» A,A3), =C,

H{A}I %[H]{A,B}

leta =
A (recv from B, ret(3))
f‘
Av - ork(send ret(1+1) to A) |, ret(3) =% B cend ret(141) to A - exit
in recv froma

When A spawns thread B in the system semantics on the bottom, B is only aware of the thread
task send ret(1+ 1) to A—the projection of the fork expression’s body to @. However, after the
corresponding choreographic step on the top, projecting C; to B must sequence the left and right
sides of the pair followed by a unit value, producing [C,]Js = (send ret(1+1) to A ;exit); () ().
This discrepancy breaks the correspondence between the choreography and the system.

To account for this, we modify the EPP function to only extract the body of (necessarily unique)
kill-after expressions when projecting the location that will be killed. The modified definition,
denoted [C]? is defined as follows.

m [C']L g exit if C contains a unique subterm kill L after C’
[€]; = .
[C]L otherwise.

In the example above, this modified EPP will maintain the connection between the choreography
and its projection by correctly projecting [[Cz]]g‘ =sendret(1+1) toA;exit.

To project a full system, we can now lift projection point-wise to each running location using
this modified EPP. That is, [C[} = [|Lco (L> [C]) for a finite Q ¢ L. Note that [C]" must be
defined for all L € Q for [C]{) to be defined.

Example 5 (Fork Bomb Projection). Recall the fork bomb program from in Example 4. The
forkBomb type function projects to A (or any other location) with the network program

[forkBomb], = tfunF(f) := AmIec {¢} then let a := fork(F a)
P = fork(F B) in ()

else ()

It is okay that F @ and F f are the thread tasks for « and f, respectively, even though F is free in
those expressions; before the threads are spawned, F will be replaced with its definition once the
originating location applies the outer type function. Specifically, [forkBomb $ A] s reduces to the
below program, where it is now obvious that « and § will be given the appropriate code to run.

let a = fork((tfunF(£) == AmIe {¢} ...) a)
B = fork((tfunF(¢) = AmIc {£} ...)) in ()

6.3 Soundness, Completeness, and Deadlock Freedom

Note that we provide two separate semantics for Am: the top-level choreographic semantics, and
the semantics given by EPP. We now examine the relationship between these semantics and use
that relationship to provide a deadlock-freedom-by-design guarantee for compiled systems.

Simulation Relation. To relate the two semantics, we must decide which systems are related to a
given choreography. While one may think a choreography C should only relate to its projection [[C]]g
this property is not preserved by reductions. Specifically during branching steps, the branch not
taken is discarded in the choreography, but is retained in projected programs waiting on a selection

Step in Tine: Forking Processes in Functional Choreographies 23

message. Additionally, EPP’s use of the collapsing sequencing function E; § E, means programs
that resolve to a value after a substitution may be removed from the projected program.

To account for these mismatches we follow traditional choreographic style—specifically, the style
of Samuelson et al. [2025]—and define a relation E; < E; which relates two network programs if E;
may have discarded unneeded code—choices or sequenced values—that remain in E,. Formally, it is
the smallest structurally compatible partial order on network programs that admits the following
three rules.

B < By E; <E, Ey <E; Val(V)
; - —
21low £ choice allow {’/chome allow £ choice allow {’/ch01ce E1 <V E
IL=E <|L=E IR = E < |L=E]
' |R= Ej 2 |R = E

To extend this relation to entire systems we can simply lift it point-wise:
II; <TI, = VL € Q.II;(L) < II,(L).

This relaxed correspondence is sufficient to yield deadlock freedom of compiled systems. To this
end, we prove that the projected semantics simulate the choreographic semantics.

Theorem 3 (Completeness). If® + C : 7 > p, every location literal in C is in Q, and C contains no
kill-after expressions, then whenever (C, Q) = (C’, Q’), there is someIl’ such that [[Cﬂg =>j‘9 I
and [C']D, < TI".

Note that we have labeled this simulation theorem “completeness” One might expect a traditional
accompanying soundness theorem, stating that the choreographic semantics also simulate the
projected program. However, this is not true for nonterminating choreographies. While our out-
of-order steps mimic the concurrent execution of a projected system, they fail to fully capture all
possible execution paths in the presence of non-terminating computations. For example, consider
the choreography (1X.AY.Y (B} C) $1a8,cy A.loop $;5 ¢} B.5. The only possible choreographic
step is to run the infinite loop at A. In the projected system, however, B will eventually send 5 to C.
Aqc solves this problem by (1) requiring all locations to synchronize at every function boundary—
forcing B and C to wait for A to finish the infinite loop before proceeding—and (2) limiting its
soundness result to apply only to choreographies that do not contain infinite loops in local programs.
Such an approach does not work here, since A allows a selected subset of locations to participate
in a f-reduction, meaning that even a choreographic function can loop for A while allowing B
and C to proceed. This problem with endpoint projection has existed since the advent of functional
choreographic programming [Cruz-Filipe et al. 2023; Hirsch and Garg 2022]. See Section 7 for more
discussion.

Thus, our operational semantics faces a fork in the road: either require every relevant location
to synchronize whenever an infinite loop might occur—negating many benefits of parallelism and
possibly requiring locations who do not even know each other exist to synchronize—or give up
soundness for non-terminating programs. We choose the latter option, and prove our soundness
result, presented below, only for terminating programs.

We say a system II is final if every location in IT maps to a value.

Theorem 4 (Soundness). If + C: > p, every location literal in C is in Q, C contains no kill-after
expressions, and [C]} =% II where 11 is final, then (C, Q) =} (V, Q') where [[Vﬂg/ <IL

Although the relationship between our choreographic semantics and projected semantics is
weaker than in other systems, they are powerful enough to prove deadlock freedom. Note that
deadlock freedom holds even for nonterminating choreographies. Specifically, by combining type

24 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

soundness (Theorem 2) and (a strengthening of) EPP completeness (Theorem 3), we prove that
either the system terminates in a value for all locations or it can execute forever.

Theorem 5 (Deadlock Freedom). If +- C : 7 > p, every location literal in C is in Q, and C contains
no kill-after expressions, then whenever [[C]]?‘2 =7 I, either I1 is final or it can step.

7 Related Work

While An is the first functional choreographic language with process forking, it builds on a rich
literature which we review here. First, we discuss the development of functional choreographic
programming, including process polymorphism. We then compare the approach for process spawn-
ing in A to previous (lower-order) choreographic languages. Finally, we look at process spawning
in multiparty session types, the main alternative to choreographic programming.

7.1 Functional Choreographic Programming

Since its inception [Carbone and Montesi 2013; Montesi 2013], the choreographic-programming par-
adigm has advanced considerably. Early work expanded on core features such as local computations,
message passing, and recursion [see e.g., Carbone et al. 2014; Cruz-Filipe and Montesi 2017a,b;
Cruz-Filipe et al. 2018; Lanese et al. 2013], but only allowed imperative and procedural computation.

Pirouette [Hirsch and Garg 2022] and ChorA [Cruz-Filipe et al. 2022]—developed independently—
were the first functional choreographic languages. While ChorA unified the language of chore-
ographies and local computations, Pirouette (like Am) allowed any language to be used for local
computations and messages. Bates et al. [2025] then extended ChorA with multiply-located values,
providing an alternative to synchronization messages.

Process polymorphism was originally developed by Graversen et al. [2024] in an extension
to ChorA called PolyChorA. This additionally enabled delegation, but required integrating the
type-level programming features of System F,, and seemed to preclude recursive types. Later,
Samuelson et al. [2025] developed AQc—the language that Am primarily extends—which showed
that this complication is the result of ChorA’s choice to combine the language of choreographies
and local computations. Moreover, it provided process-set polymorphism and first-class location
names for the first time. This last feature was critical for the development of A.

Defining a top-level semantics for functional choreographies remains a significant challenge.
While the original ChorA work simply punted on correctness of projection, Cruz-Filipe et al. [2023]
later provided an out-of-order semantics for Chord where EPP was both sound and complete. How-
ever, this semantics relied on rewriting rules similar to commuting conversions, which are quite
fragile, failing in the presence of language features as simple as named recursive functions [Samuel-
son et al. 2025]. To provide soundness and completeness guarantees for projection, Pirouette
required global synchronization at every function boundary, which Agc extended to its addition of
choreographic data types, including sums, pairs, and type abstractions.

Constant global synchronization is unsatisfying at the best of times, but when process forking
is available, it is anathema. Thus, Ah does not require global synchronization. This flexibility
comes at a cost: not every evaluation path available to the projected program is available at the
choreographic level. However, completeness and confluence of the network semantics allow for
the deadlock-freedom guarantee we provide. Moreover, we do get a form of a soundness guarantee
for terminating programs. This is similar to AQc, which only provides a soundness guarantee when
every local program terminates.

Step in Tine: Forking Processes in Functional Choreographies 25

7.2 Process Spawning in Choreographies

Two papers of which we are aware have previously considered process spawning in lower-order
choreographies. The first [Carbone and Montesi 2013] was an imperative language, and therefore
lacked most features offered by An. Importantly, the lack of functions and process polymorphism
restricts spawned processes to only be used in a local scope, and prevented even simple examples
such as the list-summation example of Section 1.

Cruz-Filipe and Montesi [2016a] provided a highly tailored calculus to implement parallel divide-
and-conquer algorithms. It was able to provide processes like parallel merge sort, which the earlier
work of Carbone and Montesi [2013] could not, but the language lacks a majority of the features
found in An. For instance, only top-level functions may be process polymorphic, and the language
entirely lacks higher-orderedness, avoiding many of the challenges addressed by Am. In addition,
processes may only store a single value and must update it through a predefined set of local
procedures, such as splitting and merging lists, that must be specially designed for each task.

7.3 Process Spawning in (Multiparty) Session Types

Concurrent programming has always had process spawning as a major feature [Milner 1980; Milner
et al. 1992], and thus it has always been prevalent in session types [Caires and Pfenning 2010; Gay
and Vasconcelos 2010; Honda 1993; Honda et al. 1998; Wadler 2012]. Traditionally, session types
either do not guarantee deadlock freedom [Honda 1993; Honda et al. 1998] or require that processes
only communicate in an acyclic topology [Caires and Pfenning 2010; Wadler 2012]. Multiparty
session types address this deficit, but only for a particular set of communicating processes. In order
to allow for process spawning, they must create a new session which includes the new process,
and then reason about communication orders between sessions. While this leads to complicated
reasoning principles, it can be done [Bettini et al. 2008; Coppo et al. 2013, 2016; Jacobs et al. 2022].
Recently, Le Brun et al. [2025] considered multiparty session types with replication, which allows
new processes to spawn in the same session. However, the processes that can be spawned via
replication are limited; replication is intended to represent client-server communication, rather
than allowing more general techniques like parallel divide-and-conquer.

8 Conclusion

This work introduced A, the first functional choreographic language to support process forking.
A retains support for key features of Agc—its predecessor—including higher-order programming,
process polymorphism, multiply-located computations, and first-class process names. While this
combination of features is powerful, it can introduce complex bugs, such as killing a thread and then
attempting to execute a function that closes over its name. A prevents these bugs by integrating
participant tracking into its type system.

A can model complex multi-party computations where arbitrarily many threads are spawned
and killed, including a fork bomb. Despite this, we retain the classic choreographic result that the
projection of every well-typed choreography is deadlock-free.

As parallel programming becomes more prevalent, the need for languages that can express
complex concurrent computations is growing. A addresses this need by supporting process forking
in tandem with functional-programming features such as higher-order functions and polymorphism.
It additionally provides the advantages of choreographic languages, such deadlock freedom by
design. Our language thus provides a powerful tool for developers to write parallel programs—such
as parallel divide-and-conquer—that are both expressive and safe, allowing them to focus on the
logic of their applications rather than the intricacies of concurrency.

26 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

Acknowledgments

We would like to thank Andrey Yao and Rahul Krishnan for help editing. Support for this research
was provided by the University of Wisconsin-Madison Office of the Vice Chancellor for Research
with funding from the Wisconsin Alumni Research Foundation.

References

Mako Bates, Shun Kashiwa, Syed Jafri, Gan Shen, Lindsey Kuper, and Joseph P. Near. 2025. Efficient, Portable, Census-
Polymorphic Choreographic Programming. Proc. ACM Program. Lang. 9, PLDI, Article 193 (June 2025), 24 pages.
https://doi.org/10.1145/3729296

Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida.
2008. Global Progress in Dynamically Interleaved Multiparty Sessions. In Concurrency Theory (CONCUR). https:
//doi.org/10.1007/978-3-540-85361-9_33

Luis Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Propositions. In Concurrency Theory (CONCUR).
https://doi.org/10.1007/978-3-642-15375-4_16

Marco Carbone and Fabrizio Montesi. 2013. Deadlock-Freedom-by-Design: Multiparty Asynchronous Global Programming.
In Principles of Programming Languages (POPL). https://doi.org/10.1145/2429069.2429101

Marco Carbone, Fabrizio Montesi, and Carsten Schiirmann. 2014. Choreographies, Logically. In Concurrency Theory
(CONCUR). https://doi.org/10.1007/978-3-662-44584-6_5

Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. 2013. Inference of Global Progress
Properties for Dynamically Interleaved Multiparty Sessions. In Coordination Models and Languages (COORDINATION).
https://doi.org/10.1007/978-3-642-38493-6_4

Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. 2016. Global Progress for Dynamically
Interleaved Multiparty Sessions. Mathematical Structures in Computer Science (MSCS) 26, 2 (2016), 238-302. https:
//doi.org/10.1017/S0960129514000188

Luis Cruz-Filipe, Eva Graversen, Lovro Lugovi¢, Fabrizio Montesi, and Marco Peressotti. 2022. Functional Choreographic
Programming. In Theoretical Aspects of Computing — ICTAC 2022: 19th International Colloquium, Tbilisi, Georgia, September
27-29, 2022, Proceedings (Tbilisi, Georgia). Springer-Verlag, Berlin, Heidelberg, 212-237. https://doi.org/10.1007/978-3-
031-17715-6_15

Luis Cruz-Filipe, Eva Graversen, Lovro Lugovié, Fabrizio Montesi, and Marco Peressotti. 2023. Modular Compilation for
Higher-Order Functional Choreographies. In European Conference on Object-Oriented Programming (ECOOP). https:
//doi.org/10.4230/LIPIcs.ECOOP.2023.7

Luis Cruz-Filipe and Fabrizio Montesi. 2016a. Choreographies, Divided and Conquered. (02 2016). https://doi.org/10.48550/
arXiv.1602.03729

Luis Cruz-Filipe and Fabrizio Montesi. 2016b. Choreographies in Practice. In Formal Techniques for Distributed Objects,
Components, and Systems (FORTE). https://doi.org/10.1007/978-3-319-39570-8_8

Luis Cruz-Filipe and Fabrizio Montesi. 2017a. A Core Model for Choreographic Programming. In Formal Aspects of Component
Software (FACS). https://doi.org/10.1007/978-3-319-57666-4_3

Luis Cruz-Filipe and Fabrizio Montesi. 2017b. Procedural Choreographic Programming. In Formal Techniques for Distributed
Objects, Components, and Systems (FORTE). https://doi.org/10.1007/978-3-319-60225-7_7

Luis Cruz-Filipe, Fabrizio Montesi, and Marco Peresotti. 2018. Communications in Choreographies, Revisited. In Symposium
on Applied Computing (SAC). https://doi.org/10.1145/3167132.3167267

Simon J. Gay and Vasco T. Vasconcelos. 2010. Linear Type Theory for Asynchronous Session Types. Journal of Functional
Programming (JFP) 20, 1 (2010). https://doi.org/10.1017/S0956796809990268

Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. 2023. Choral: Object-Oriented Choreographic Programming.
Transactions on Programming Languages and Systems (TOPLAS) (nov 2023). https://doi.org/10.1145/3632398

Eva Graversen, Andrew K. Hirsch, and Fabrizio Montesi. 2024. Alice or Bob?: Process Polymorphism in Choreographies.
Journal of Functional Programming (JFP) 34 (2024), e1. https://doi.org/10.1017/S0956796823000114

Andrew K. Hirsch and Deepak Garg. 2022. Pirouette: Higher-Order Typed Functional Choreographies. In Principles of
Programming Languages (POPL). https://doi.org/10.1145/3498684

Kohei Honda. 1993. Types for Dyadic Interaction. In Concurrency Theory (CONCUR). https://doi.org/10.1007/3-540-57208-
2_35

Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. 1998. Language Primitives and Type Discipline for
Structured Communication-Based Programming. In European Symposium on Programming (ESOP). https://doi.org/10.
1007/BFb0053567

Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. 2022. Multiparty GV: Functional Multiparty Session Types with Certified
Deadlock Freedom. In International Conference on Functional Programming (ICFP). https://doi.org/10.1145/3547638

https://doi.org/10.1145/3729296
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1007/978-3-662-44584-6_5
https://doi.org/10.1007/978-3-642-38493-6_4
https://doi.org/10.1017/S0960129514000188
https://doi.org/10.1017/S0960129514000188
https://doi.org/10.1007/978-3-031-17715-6_15
https://doi.org/10.1007/978-3-031-17715-6_15
https://doi.org/10.4230/LIPIcs.ECOOP.2023.7
https://doi.org/10.4230/LIPIcs.ECOOP.2023.7
https://doi.org/10.48550/arXiv.1602.03729
https://doi.org/10.48550/arXiv.1602.03729
https://doi.org/10.1007/978-3-319-39570-8_8
https://doi.org/10.1007/978-3-319-57666-4_3
https://doi.org/10.1007/978-3-319-60225-7_7
https://doi.org/10.1145/3167132.3167267
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1145/3632398
https://doi.org/10.1017/S0956796823000114
https://doi.org/10.1145/3498684
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/3547638

Step in Tine: Forking Processes in Functional Choreographies 27

Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro. 2013. Amending Choreographies. In Workshop on Automated
Specification and Verification of Web Systems (WWYV). https://doi.org/10.4204/EPTCS.123.5

Matthew Alan Le Brun, Simon Fowler, and Ornela Dardha. 2025. Multiparty Session Types with a Bang! https://doi.org/10.
1007/978-3-031-91121-7_6

Robin Milner. 1980. A calculus of communicating systems. Lecture Notes in Computer Science, Vol. 92. Springer Berlin
Heidelberg. https://doi.org/10.1007/3-540-10235-3

Robin Milner, Joachim Parrow, and David Walker. 1992. A Calculus of Mobile Processes, Part I. Information and Computation
100, 1 (1992). https://doi.org/10.1016/0890-5401(92)90008-4

Fabrizio Montesi. 2013. Choreographic Programming. Ph.D. Dissertation. IT University of Copenhagen. https://www.
fabriziomontesi.com/files/choreographic_programming.pdf

Fabrizio Montesi. 2023. Introduction to Choreographies. Cambridge University Press. https://doi.org/10.1017/9781108981491

Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti. 2025. Choreographic Quick Changes: First-Class Location (Set)
Polymorphism. In Object-Oriented Programming, Systems, Languages & Applications (OOPSLA). https://arxiv.org/abs/
2506.10913 To Appear, OOPSLA 2025.

Ian Sweet, David Darais, David Heath, Ryan Estes, William Harris, and Michael Hicks. 2023. Symphony: Expressive Secure
Multiparty Computation with Coordination. In The Art, Science, and Engineering of Programming ((Programming)).
Philip Wadler. 2012. Propositions as Sessions. In International Conference on Functional Programming (ICFP). https:

//doi.org/10.1145/2364527.2364568

Appendices
A Choreography Operational Semantics
A.1 Choreography Values

Choreography Values V := p.o | fun,F(X) = C | tfun,F(a) =C
| (V,Va)p, | inl, V | inr, V | fold, V

A.2 Redices and Evaluation Contexts

Messages m = v|d
Redices R = p.e; > e) | Fun(R) | Arg(R) | App, | TApp, | UnfoldFold,

| PairL(R) | PairR(R) | FstPair, | SndPair, | Caselnl, | Caselnr,
| letp=ov|letp:=t| Lm~sp | Li.fork(Ly,C) | kill(L)
Evaluation Contexts 7 = [[JC|VI[]I|I[]t] fold, [-] | unfold, [-]
| (1O | (VulDp | sty [] | snd, [-]
| inl, [-] | inr, [-] | case, [+] of (inl X = Cy) (inrY = Cy)
| localCase, [+] of (inlx = Cy) (inry = Cy)
| letpx:te :=[]inCy | let p.a:k =[] inC,
| [:] (e p | kill L after [+]

A.3 Projection of a Redex

For a redex R, its projection [R]. to L is a list of network program labels. We denote the empty list
as €.

[] ifLep

. [[Fun(R)ﬂL = [[R]]L ﬂArg(R)]]L = [[R]]L
otherwise

[p-(ey — 62)HL =

[[Appﬂ _ [] ifLep [[TAPP]] _ [, fLep
Pl € otherwise Pl € otherwise

https://doi.org/10.4204/EPTCS.123.5
https://doi.org/10.1007/978-3-031-91121-7_6
https://doi.org/10.1007/978-3-031-91121-7_6
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0890-5401(92)90008-4
https://www.fabriziomontesi.com/files/choreographic_programming.pdf
https://www.fabriziomontesi.com/files/choreographic_programming.pdf
https://doi.org/10.1017/9781108981491
https://arxiv.org/abs/2506.10913
https://arxiv.org/abs/2506.10913
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1145/2364527.2364568

28 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

if L
[nfoldFold,] , = {[l] HLep [PairL(R)]; = [RI], [PairR(R)]; = [R];
€ otherwise
. [l] ifLep . [;] ifLep
FstP = SndP =
H stralle HL {e otherwise H naratty HL € otherwise
[:] ifLep [] ifLep
Caselnl = Casel =
[[aseiitlp]L {e otherwise [[aseinfp]]L € otherwise
if L , if L
llet p := o], = L] ifLe p' [let p :=1t], = e, 4] ifLe p'
€ otherwise € otherwise

[m~p] fL=1
[[Ll.m 4 pz]]L = [le ’\’\3‘] if L # Ly and L € P2

€ otherwise

fork(Le, E)] if L =Ly and [C]y, = E
[Li.fork(Ls, O)], = {[ork(lz,E)] i .1 and [C]r,
€ otherwise

otherwise

[KillL)], = {iexit] fL=1,

Similarly the projection [R] » of a redex R to all locations is a list of system labels. We denote
the concatenation of two lists x and y as x + v.

[p-(er > e2)] ;= [| L € p] [Fun(®)] . = [R] . [Arg(R)] . = [R]
[#pp,] =1L ep) [TApp,], =l 1L epl# I Lep]
[UnfoldFold,] , = [| L € p] [PairL(R)] , = [R] , [PairR(R)] , = [R] ,
[FstPairp] , = [| L € p] [SndPair,] , = [| L € p] [Caselnl,] , = [| L € p]
[Caselnr,] , =[] L € p] [let p:=o] p = [| L € p]
lletp=t],=[wl|Lepl+ [u|Lep] [Li.m ~ po] ;= [Li.m ~ py]

[kill(L)] ; = [kill(L1)]

L;.fork(Lsy, E if [C|;, = E
[[Ll.fork(Lz, C)]].E = {[.ror (2)] ! [[]]LZ.
€ otherwise

A.4 Redex Blocked Locations
rloc(p.(e; — e2)) =p rloc(Fun(R)) = rloc(R) rloc(Arg(R)) = rloc(R)

rloc(App,) = p tloc(TApp,) = p rloc(UnfoldFold,) = p rloc(PairL(R)) = rloc(R)

Step in Tine: Forking Processes in Functional Choreographies 29
rloc(PairR(R)) = rloc(R) rloc(FstPair,) = p rloc(SndPair,) = p rloc(Caselnl,) = p
rloc(Caselnr,) = p rloc(let p :==0) = p rloc(let p :=¢t) =p

rloc(L.m ~» p) ={L} U p rloc(Ly.fork(Ly, C)) = {L:} rloc(kill(L)) = {L}

A.5 Choreography Blocked Locations

cloc(X) =@ cloc(p.e) = p cloc(fun, F(X) :=C) = @
cloc(C; $,, Cz) = cloc(Cy) U cloc(Cy) U p cloc(tfun, F(a) :=C) =@
cloc(C$, t) = cloc(C) Up cloc(fold, C) = cloc(C) cloc(unfold, C) = cloc(C) U p
cloc((Cy, Cy)p) = cloc(Cy) U cloc(Cy) cloc(fst, C) = cloc(C) U p
cloc(snd, C) = cloc(C) U p cloc(inl, C) = cloc(C) cloc(inr, C) = cloc(C)

cloc(case, C of (inl X = Cy) (inr Y = C3)) = cloc(C) U cloc(Cy) U cloc(Cz) U p
cloc(let p.x := C; in C3) = cloc(Cy) U cloc(C2) U p
cloc(let p.a::x := Cy in Cz) = cloc(Cy) U (cloc(Cy) \ @) U p
cloc(C (£} p) =cloc(C) U{f}Up cloc(£[d] »» p; C) = {£} U p U cloc(C)
cloc(let (a, x) = £.fork() in C) = {£} U (cloc(C) \) cloc(kill L after C) = {L} U cloc(C)

A.6 Redex for an Evaluation Context

If n is an evaluation context and R is a redex, we define n[R] to be the redex which corresponds to
making the reduction given by R in the context 7.

([-1 $p O)[R] = Fun(R) (V'$p [-DIR] = Arg(R) ([1)p[R] =R

(fold, [-1)[R] = (unfold, [-)[R] £R ([],C),[R] £ PairL(R) (V. [-]),[R] £ PairR(R)

(fstp [-DIR] = (snd, [-D[R] = R (inly [-DIR] = (inrp, [-D[R] =R
(case, [+] of (inl X = Cy) (inrY = C3))[R] = R ([-] t&+»> p)[R] = R
(let px :==[-] inC)[R] = (let @k =[] inC)[R] =R kill L after [-][R] £ R

A.7 Location Set Relations

Here we define the containment ¢ € p, disjointness p; N p, = @, and subset p; C p, relations, with
special care given to how they are defined when the locations and sets in question are non-ground.
The principle for how the containment and subset relations behave is that of a modality of necessity.
For instance, the containment relation ¢ € p only holds if the location ¢ is an element of p for
any possible values that their variables could resolve to. Note here that the metavariable ¢ stands
for either a type variable « or a concrete location L € £, and the metavariable p stands for any
location set, including possibly a type variable.

30 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

tep; t € py
t e {t} tepUp, tepiUp;

The disjointness relation is defined as expected:

(prNpy=0) 2VE. (L €p AL E py)

To define the subset relation, we first note that we cannot use the naive definition in terms of
the containment relation. That is, V¢.£ € p; = ¢ € p, would not serve as a correct definition for
p1 € p2 in the presence of type variables. This is because ¢ ¢ « for every location ¢, so with this
definition we would have that @ C p for every set p. The subset relation should be preserved under
substitution, but this example shows that this is not the case with the naive definition. Instead, the

subset relation must be defined inductively as follows.

tep p < pr p < p2 p1 &

@cCp {eycp pECp1Ups pEpiUp; p1UpzCp

A.8 Choreography Operational Semantics

[C-Ctx]

R [C-DoNE]
(C,Q) = (C", Q) €1 — ey pcQ
n[R] P p-(e1—ez)
(n[C1. Q) == (n[C'1, Q") (pe1, Q) === (p.e2,Q)
[C-App] [C-TAPP]
f=fun, F(X) =C Val(V) pCQ f=tfuny, F(a) = C
App, TApp
(f$pV.Q) == (C[F > f, X > V], Q) (f$p 1,Q) == (C[F > f,a > t],Q)
[C-UnForpFoLD] [C-FsTPAIR]
Val(V) pCQ Val(Vp) Val(V7)
UnfoldFold,, FstPair
(unfold, (fold, V), Q) =—=5. (V, Q) (fstp (V1,V2)p, Q) =——=¢ (V1, Q)
[C-SNDPAIR] [C-CasEINL]
Val(Vq) Val(V2) pcQ Val(V) pCcQ
SndPair, casep (inly, V) of Caselnl
(sndp (V1,V2), Q) === (V, Q) < |inl X = C; ,Q %C (C1[X > V], Q)
|inrY = Cy

[C-CASEINR]
Val(V) pcQ

< case,, (inrp V) of > Caselnr,,
Q

linl X = C; = (C[X > V], Q)
linrY = C

[C-LocALCASEINL]
Val(v) pcQ

< localCasey, p.(inlv) of > LocalCaselnl,,
,Q

| inl x = Cl ESaaa———— <C1 [p|x = U],Q)
|inry = Cy

Step in Tine: Forking Processes in Functional Choreographies

[C-LocALCASEINR]
Val(v) pCcQ

localCasep p-(inrv) of LocalCaselnr,
| in[xﬁcl ,Q ES <C2[p|Xl—)U],Q>
|inry = Cy

[C-LETV]
Val(v) pCcQ

, let p:=0v
(Iet px:te :=ploin C,Q) = (C[p|x — v], Q)

[C-TYLETV]
Val([t]) pCQ

,) let p.a:=t
(Iet p.azk = p .[t]in C,Q) = (Cla— t],Q)

[C-SENDV] [C-Sync]
Val(v) Ly € pg L eQ p2CQ LeQ pCQ
Ly.ovpy L.d~p
(P10 {Li}w> p2, Q) === ((p1 U p2) .0, Q) (L[d] ~ p; C,Q) == (C,Q)
[C-SyncI]

(€.Q) =5, (¢, Q")
t ¢ rloc(R) pNrloc(R) =@ fv(p) =tv(¢) =2

(ld] = p: C.Q) =5 (e[d] w p: . Y)

[C-CasE]]

R
(C1,Q) = (C], Q) (Ca, Q) éc (), Q")
cloc(C) Nrloc(R) = @ pNrloc(R) =@ ftv(p) =02

case, C of R casep, C of
< linl X = ,Q>:>C< linl X = C} ,Q’>

|inrY = Cy linrY = C,
[C-LocaLCAsEI] [C-ArpI]
R R R
(C1.Q) = (CL.Q) (C2.Q) = (G}, Q) (C2, Q) = (C, Q)
cloc(C) Nrloc(R) = @ pNrloc(R) =@ fv(p) =02 cloc(Cy1) Nrloc(R) = @
localCase, C of localCase, C of R ' o
R P C C2, Q) = (C C, Q
< |inlx = C; ,Q>zc< |in|x=>C{ ,Q/> <1$p 2 > C<1$p 2 >
|inry = Ca linry = C,
[C-PAIRI] [C-LeTI]
R R
(C2, Q) = (Cé, QI) (C2, Q) = (cé, QI)
cloc(C1) Nrloc(R) = @ cloc(Cy) Nrloc(R) = @ pNrloc(R) =@ fv(p) =02

R R
((C1,C2)p, Q) = ((C1,C))p, Q") (let p.x:te = Cy in Ca, Q) =>¢ (let p.x:te = Cyin Cp, Q')

31

32 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

[C-TYLETI]
(€2, Q) S5 (G, @)
cloc(C1) Nrloc(R) =@ pNrloc(R) =@ fv(p) =02

R
(let p.azk = Cyin C2, Q) =, (Iet p.az:k = CyinCy, Q')

[C-Fork]
L’ globally fresh tv(iC =0 LeQ
C'=Cla- L xm[L]]

L.fork(L",C")
(let (a, x) := L.fork() in C, Q) —= <ki|| L’ after C',QU {L'})

[C-ForxI]
(C, Q) éc (C',Q"y L¢rloc(R)

(let (a, x) = L.fork() in C, Q) éc (let (a,x) = L.fork() in ", Q")

[C-KiL1] [C-KiLLI]
Val(V) LeQ L ¢ cloc(C) LeQ
Kill(L) Kill(L)
(kill L after V, Q) ==, (V, Q\ {L}) (kill L after C, Q) ==, (V,Q \ {L})

B Static Semantics

B.1 At Kinding System

First we note that, in order to prevent kind dependency, the kinding context should be split into two
contexts—TI} for locations and location sets of kind x; € {*joc, *locset }» and I' for local and program
kinds. We have elided this detail from the presentation of the kinding and typing rules for simplicity,
but fully address the details in Appendix E.1 and subsequent appendices.

FT azk €T LeL | AT
[K-VAR] ———8™ [K-Loc] —— [K-SNG] ————
F'ra:x TFL g Tk {£} : #pcset
L'k p1 i #jocset L'k p2 i #locset FT LIk fe i e
[K-Un1oN] [K-Locarl] —M8M8M8M8m8™M
[k p1Up2 i #ocset Tkte e

Tk p i #ocset

Tk te i I'Fp i *geset Trorpox F'krgox
[K-AT] ocse [K-ArRrROW] 21 pe
Tkie@p::*p Tk — 125 %p,UpUp
IR S Tk,
Ik Trrpux I'Fp o *gcset p1Up2 Cp
[K-ProDp] L P [K-Sum] ocse
T'bri X1 *p1Up, I'tn +p T2 1 ¥p
ke € {*loc> *locset } Fanke b roxp,
T,ausy b Ti%p T,a:ke b P i #jocset o =((pUp)\a)UT
[K-REC] ————— [K-ArrLoc]
Trppa.tixp Tk Vazuke[p]. 7%y
Foause b T T+ p Foauspy, F1ixp, Trp
[K-ArLLocaAL] ¢ P o [K-ArL] o P2 o

Tk Vazse[p']. 7 %pup T FVYaus, [p'l.r: *pyUp’

Step in Tine: Forking Processes in Functional Choreographies 33

B.2 A Type System

In these rules we denote ® = T'; A,; A for brevity, and abuse notation to add variables to and use
the kinding judgment on the required sub-contexts of © as appropriate. In the subsequent sections
we may use the shorthand tloc(®; 7) to denote the set p of locations such that © + 7::%,,.

FO O F Pt *|oeset O, Fe:te
FO® X:r€® p’ = if Val(e) then @ else p
[T-VAR] ———— [T-DonE] -
OrX:T>Q OFpe:te@p>p
p p
@,F:Tl—>T2,X:‘[1}-C:Tzl>p @I—Cl:fl—>‘[2>p1 @I—Cz:‘[lbpz
OF 1%y, OF 1p 1 #p, OF 1y p, OF 1z 1 %p,
"= paUppU "=paUppU
[TFox] P =Pa¥ PP [T-Ape] p =Pappp

Orfuny F(X)=Ciri Doy @ OFCiSy Coime > prUpzUp|

Ke € {*Ioc:*locset} Pl = (P \ 0{) uT
O,F:Va:ke[pl.t,a:ke -C:71> p

O+ tfuny F(a:ke) = C:Vauke[pl.T> @

[T-TFunLoc]

K¢ € {*IOCs*[ocset}
OFC:Va:ke[pl.t> p1 OFt:kp
Orrlamt] sy, o =prUplat]

[T-TArpLoC] n
OrCSyt:tla—t]>prUp
K € {*e>*p} K € {*e>*p}
O,F:Va:k[p]l.t,azk+C:1t>p O+ C:VYa:k[p]l.t> p; OFrt:k
O, oKk T "=p U OFrlart] :* "=p, U
[T-TFun] pe P PP [T-TArp] pe P TP ,'D
O+ tfuny F(a:k) = C:Va:k[pl.T> @ OrCS$yt:tlartl>prUp
OFrCr:T1 > p1 OFCo:1y> p2 OFC:TiX12>p’
OF 11 %), OF 1y %), OF 1 %y, OF %),
P =paVpp P =paVpp
[T-PaIr] [T-FsT] n
@)I—(Cl,CZ)p:ﬁXTszlUpg @I—fstpC:lepUp
OrC:Ti x> p’ OrC:ty>p OF p’ = *loeset
OF 1y #p, OF 1 #p, OF 1y sy, OF 3%y,
=pa VU Upp Cp’
[T-Sxp] P =Pa™ Pp : [TInt] . Pa ™ Pp =P
OFsndpC:mp>pUp OFrinly City+py 2> p
OFC:ma>p OF p’ i *lgeset
OF 1 %y, OF 13 %), OrCiTi+py 2> p
anpbgp, O,X:11+Cr:1> pg O,Y:ro-Co:1> p2
[T-INR] [T-CasE]

casey C of
Or |inlX=C :t>pUp UpiUpy
[inrY = Cy

Orinry City+py 2> p

34 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

isSum(s, t1, t2) OrC:s@p >p
0,p x:t1 FCr:T> py 0,p . y:tg - Cy:11> py

[T-LocALCASE]
localCasey C of
Or |inlx=>C st pUp’ UpUps
inry = Ca
OrC:tlam ppa.t| > p’ OFC:ppa.t>p’
[T-FoLp] [Fp] f) [T-UnroLD] Hp P r
®+foldy C: ppa. 7> p © + unfold, C: rla > pa.7] > pUp
OFCr:te@p2>p p1 € p2
O,p1.x:te FCo T > p’
[T-LETLOCAL] ;
Orletpix=CiinCy:t>pUp’ Upy
O Ciilocy@ps>p p1Sp2Cps
OFT:* O, F Co T > p’
[T-LeTLOC] s loc 2 P

OF let pr.aikge =CrinCa:1>pU(p’ \ {a})Upy

O+ C1 : locsety, @p3 > p p1Cp2Cp3
T'rrox O, a:#|geset F C2 T > p’
[T-LETLOCSET] pr ocse

OF let po.aikigeset = C1iNCo:t>pU (p \ @) Up2

4

OFC:te@p1>p OrC:7p>p
t € p1 O F p2 i ¥|geset O F £ ¥ O F p i #|ocset
[T-SEnD] [T-Sync] ;
OFC {tw pa:te@(p1Upz) > pU{fi}Up: OrL[dl~p;C:t>{f}UpUp

O, a:xge, {fat.xilocg FC:T > p
OF £ ¥ OF 7uxp, OrC:7>p
[T-Fork] [T-Kir1]
O r let (a,x) = t.fork()inC: 7> {f} U (p\) O+ kill L after C: 7> pU{L}

B.3 Spawned Thread Well-Scopedness Judgment

Because A programs may spawn multiple threads, we need to guarantee that the names of these
spawned locations are distinct from other threads, and also distinct from any other locations who
may have already been executing the choreography.

For instance, consider the simple program (kill B after A.1, B.2 ~» A). While it may be obvious
that such a program cannot be reached by means of reducing a surface-language expression (as B
could not be chosen as the spawned thread), the type system defined above does not rule it out.
Indeed, the specific issue we identify with this program is that the participant B in the right-
hand side B.2 ~» A is one of the spawned locations in the left-hand side kill B after A.1. The
expression (kill B after A.1, kill B after A.2) should be a similarly impossible state to reach as the
thread B has been spawned in two separate expressions, which, by the C-Fork rule, could not occur
as each simultaneously spawned thread must be distinct.

To rule out scenarios like those described above, we use a secondary judgment © + C loc-ok
that ensures the spawned threads in a choreography C are well-scoped—only participating in the
scope of the kill-after expression that they are declared to be operating in.

In the following rules, the syntax © + C > p is used to mean that C type-checks under context ©
and with participants p, but the type may be arbitrary. In effect, ® - C > p © Ar.O - C: 7 > p.

Step in Tine: Forking Processes in Functional Choreographies

©,F:ry D5 15, X1y - C loc-ok

SL(C) =@
[S-VAR] ——— [S-DoNE] ——————— [S-Fun]
O F X loc-ok O+ p.e loc-ok ® fun, F(X) = C loc-ok
O + C; loc-ok ® + Cy loc-ok
@l—cll>p1 @l—C2>pz
NL(p1) NSL(C2) = @
NL(p2) NSL(Cy) =@ ©,F:VYa:k[p].7 + C loc-ok
NL(p) N (SL(C1) USL(Cp)) = @ SL(C) =@
[S-Arp] [S-TFun]
©+ Cy $p Cz loc-ok O tfun, F(a::ke) = C loc-ok

®© + Cy loc-ok ® + Cy loc-ok
@l—cll>p1 @l—C21>p2

O+ C loc-ok NL(p1) NSL(Cy) = @
NL(p) NSL(C) = @ NL(p2) NSL(Cy1) =@
[S-TApp] ——— [S-PaIR]
O F C$,t loc-ok ©+ (C1,C2)p loc-ok
O+ C loc-ok NL(p) NSL(C) =@ O+ C loc-ok NL(p) NSL(C) =@
[S-Fst] [S-Snp]
O + fst, C loc-ok © +snd, C loc-ok
O+ C loc-ok O+ C loc-ok
[SIv] —— M [S-Ing] ———
© kinl, C loc-ok © +inr, C loc-ok

® + C loc-ok 0,X:11 + Cq loc-ok 0,Y:1m9 + Cy loc-ok
@I—Cl>p @,X:T1FC1>p1 @,Y:Tzl—Czl>p2
NL(p) N (SL(C) USL(C;1) USL(C3)) =@
NL(p1) N (SL(C) USL(Cp)) = @
NL(pz) N (SL(C) USL(C1)) = @

[S-CasE]
© + casep Cof (inl X = Cq) (inr Y = C3) loc-ok

® + C loc-ok 0, p.x:t; + C1 loc-ok 0, p.y:t2 + C2 loc-ok
@I—Cl>p @,X:Tll-cll>p1 @,Y:Tzl—Czl>p2
NL(p) N (SL(C) USL(C1) USL(Cp)) = @
NL(p1) N (SL(C) USL(Cp)) = @
NL(p2) N (SL(C) USL(C1)) = &

O + localCase, C of (inl x = Cy) (inry = C2) loc-ok

[S-LocAaLCASE]

O+ C loc-ok O+ C loc-ok NL(p) NSL(C) = @
[S-FoLp] [S-UnroLp]
© + fold, C loc-ok © + unfold, C loc-ok

O+ C;1 loc-ok O, p.x:te + Co loc-ok
OrCi>pp O,px:te HCo > po
NL(p1) NSL(C2) =@

NL(p2) N SL(Cy) = @

NL(p) N (SL(C;) USL(Cz)) = @

[S-LeTLocCAL] -
O+ let p.x = Cq in Cy loc-ok

36

[S-LeTLoC]

® + Cq loc-ok
OFrCy> P1

O + C; loc-ok

Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

O, a:: ¥ F C2 loc-ok
@|—C1|>p1 @,a::*|0CI—C2>p2
NL(p1) NSL(Cy) = @
NL(p2) NSL(C1) =@
NL(p) N (SL(Cy) USL(Cy)) = @

O+ let p.a:ixye = C1 in Cg loc-ok

O, ot #geset F C2 Loc-ok
O, ot #|geset F C2 > p2

NL(p1) NSL(C2) =@

NL(pz) N SL(C1) = @
NL(p) N (SL(C1) USL(Cp)) = @

[S-LETLOCSET]

®© + C loc-ok
(NL(¢) UNL(p)) NSL(C) = @

O+ let p.a::#|geset := C1 in Ca loc-ok

® + C loc-ok

(NL(£) UNL(p)) N SL(C) = @

[S-Sync]

[S-SEND]

O+ C {t}» p loc-ok

O, a::¥|gc, {£, a}.x::locy F C loc-ok
NL(¢) N SL(C) = @

O+ f[d] ~ p; C loc-ok

[S-KiLL]

C Network Language
Ci

Network Program E :=
|
|
|
|
|
|
|
|
|
|
|

Network Values \7%4

[S-Fork]

O + let (a, x) = ¢t.fork() in C loc-ok

O+ C loc-ok
L ¢ SL(C)

O + kill L after C loc-ok

Network Language Expressions

X | 0| ret(e) | B By
funF(X) =E | E{Ey | tfunF(a) =E | Et

(E1,E) | fstE | sndE

inlE | inr E | case Eof (inl X = E;) (inr Y = E,)
localCase E of (inl x = E;) (inry = Ey)

foldE | unfold E

send E to p | recv from¢

letx = E;inE; | letauk = E; in E
choosed for ¢ ; E

allow £ choice (L= E;,) (R=E;y,)

AmIe p then Ej else E;

let (a,x) = fork(Ey) in E; | exit

X | (O] ret() | funF(X) =E | tfunF(a) = E
(Vi,V3) | inlV | inrV | foldV

C.2 Transition Labels and Evaluation Contexts

Transition Labels [

Evaluation Contexts #

1| m~sp | Lm~| fork(L,E) | exit

[1:E1LTET V]| []e] fold[] | unfold[-]
(LLE) | (V.[-D | fst[-] | snd [-] | inl [-] | inr[]
case [] of (inl X = E;) (inr Y = E,)

localCase [+] of (inl x = E;) (inry = Ey)

send [] top | letx =[] inE | letauk =[] inE

Step in Tine: Forking Processes in Functional Choreographies 37

C.3 Network Language Operational Semantics

I
L>E1 = E» e — ey Val(V)
[N-Ctx]] [N-RET] ; [N-SEQ] E——
Lvn[Ei] = plE2] Leret(e;) = ret(eg) L>V.,E=E
=funF(X) =E Val(V =tfunF(a) = E
[N-App] f l() V) [N-TAPrpP] ! ; ()
LrfV=—E[F— f,X— V] Lo ft=—E[F— f,amt]
Val(V) Val(V7) Val(V,)
[N-UnroLpFOLD] ; [N-FsTPAIR] ;
Le>unfold (foldV) =V Lsfst (1, Vo) =W

Val(Vi) Val(Vp)
[N-SNDPAIR]

Lesnd (Vi,Vp) = Wy

Val(V)
[N-CasEINL]

Lecase (inl V) of (inl X = E;) (inr Y = Ep) = E1[X + V]

Val(V)

[N-CASEINR] ;
Ly case (inr V) of (inl X = Eq) (inr Y = Ey) = Ex[Y > V]

Val(v)

[N-LocALCASEINL] -
L localCase ret(inlov) of (inl x = E;) (inry = E2) = E1[x — 0]

Val(v)

[N-LocALCASEINR] ;
L localCase ret(inro) of (inlx = E;) (inry = Ez) = Ex[y — 0]

Val(v)
[N-LET]

L
Leletx :=ret(v) inC= C[x > v]

Val([t])

Leletauk =ret([t]) inE - Ela > t]

[N-TyLET]

Val(v) fv(ip) =02 Val(v) L' #L
[N-SEND] oo (L) [N-REcV] T o
L sendret(v) top RASLALS N ret(v) Lvrecv fromn L) = ret(v)
fv(p) =2
[N-CHOOSE] ()
dp\{L}

L»choosed for p; E=—=E

L' #L
[N-ArLowL]

L’ .Lw
Lvallow L’ choice (L = E;) (R = E;|) =—— F;

38 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

L' #L

[N-ALLowR] o
Lvallow L’ choice (L= E1,) (R = Ey) =——= E;

Lep L¢p
[N-IAMIN] [N-TAMNoTIN]

Lv>AmIe p then Ej else E :l> Eq Lv>AmIe p then Ej else Ej :I> E,

El=E; [a L, x e |’L'J] L’ globally fresh

Ey=Efa— L' x— [L]] fv(E)) =@
[N-Fork] [N-Exi1T] -
fork(L’,E]) . oexit
Lelet (a,x) = fork(Ey) in B =——==E, Leexit=— ()

D Compilation
D.1 Network Program Merging

We show the patterns for which E; U E; is defined; if there is no matching pattern, then E; Ll E; is
undefined.

undefined LI undefined £ undefined
undefined LI E; £ E,

E; Uundefined £ E;

11>

XuXx=X

0

ret(e)

11>

Ou0

ret(e) U ret(e)

1>

(E11: Er2) U (Egn s Ezp) = E1n UE21 5 E1p U B
(fun F(X) = Eq) U (fun F(X) = Ep) £ fun F(X) = (E1 UEy)
(E1,1 E12) U (B E22) = (E1,1 U Eg1) (Ev2 U Ezp)
(tfunF(@) := E;) U (tfunF(a) = E3) = tfunF(a) = (E1 U Ey)
(Ext) U (Ezt) = (E1UEp)t
(fold E;) U (fold Ez) £ fold (Ey U Ey)
(unfold Ep) U (unfold Eg) £ unfold (E; U Eg)
(E11, E1,2) U (E21, E22) = ((E1,1 U Ez1), (B2 U Ez2))
(fst E;) U (fst Eg) 2 fst (E1 U Ey)
(snd Eq) U (snd Eg) 2 snd (Eq U Eg)
(inl Ej) U (inl Eg) £ inl (Eq U Ey)
(inr Ey) U (inr E3) £ inr (Eq U Ey)

case Eq,; of case Egj of case (E11 UEgy) of
| ianﬁEl,z [| ianﬁEZ,z z | ianﬁEl,zl_lEz,z
| inrY:»El,g | inrY:>E2,3 | inrY:>E1,3 |_|E2’3

Step in Tine: Forking Processes in Functional Choreographies 39

localCase Eq,q of localCase Eg 1 of localCase (Ej1 U Eg1) of
| inlx:)El’g [N | in|x:>E2’2 z | inlx:>E1,zl_IE2,2
| inry = Eq3 | inry = Ez3 | inry = E13UEz3

(letx :=Ej1inEjp) U (let x := Eg1 inEzp) = let x := (E;1 UEg) in (Ej2 U Eg2)
(let @uk == Eq1 in Er2) U (let ik = Egq in Egp) = let ank = (Epq U Eg1) in (E12 U Ez2)
(send Eq to p) U (send Ey to p) = send (E; UWEy) top
(recv from £) U (recv from £) = recv from £
(choose d for ¢ ; E1) U (choose d for £ ; E3) £ choose d for £ ; (E; U E2)

allow £ choice allow £ choice allow £ choice
| L= E1’1 [| L= E2)1 | L= E1,1 LJELZ
| R=> EI,Z | R=> Ez,z | R = Ez)l LI Eg,z

1>

AmI€ p then Eq; 4 AmIc p then Eaq | . AmI€ p then (Ey1UEg;1)
else Erz else Epp |~ else (E12 UE;p)

let (a,x) = fork(Ey1) let (a,x) = fork(Eg1) \ . let (a,x) := fork(Ey1 UE21)
: Ao S : :
in El,Z in Ez’z in (El’z [Ez’z)

A

exitlUexit = exit

D.2 Endpoint Projection
Note that AmI £ then E; else E, is shorthand for AmI€ {¢£} then E; else E,.

[xXI. =X

{ret(e) ifLep

lo-elL = otherwise

funF(X) =[C]L ifLep
[fun, F(X) = C], if L ¢ p and [C]y # undefined

undeﬁned otherwise

[C1$, C: {[[Cl]]L [Cale ifLep

[Cilr s [C2lL s () otherwise

tfunF(a) =

AmI a then [Claw L] ifLep
else [C

[tfun, Fa:#ec) = CHL = [l P

[C]L, [Clea — L]]1 # undefined

undefined otherwise

0

40 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti
tfunF(a) =
Aml€ a then [Cla+— {L}U«a]]y ifLep
else [C]L
[[tfunp Fa:#ppcset) = CHL = i1 ¢ pand
)
([ClL. [Cla — {L} U a]]L # undefined
undefined otherwise
tfunF(a) = [C]y ifLep
[tfuny F(a:x) =C], =10 if L ¢ p and [C] # undefined
undefined otherwise
[[CEB tﬂ _ [CIL ¢ ifLep
PHELTNCIL s (O otherwise
[fold,], = fold [C], ifLep
o
PEIL T otherwise
[unfold, C], = unfold [C]y ifLep
unfo
P Il ¢ O otherwise
[[(Cl Cz) ﬂ ([[Cl]]b [[CZ]]L) ifL € P
P [CilL ¢ [C2lL otherwise
[is,], = fst [C]L ifLep
S =
P [ClL s () otherwise
[snd, €], = snd [C]y ifLep
sn
P [ClL s () otherwise
[inl,], = inl[C]L ifLep
in
P €L otherwise
[inr,], = inr [C]y ifLep
inr
P €It otherwise
case [C]g of
casep C of linl X = [Ci]L ifLep
|inl X = C; =1 |inr Y= [C]L
linrY=Co [} |[C]Ls[Ci]r UlCe]r ifL ¢ pandX ¢ fv([C1]L) and Y ¢ fv([Ca]L)
undefined otherwise
localCase [C]g of
localCase,, C of linlx = [Ci]r ifLep
linlx = ¢ =1 |inry=[C]L
linry = Cp L |[Cls[CliulCly ifL¢pandx ¢ fv([Ci]) and y ¢ fv([C2]L)
undefined otherwise

Step in Tine: Forking Processes in Functional Choreographies 41

letx = [[C1]]L in [[CZ]]L ifLep
[[Iet p.x:ite =Cypin CZ]]L =1[C]L s [Cal if L ¢ pand x ¢ tv([C2]L)
undefined otherwise

let a = [[Cl]]L in HCZHL ifLep

[let p.a:se = C1in Co]; = {[C1]L ¢ [CalL if L ¢ panda ¢ fv([C2]L)
undefined otherwise
leta = [C1]L ifLep
in AmI @ th C L 1 C:
[let p.a::#joc = Cyin Co]; = inAnt e then [Colar— L]y else [Cale .
[Ci]e s [Cale if L ¢ pand a ¢ fv([C2]L)
undefined otherwise
leta = [C1]L ifLep
in AmI€ a then [C2[a — {L} U a]]L
[let p.a::#geset := C1 in Co]y = else [C2]L
[Ci]e s [Cale if L ¢ pand a ¢ fv([Ca]1)
undefined otherwise

send [C] top ifL=¢

[C (o3 p]; [ClL g recv from¢ ifL+#¢andL € p

€L otherwise

allowf choice (L= [C]y) ifL#fandL€pandd=L
allow ¢ choice (R= [C]) ifL+#¢fandL € pandd=R
€It otherwise

[e[d] ~ p: ClL

let (a,x) = fork([C]e) in [C]r ifL=¢
€L if L# ¢and a,x ¢ fv([C]L)

undefined otherwise

[let (a,x) = £.fork() in C]} =

[choosedforp: [ClL ifL=¢

Clr sexit ifL=1L
[kill L” after C]; = {[[Jogexit i

€L otherwise
D.3 Locations Named by a Type or Choreography

NL(a) = @
NL(L) = {L}
NL({¢}) = NL(¢)
NL(p1 U p2) = NL(p1) UNL(p2)
NL(T)=2
NL(te@p) = NL(p)

NL(7; 2) = NL(z;) UNL(z) UNL(p)

42 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

NL(; +, 72) = NL(r1) UNL(72) UNL(p)
NL(71 X 72) = NL(71) UNL(z2)
NL(ppa.) = NL(p) UNL(7)
NL(Va::x[p].7) = NL(p) UNL(r)
NL(X) = @
NL(p.e) = NL(p)
NL(fun, F(X) = C) = NL(p) UNL(C)
NL(Cy $ C2) = NL(p) UNL(Cy) UNL(Cz)
NL(tfun, F(a) := C) = NL(p) UNL(C)
NL(C $, £) = NL(C) UNL(p) UNL(?)
NL(C $, p") = NL(C) UNL(p) UNL(p")
NL(C $, t) = NL(C) UNL(p)
NL(fold, C) = NL(p) UNL(C)
NL(unfold, C) = NL(p) UNL(C)
NL((C1,C2)p) = NL(p) UNL(C1) UNL(C2)
NL(fst, C) = NL(p) UNL(C)
NL(snd, C) = NL(p) UNL(C)
NL(inl, C) = NL(p) UNL(C)
NL(inr, C) = NL(p) UNL(C)

casep C of
NL| |inlX = C; |=NL(p) UNL(C) UNL(C1) UNL(Cy)
[inrY = Cy

localCase,, C of
NL[[inlx= ¢ = NL(p) UNL(C) UNL(Cy) UNL(Cy)

linry = C
NL(let p.x := Cy in Cz) = NL(p) UNL(C;) UNL(Cy)
NL(let p.a == Cy in C3) = NL(p) UNL(Cy) UNL(Cy)
NL(C {¢}» p) = NL(£) UNL(p) UNL(C)
NL(¢[d] ~> p ; C) = NL(£) UNL(p) UNL(C)
NL(let (a,x) := £.fork() in C) = NL(£) UNL(C)
NL(Kkill L after C) = {L} UNL(C)

D.4 Spawned Locations in a Choreography

SL(X) = @

Step in Tine: Forking Processes in Functional Choreographies 43

SL(p.e) = @

SL(fun,, F(X) := C) = SL(C)
SL(C1 $, Cz) = SL(Cy) USL(Cy)

SL(tfun, F(a) = C) = SL(C)

SL(C'$p) = SL(C)

SL(fold, C) = SL(C)

SL(unfold, C) = SL(C)
SL((C1,C2)p) = SL(Cy) U SL(C2)

SL(fst, C) = SL(C)

SL(snd,, C) = SL(C)

SL(inl, C) = SL(C)

SL(inr, C) = SL(C)

casep, C of
SN[|inlX = €1 |=SL(C) USL(Cy) U SL(Cy)
[inrY = Cy

localCase, C of
SN[|inlx=C = SL(C) USL(Cy) USL(C3)
[inry = Cy

SL(let p.x = Cy in C3) = SL(Cy) U SL(Cy)
SL(let p.at := Cy in C3) = SL(Cy) U SL(Cy)
SL(C {}w> p) = SL(C)
SL(¢[d] ~» p ; C) = SL(C)
SL(let (a,x) := ¢.fork() in C) = SL(C)
SL(kill L after C) = {L} U SL(C)
D.5 The Less-Than Relation

E, < E Val(V)
undefined < E E, <V .E, X=<X 0=<0 X =<() 0=X

Ei1 2 Ez Ei2 < Esp E; < E;
ret(e) < ret(e) E11;E12 < Ezq; Eop funF(X) = E; < funF(X) = E,

Ei1 2 Ey Eip <Ej» E, < E E, < E,
El,l El,Z < EZ,l Ez,z tfun F((X) = El < tfun F((){) = E2 El t < Ez t

E| < E; E| < E; Ei1 < Ezy Eiy < Epp
fold E1 < fold Ez unfold El < unfold E2 (E]J,El’g) =< (Ez’l,Ez’g)

44 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

ElﬁEz E1 ﬁEz ElﬁEz ElﬁEz
fst By < fst Ey snd Eq < snd E, inl E; <inl E, inr By 2inr Ep
Ei1 < Ezq Ei2 < Epp Ei3 < Ez3 Ei1 < Ezq Eiz < Epp Ei3 < Ez3
case Eqq of case Epq of localCase E;; of localCase Ep; of

| ianﬂEl’z < | iﬂlX:Ez’g | in|x=>E1’2 < | inlxﬁEz’z

| inrY=>E1,3 | im’Y:Em | inry=>E1,3 | inry:Ezsg

Ei1 2 Ey; Eio < Ep

let x = El,l in EI,Z < letx = E2,1 in Ez,z

Ei1 <2 Ez Ei2 < Esp E| < E;

letaux = E;;inEp < let aux = Egq in Epp send E; to p < send E; to p
E; < E,
recv from¢ < recv from¢ choose d for £ ; Ey < choosed for ¢ ; E,
Ei1 X Ez Ei2 < Ezp Ei1 2 Ez Ei2 < Ezp
allow £ choice allow ¢ choice AmIe p then E; < AmIe p then Egq
| L= Ei; < |L=Ez elseEjp ~ else Ep;
|R:>E1,2 |R:>E2,2

Ei1 S Bz Eip 2 Ezp

let (a,x) == fork(Ey) < let (a,x) := fork(Ezy) exit < exit
in E1,2 ~ in Eg’z

D.6 The Simulating Less-Than Relation

Let the simulating less-than relation < be the following subrelation of <. This relation is similar to
the less-than relation, but differs in the following ways:
(1) it does not contain a rule to allow E; <V ; Es,
(2) in order for two expressions to be related, their heads must be related by <, but their bodies
must be related by <, and
(3) the rules for function applications and pairs differ in how their right-hand arguments must
be related depending on whether their left-hand arguments are values.

This relation is so-named because if E; < Es, then the next step that E; and E; make—if any—must
be identical (i.e., E; and E, simulate each other for a single step), whereas this is not the case for <.

undefined < E X<X 0O)=<0 X =<0 O=<X ret(e) s ret(e)
Ei1 3 B2 Eip 2 Epp E, < E;
El,l ;El,z < E2,1 ;Eg,g fun F(X) = E1 < fun F(X) = E2
—Val(Ey) Ei1 2 Bz Eip < Eyp Val(Ey1) Ei1 S Ezq Ei2 S Ep

Ei1E12 S Ezq Epp Ei1 E12 S Exq Egp

Step in Tine: Forking Processes in Functional Choreographies 45

E\ <E, Ei 3 E Ei 3 Ey
tfun F(a) = E; S tfunF(a) = E, Eit3Est fold E; S fold E,
E 5 E - Val(Ey,1) Ei1 S Bz Eip < Epp
unfold E; g unfold E, (E11,E12) 3 (B, Ez2)
Val(Ey) Ei1 3 B2 Ei2 S Ezp E, 3 E, E, S E,
(E11,E12) 3 (B, Ez2) fstEy S fstEp snd E; 3 snd Ey
E\ 3 E E\ 3 E Ei1 S Bz Eip < Eyp Ei3 X Ez3
inl E;{ S inl E, inr E;y S inr Ey case Eyq of case Ey; of
| ianﬁEl,z < | ian=>E2,2
| inrY=>E1’3 | inrY=>E2,3
Ei1 S Eon Eip < Epp Ei3 < Ey3 Ei1 3 E2 Eip < Epp
localCase E;; of localCase E;z; of letx = Ej1 inEjp S letx = Eyq in Ep
| inl x = El,Z < | inlx = Ez,z
| inry:Em | inryﬂEm
Ei1 3 B2 Ei2 2 Ejp Ei 3 E
letaux = Ej;inEjp S letank = Ey; in Egy send E; top S send E; top
E{ <E,
recv from¢ < recv from¢ choose d for ¢ ; E; < choosed for ¢ ; E,
Ei1 2 Eyy Ei2 < Epp E1 2 Ep; Eip < Epp
allow £ choice allow £ choice AmI€ p then Eq; < AmIe p then Egq
| L= Ei; 3 | L= Ez; elseEip ~ else Ey
|R:>E1)2 |R$E2,2

Ei1 2 Ep; Eip X Eyp

let (a,x) = fork(Eq11) - let (a,x) = fork(Ez1) exit g exit
in El,Z ~ in Ez)z
E Proofs

E.1 Substitution Lemmas

The following lemmas quantify the behavior of the kinding and type systems with respect to the
substitution operations. Each lemma is proven with respect to an infinite parallel substitution o
mapping all variables to choreographies (or types, or local expressions), of which a single-variable
substitution [X +— C] can be recovered as a special case by setting o(X) = C and o(Y) =Y for
Y # X. We make use of these lemmas frequently, and so may elide explicitly referencing them in
any following proofs.

Lemma 1 (Location Substitution Preserves Containment). If¢ € p then £[o] € p[o].

46 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

Proor. By induction on p. O
Lemma 2 (Location Substitution Preserves Subsets). If p; C p, then pi[o] C p2[o].

Proor. By induction on the definition of the C relation. The only interesting case is when
p1 = {¢}, which follows by Lemma 1. O

Lemma 3. If o is a location substitution where Va.NL(o(a)) € p, then NL(t) € NL(¢[o]) C
NL(t) U p.

Proor. By induction on ¢. O
Lemma 4. Ifo is a type substitution, then NL(t[c]) = NL(?).

Proor. By induction on t. O
Lemma 5. For any location substitution o, SL(C[c]) = SL(C).

Proor. By induction on C. O
Lemma 6. For any type substitution o, SL(C[c]) = SL(C).

Proor. By induction on C. O
Lemma 7. For any local substitution o, SL(C[p|o]) = SL(C).

Proor. By induction on C. O
Lemma 8. Ifo is a substitution where VX.SL(0(X)) = @, then SL(C[c]) = SL(C).

Proor. By induction on C. O

Definition 1 (Well-formed Location-Type Substitutions). Say that a function ¢ from location-type
variables to locations or location sets maps Iy to Iy, (written + o : I;; = I}3) if and only if

VYa:x, € rg)l.rg,z F O'(O() Ky

Lemma 9 (Location Substitution Preserves Location Kinding). If + 0 : Ip1 = I;2 and Ty F t = Ky,
then 1},2 F t[o] Ky

Proor. By induction on the kinding derivation I} ; + ¢ :: k. O

Lemma 10 (Location Substitution Preserves Kinding). If - o : Ip1 = I;2 and I;1;T + t i K, then
I;2;T[o] F tlo] = x[o].

Proor. By induction on the kinding derivation I} ;;T + ¢ :: k. O

Definition 2. For a location substitution ¢ and a set of locations ©, say that ¢ does not mention ®
(written © ¢ o) if and only if L # o(«) and L ¢ o(«) for all location-type variables @ and L € ©.

Lemma 11 (Unmentioned Substitutions Preserve Equality). If© ¢ o thent =L & ¢[o]| = L for all
Leo.

Lemma 12 (Unmentioned Substitutions Preserve Containment). If© ¢ o thenL € p & L € p[o]
forall L € ©.

Lemma 13 (Unmentioned Substitutions Preserve Containment in Named Locations). If© ¢ o then
L eNL(p) & L € NL(p[o]) forall L € ©.

Lemma 14 (Unmentioned Substitutions Preserve Disjointness). If© ¢ o, then © N p = @ if and
onlyif®@nNplo] = 2.

Step in Tine: Forking Processes in Functional Choreographies 47

Lemma 15 (Unmentioned Substitutions Preserve Disjointness in Named Locations). If® ¢ o, then
© NNL(p) = @ ifand only if® N NL(p[0]) = @.

Lemma 16 (Context Projection and Location Substitution Commute). Ifo is a location substitution,
A is a local context, and p is a location set, then (Ac|,)[c] C Ac[o]|,[4-
Proor. By induction on A..If A, = -, the claim is trivial. Otherwise suppose that A, = p’.x:t,, A.
If p C p’, then Aelp =X:t,, Aé|p, and so
(Aclp)lo] = x:te[o], (4])lo] € x:te[o], Ag[o]]
by induction. By Lemma 2, p[o] C p’[0], so
Aelollpio1 = (¢ [o]x:tel0]. AL, = x:te[o]. AL[o]|
as desired. Otherwise suppose that p ¢ p’. In this case,
(Aclp)lol = (2|)lo] € Ao]|

We could have either p[o] C p’[o]—in which case Ac[o]|,,) = x:tc[0], A¢[o] \p[a] as before—or

plo]
plo]

plel”

plol € p’lo], wherein Ac[o]|,[5 = A;[a]|p[0]. In either instance, (A¢|,)[o] € Ac[o]lyq),

completing the proof. O

Lemma 17 (Location Substitution Preserves Typing). If + 0 : Ip1 = Tpo, [;5 Ae; A C it > p,
and SL(C) ¢ o, thenT;2;T[o]; Ac[o]; Alo] + Clo] : t[o] > p[o].

Proor. By induction on the typing derivation I} 1; I Ae; A - C : 7 > p. In the following we
denote ©1 =Ty 1;T5Ag; A and O, =Ty 5; T [0]; Ac[0]; Al o] for simplicity.
e (T-VAR) As X : t[o] € A[o], we have that ©, X : 7[o] > @ as desired.
e (T-DonE) By Lemma 16 we have (Ac|,)[c] € Ac[0c]|,[]- Therefore by weakening and
location substitution of the local type system It 2; '[0]; Ac[c]|,[5) I+ e[o] : t[o] as desired.
As well, because o is a type substitution, e is a value if and only if e[o] is a value, meaning
both p[c].e[o] and p.e have participant set p[o] and p, respectively, or both have @.

e (T-Fun) By induction, ©,, F:71[0] M nlol,X:r1[o] + Clo] : t[o] > plo], so ©;

funy o) F(X) = Clo] : 1[0] M o] > @.
e (T-Arr) As SL(C;) U SL(Cy) ¢ o, we have that both SL(C;) ¢ o and SL(C;) ¢ o. Thus

by induction, 8, - Ci[o] : r1[o] 2% nl0] & pi[o] and O, + Cola] : nilo] > palol.
Therefore ©, +- Cy[0] $,[s] C2l0] : T2[0] > p1[o] U pa[a] U p’[o].

e (T-TFunLoc, T-TFuN) Suppose ©4, F:Va::x¢[p].7,a::k, + C : T > p. Then by induction,
0y, F:Va:ke[plol]].tlo]l,a:ke + Clo] : t[o] > p[o]. Therefore ©, + tfun, F(a:k,) =
Clo] : Ya:ke[plo]]. r[o] > @. The case for T-TFuN is similar.

e (T-TArrLoc, T-TArp) By induction ©; + C[o] : Ya:k,[p[o]].t[o] > pilo], and I}, F
t[o] :: k, by Lemma 9. Therefore ®; + C[0] $,/(0] t[o] : T[a > t][c] > p1[o] U p’[o] as
desired. The case for T-TAPP is similar.

e (T-PaIr) By induction, ©; + Cy[o] : r1[c] > p1[o] and O, + Cz[0] : ©z[c] > p2[o]. Thus
0, + (C1[o], C2[0])p[o) : T1lo] X 72[0] > p1[c] U p2[o] as desired. The arguments for the
other algebraic data type constructors and eliminators are similar.

e (T-LetLoc, T-LETLocSET, T-LETLOCAL) By induction, @, + Cy[a] : loc, [s|@p3[c] > p[o]
and O, a:: %o F Co[0] : T[0] > p’[0o]. By preservation of C under substitution, p;[o] C
p2lo] € pslo]. Thus ©; + let po[o].a e == Ci[o] in Colo] : t[o] > pla] U (p’'[c] \ @) U
pz2lo] as desired. The cases for T-LETLOCSET, and T-LETLOCAL are analogous.

48 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

e (T-SEnD, T-Sync) By induction, ®; + Clo] : t.[c]@pi[c] > p[o]. As containment is
preserved under substitution, £ [c] € p;[o]. Therefore ©; + C[o] {tlel}w p2[o]
telo]l@(p1[o] U pz(o]) > plo] U {¢[o]} U p2[o]. The argument for T-SyNc is similar.
e (T-Fork) By induction ©,, ¢ :: #|oc, {at, £[o] }.x:locy F Clo] : t[o] > p[o],s0 0, + let (@, x) =
t[o].fork() in C[o] : z[o] > p[o] as desired.
e (T-Kirr) By induction, ®; + C[o] : 7> p. As L ¢ o and L ¢ NL(r), using Lemma 13 we have
L ¢ NL(z[o]). Therefore O, + kill L after C[o] : t[o] > p[o] U {L}.
[m}
Definition 3 (Well-formed Type Substitutions). Say that a function o from type variables to types
maps I} to [, under Iy (written I; + o : I; = I3) if and only if
Va:x €1.T; L F o(a) = k.
Lemma 18 (Type Substitution Preserves Kinding). If T, - 0 : I} = LI, 5Ty + t =k, and Ty + I,
thenTy; Iz + to] = kx[o].

Proor. By induction on the kinding derivation Iy, I3 + t :: x, and using the fact that the local
kinding system is preserved under well-formed type substitutions. O

Lemma 19 (Context Projection and Type Substitution Commute). If o is a type substitution, A, is
a local context, and p is a location set, then (A¢|,)[o] = Ac[a],.

Proor. The proof is identical to Lemma 16, also noting that type substitution does not affect
location sets so that both projected contexts contain the same variables. O

Lemma 20 (Type Substitution Preserves Typing). If Iy F o : 1 = I, I T Ae; A C: T > p, and
Iy + Iy, then Tp; s Ac[o]; Alo] + Clo] : t[o] > p.

Proor. The argument proceeds similarly to Lemma 17, also using the facts that the local type
system is preserved under well-formed type substitutions, and that locations and location sets are
unaffected by type substitution. O

Definition 4 (Well-formed Local Substitutions). Say that a function o from local variables to local
expressions maps A, to Az under Ij; T (written Ip;T' - 0 : Agy = A,) if and only if
Vpx:ite € Ny . Iy T Ae,2|p I o(x) : te.

Lemma 21 (Local Substitution Preserves Typing). IfI;;T' F o : Ae1 = Ae2, TesT5Ae ;A C T > p,
and Ty T F Agg, then I Ty A s A+ Clo] : 7> p.

Proor. By induction on the typing derivation I;;T; A, 1; A + C : 7 > p, and using the fact that
the local type system is preserved under well-formed local substitutions. O

Definition 5 (Well-formed Substitutions). Say that a function ¢ from program variables to chore-
ographies maps A; to Ay under Ip;T; A, (written Ij; T; Ae + 0 : A; = Ap) if and only if

VX:t € AMi.TpT; A A2 - 0(X) : 7> @ ASL(0(X)) = @.
Lemma 22 (Substitution Preserves Typing). IfTp;T;A. F 0 : Ay = A, T T Ae; Ay FC it 1> p,
andTp; T F Ay, then Ty T3 Ag; Ay F Clo] 7> p.

Proor. By induction on the typing derivation I';;I'; Ag; Ay F C : 7 > p. The argument proceeds
similarly to Lemma 17, and the only interesting cases are for variables. Indeed, if X:7 € Ay, then as
o is well-formed, ©, + (X) : r > @. This suffices because the premise isthat ©®; - X : 7> @. O

Step in Tine: Forking Processes in Functional Choreographies 49

Lemma 23 (Participants of Values). If©® + V : 7 > p and Val(V) or V = X, then p = @ and
SL(V) = 2.

Proor. By induction on the typing derivation ® - V : 7 > p, noting that no introduction form
adds more locations to p than are in its subterms. O

Corollary 1. If0,X:11 FC: 13> p, O F Vi 1y > p1, and Val(V), then © + C[X — V] : 1, > ps.

Lemma 24 (Location Substitution Preserves Spawned Thread Well-Scopedness). If - o : I;1 = I2,
I;1;T5 Ags A - C loc-ok, and SL(C) ¢ o thenTyy;T[0]; Ae[o]; Alo] + Clo] loc-ok.

Proor. By induction on the judgment ®; + C loc-ok.

e (S-Var) As X[o] = X, we trivially we have that ©, + X loc-ok.

e (S-Fun, S-TFun) We handle the case for functions. By induction ®, + C[o] loc-ok, and by
Lemma 5, SL(C[o]) = SL(C) = @, so ©; + fun,[s] F(X) = C[o] loc-ok. The argument is
identical for type functions.

o (S-Arp, S-TApr) We handle the case for function application. By induction, ©; C;[o] loc-ok
and ©; + C;[o] loc-ok. We show that SL(C;[c]) = SL(C;) and NL(p2[c]) € NL(p2) U
NL(o) are disjoint. Indeed, NL(p,) is already disjoint with SL(C;) by assumption, and
NL(0) is disjoint with SL(C;) because SL(C;) ¢ o. The same is true for SL(C;[c]) and
NL(p1[c]). Therefore @, +- C; $,, C, 1loc-ok. The argument is similar for most other data
type introduction and elimination forms.

o (S-INL, S-INR, S-FoLD, S-SEND, S-SyNc, S-Fork) We handle the case for inl. By induction,
O, + C[o] loc-ok. We must show that NL(p[c]) and SL(C[o]) = SL(C) are disjoint. This
follows immediately by using Lemma 15, and the assumptions that NL(p) and SL(C) are
disjoint and that SL(C) ¢ o. The arguments for the other cases are similar.

e (T-K1rr) The assumptions are that ©; + C loc-ok, L ¢ SL(C), and {L} U SL(C) ¢
o. Then by induction, ®; + C[o] loc-ok. As well, L ¢ SL(C[o]) = SL(C), so ©, +

kill L after C[o] loc-ok as desired.
O

Corollary 2. IfO©,a:k, + C loc-ok, © - t :: kp, and t ¢ SL(C), then ©® + C[a +— t] loc-ok.

Lemma 25 (Type Substitution Preserves Spawned Thread Well-Scopedness). IfT; ro: I} = I,
and Ty;T1; Ae; A+ C loc-ok, then T;; I Ae[o]; Alo] + C[o] loc-ok.

Proor. The proof is straightforward by induction, noting that by Lemmas 6 and 20 the substitu-
tion will not change the participants of C nor SL(C). O

Lemma 26 (Local Substitution Preserves Spawned Thread Well-Scopedness). IfIp;T - o : Aey =
Ae2, © F T Ae1; A loc-0k C, and Tp; T+ Ae g, then Ty T's Ae 23 A F Clplo] loc-ok.

Proor. By induction on the judgment ® + C loc-ok. O
Lemma 27. IfSL(C) =@ and® + C : t > p then © + C loc-ok.
Proor. By induction, noting that SL(C’) = @ for all subterms C” of C. O

Lemma 28 (Substitution Preserves Spawned Thread Well-Scopedness). IfTy; ;A -0 : Ay = Ay,
I Ag; Ay C loc-ok, Iy T F A, andVX i1y € ATy T Ag; Ay + 0(X) 1loc-ok, thenTy; Ty Ae; Ag +
Clo] loc-ok.
Proor. By induction on the judgment © +- C loc-ok.
e (S-Var) By assumption, ©; + o(X) loc-ok.

50 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

e (S-Fun, S-TFunN) We handle the case for functions. By induction ©,, F:1; 2, 70, X171 F
C[o] loc-ok,and by Lemma 8, SL(C[c]) = SL(C) = @,50©; + fun, F(X) := C[c] loc-ok.
The argument is identical for type functions.

o (S-Arp, S-TApr) We hande the case for function application. By induction, ®, + C;[o] loc-ok
and ©, + C[o] loc-ok. It follows by the assumptions that SL(C; [o]) = SL(C;) and NL(p;)
are disjoint. The same is true for SL(C;[o]) and NL(p;). Therefore ©, - C; $, C, loc-ok.
The argument is similar for most other data type introduction and elimination forms.

e (S-INL, S-INR, S-FoLD, S-SEND, S-Sync, S-FOork) We handle the case for inl. By induction,
O + C[o] loc-ok. We must show that NL(p) and SL(C[c]) = SL(C) are disjoint, which is
already given. The arguments for the other cases are similar.

o (T-KiLr) The assumptions are that ®; + C loc-ok, L ¢ SL(C), and {L} U SL(C) ¢
0. Then by induction, ®; + C[o] loc-ok. As well, L ¢ SL(C[o]) = SL(C), so ©, +

kill L after C[o] loc-ok as desired.

]

Corollary 3. If©,X:7 + C loc-ok, 0, X:t+C: 7 > p’,0 +V : t > p, and Val(V), then © r
C[X + V] loc-ok.

E.2 Type Soundness
Lemma 29. IfO + C: 7> p, then SL(C) € NL(p) € NL(C).

Proor. By induction on the typing judgment ® - C : 7 > p. O
R
Theorem 1 (Sound Participant Sets). If® + C : 7 > p and (C, Q) =, (C’, Q’), thenrloc(R) C p\T.

R
Proor. By induction on the step (C, 0) =, (C’,).

e (C-DoNE, C-App, C-TAprp, C-UNFOLDFOLD, C-FSTPAIR, C-SNDPAIR, C-CASEINL, C-CASEINR,
C-LeTV, C-TYLETV, C-SENDV, C-FORK, C-SyNC) Immediate.

e (C-Crx, C-Syncl, C-Caskl, C-Arrl, C-Pa1rl, C-LETI) By induction.

e (C-TyLETI, C-ForxklI) Follows because all locations in rloc(R) are concrete, so a ¢ rloc(R).

O
Lemma 30. I[f®+ C: 7> p, then NL(p) C cloc(C).

Proor. By induction on the typing derivation © + C : 7 > p. The only interesting case is when
C = p.e, wherein if Val(e) we have that NL(@) C p, and otherwise NL(p) C p. O

Lemma 31 (Single-Step Type Preservation). If® + C : 7 > p, ® + C loc-ok, NL(p) C Q, and
(C, Q) éc (C",Q"), then there is some p’ such that all of the following properties hold.

(1) OrC i 7> p’

(2) ©® + C" loc-ok

(3) NL(p") € &

(4) SL(C’)\SL(C) =Q"\ Q

(5) SL(C) \SL(C") = Q\ &’

(6) NL(p’) \NL(p) € Q"\ Q

(7) @\ Q' € NL(p) \ NL(p")

R
Proor. By induction on the step (C, Q) =, (C’, Q’). Most cases are immediate by induction
and using the various substitution lemmas.

Step in Tine: Forking Processes in Functional Choreographies 51

e (C-Ctx) We handle the case for reductions in pairs and inl. The argument for the other
cases, as well as the out-of-order cases, are similar.
For a pair (Cy, Cy), the assumptions are that ©® + C; : 71 > p1, @ F Cy : 72 > pa, NL(p;) and
SL(C;) are disjoint, and NL(p,) and SL(C;) are disjoint. First suppose the reduction is in
the left-hand side. By induction, there is some p; where ® + C] : 7y > p7, © + C] loc-ok,
and conditions (3-7) hold.

(1) By induction, © (C},C2), : 7y X T > p] U pa.

(2) First, we show that NL(p]) and SL(C;) are disjoint. Suppose that L € NL(p]) and

L € SL(C;,). By the assumption that NL(p;) and SL(C;) are disjoint, we must have that
L ¢ NL(p;). Therefore L € NL(p;) \ NL(p1), and hence L € Q" \ Q by the inductive
hypothesis. But as SL(C;) € NL(p;) € Q, we have a contradiction, as desired.
Now we show that NL(p,) and SL(C;) are disjoint. Suppose that L € NL(p,) and
L € SL(CY). By the assumption that NL(p;) and SL(C;) are disjoint, we must have that
L ¢ SL(Cy). Therefore L € SL(C;) \ SL(C,), and hence L € Q' \ Q by the inductive
hypothesis. But as NL(pz) € Q, we have a contradiction, as desired. This means that
©+ (C1,Cy)p loc-ok.

(3) We show that NL(p7) UNL(p2) € Q’. By induction NL(p]) € ©’, so we need only
show that NL(p;) € Q’. To that end, let L € NL(p3), and suppose for contradiction
that L ¢ Q’. Then L € Q because NL(p,) C Q by assumption, so L € Q \ Q’. Then by
the inductive hypothesis, L € SL(C;) \ SL(C]) € SL(C;). But by assumption SL(C;)
and NL(p) are disjoint, so we have a contradiction.

(4) We need to show that SL((C},C3),) \ SL((C1,Cz),) = SL(C7) \ (SL(C1) U SL(Cy)) =
Q" \ Q. We can see that SL(C]) \ (SL(C;) USL(C,)) € Q' \ Q easily because SL(C}) \
SL(C;y) € Q" \ Q by the inductive hypothesis. For the other direction, if L € Q" \ Q,
then L € SL(C}) \ SL(Cy), so we need only show that L ¢ SL(C;). This holds because
if L € SL(C;) € NL(C,), then we would have that L € Q, a contradiction.

(5) We need to show that SL((Cy,C3),) \ SL((C},C2),) = SL(Cy) \ (SL(C]) U SL(Cy)) =
Q\ Q'. We can see that SL(C;) \ (SL(C;) USL(C)) € Q \ Q' easily because SL(Cy) \
SL(C]) € Q\ Q' by the inductive hypothesis. For the other direction, if L € Q \ Q’,
then L € SL(C;) \ SL(C}), so we need only show that L ¢ SL(C;). This holds because
L € NL(Cy) \ NL(p7) by (7) of the induction, so L € NL(C;). But then as NL(C;) and
SL(C;) are disjoint, L ¢ SL(C;) as desired.

(6) We need to show that (NL(p}) UNL(p2)) \ (NL(p1) UNL(p2)) = NL(p}) \ (NL(p1) U
NL(pz)) € @'\Q.However, NL(p7)\NL(p;) < Q"\Q by (6) of the inductive hypothesis,
which is satisfactory.

(7) We need to show that Q \ Q" C (NL(p;) UNL(pz)) \ (NL(p;) UNL(p2)) = NL(p1) \
(NL(p]) UNL(p)). To that end, let L € Q \ Q. Clearly L € NL(p;) as NL(p;) € Q,
so we must show that L ¢ NL(p]) U NL(Cz). But by (7) of the inductive hypothesis,
L ¢ NL(p7), so we must simply show that L ¢ NL(p;). By (5) of the inductive hypothesis,
L € SL(p1) \ SL(p;), and hence L ¢ NL(p;) because SL(p;) and NL(p,) are disjoint.

The argument for reductions on the right-hand side of the pair is symmetric.

For inl, C, the assumptions are that ® + C; : 71 > py, tloc(®;7;) U tloc(®;15) < p,
O + C; loc-ok, NL(p) and SL(C;) are disjoint, and NL(p;) U NL(p) C Q. By induction,
there is some p] where © + C] : 1 > p1, © + C] loc-ok, and conditions (3-7) hold.

(1) Clearly © +inl, C{ : 7y +, 72 > pj.

(2) We show that NL(p) and SL(C}) are disjoint. Suppose that L € SL(C;) and L € NL(p).
We must have that L ¢ SL(C;), as NL(p) and SL(C;) are disjoint by assumption. But

Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

then L € SL(C]) \ SL(C1) = @'\ Q, and hence L ¢ NL(p) C Q, a contradiction as
desired. Therefore © + inl, C] loc-ok.

(3) We need to show that NL(p;) € Q’, which is precisely (3) of the inductive hypothesis.

(4) We need to show that SL(inl, C{) \ SL(inl, C;) = SL(C;) \ SL(C;) = Q" \ Q, but this is
precisely (4) of the inductive hypothesis.

(5) Symmetrically, SL(inl, C;) \ SL(inl, C]) = SL(C;) \ SL(C]) = Q \ Q’ by (5) of the
inductive hypothesis.

(6) We need to show that NL(p;) \NL(p;) € Q'\Q, which is given directly by the inductive
hypothesis.

(7) Finally, we need to show that NL(p;) \ NL(p]) € Q\ ©’, which is also provided by (7)
of the inductive hypothesis.

e (C-Done) Follows by local type preservation, and as no locations are spawned or killed.

e (C-Arp) The assumptions are that ©, F: 7y 2, 2, XnFC:n>p 6F:h 2 7, X1 F

Cloc-ok,®@FV:7 > 2,0+ V loc-ok, and tloc(®; r;) U tloc(®;) U p = p’.

(1) By Lemma 22,0 + C[F + f, X + V] : 1, > p, where f = fun, F(X) = C.

(2) By Lemma 28,® + C[F — f, X — V] loc-ok.

(3) By assumption, p’ € Q, which immediately implies that p C Q.

(4) Since SL(C) = SL(f) = SL(V) = @,SL(C[F + f, X — V]) = @, and Q" = Q, this
condition is satisfied.

(5) Follows identically to (4).

(6) We should show that NL(p) \ NL(p’) € Q" \ Q = @, which is true precisely because
NL(p) € NL(p").

(7) As Q\ Q' =@, (7) is trivially true.

e (C-TArp) We handle the case when the function’s type variable is a location. The assumptions
are that ©, F:Vau#oc[p]. T, @ i%0c F C 2 T > p, O, F:Vaus[p].7,a%0 F C loc-ok,
O F £ %19, and p[a - £] Utloc(O;t[a +— £]) = p’.

(1) By Lemma 22, ©,a::%oc + C[F +— f] : 7 > p, where f = tfunt F(a) = C, and by
Lemma 17,© + C[F — f,a —] : t[a — £] > p[a — {].
(2) By Lemmas 24 and 28, noting that SL(C) = SL(f) = @, wehave® + C[F — f, a + £] loc-ok

(3) By assumption, p’ € Q, which immediately implies that p[a —] C Q.
(4) AsSL(C[F = f, a > {]) = @, and Q' = Q, this condition is satisfied.
(5) Follows symmetrically to (4).

(6) We should show that NL(p[a +— ¢]) \ NL(p’) € Q' \ Q = @, which is true precisely

because NL(p[a +— £]) € NL(p’).
(7) As Q\ Q' =@, (7) is trivially true.
The case when the function’s type variable is a location set, program type, or local type is
analogous.

e (C-TYLETV) We handle the case when the type variable bound by the type-let is a location.
The assumptions are that © + p3.[L] : loc, @p3 > @,0 + 72 %, O, %10c F Co 1 T > p,
O, a o F C2 loc-ok, p1 € p2 € p3, NL(p2) N SL(Cz) = @ NL(p2) UNL(p) € Q, and by
soundness of the loc type, L € p;.

(1) By Lemma 17, + Co[a — L] : 7> p[a — L].

(2) As L € p; C p;, we have that L ¢ SL(C,) by well-scopedness of the entire type-let
expression. Therefore by Lemma 24, we have ® + Cy[a +— L] loc-ok.

(3) By assumption, NL(p) € Q and L € NL(p;) € Q, therefore NL(p[a +— L]) € NL(p) U
{L}c ' =Q.

Step in Tine: Forking Processes in Functional Choreographies 53

(4) AsSL(Cy[a +— L]) \SL(C;) = SL(C;) \ SL(C,) = @ = Q' \ Q, this condition is satisfied.

(5) Follows symmetrically to (4).

(6) We should show that NL(p[a +— L]) \ (NL(p) UNL(pz)) € Q" \ Q = @, which is true
precisely because

NL(p[a = L]) \ (NL(p) UNL(p2)) € (NL(p) U {L}) \ (NL(p) UNL(p2))

C (NL(p) UNL(p2)) \ (NL(p) UNL(p2))
=0

(7) As Q\ Q' =@, (7) is trivially true.

The case when the type variable is a location set follow similar reasoning.

e (C-SEnDV) The assumptions are that |, I v : ., {L} UNL(p2) € Q, and L € p;. The
new expression is well-typed because, as v is a value, I v : t, and s0 ©|(,,,,) IF 0 : te by
weakening of the local type system. The other conclusions are also straightforward because
there are no locations spawned or killed, and the reduct (p; U p,).v is a value.

e (C-Fork) The assumptions are that ©, o :: (o, {L, a}.x:locy F C: 7> p, O, @ %o, {L, a}.x:locy F

C loc-0k, ® k7 %,, {L} UNL(p) € Q, L ¢ SL(C), and L’ ¢ Q.

(1) As well-typedness is preserved under substitution and « is not freein 7, ® - C’' : 7 >
pla +— L], where ¢’ = Cla +— L', x — [L’]], and hence © + kill L” after C" : 7 >
{L'}Uplam L]

(2) AsL’ ¢ Q 2 SL(C), we have that © + C’ 1loc-ok. As well, because SL(C") = SL(C), we
have that © r kill L’ after C" 1loc-ok as desired.

(3) NL({L} U p[a — L]) € {L} UNL(p) C {L}UQ =Q’

(4) SL(kill L after C") \ SL(let (&, x) := L.fork() inC) ={L’'} = Q" \ Q

(5) SL(let (a,x) := L.fork() in C) \ SL(kill L" after C’) = @ = Q \ &’

(6) AsL € Qbut L’ ¢ Q, we must have L’ # L. As well, because NL(p) C Q, it follows
that L’ ¢ NL(p). Therefore

({L’} UNL(p[a = L'])) \ ({L} UNL(p)) = ({L'} UNL(p)) \ ({L} UNL(p))
={L"} \ ({L} UNL(p))
={L'}=0Q'\Q

7) This conclusion holds trivially because Q \ Q' = @.
e (C-Kiir) The assumptions are that® - V : 7> @, ® + V loc-ok, Val(V), and L € Q.
(1) Clearly V is well-typed.
(2) Clearly the spawned locations in V are well-scoped.
(3) As there are no participants in V because it is a value, clearly @ C Q' = Q \ L.
(4) SL(V)\SL(kill L after V) =@\ {L} =2 =Q"\ Q
(5) SL(kill L after V) \SL(V) ={L} = Q\ Q'
6) 2\ {L}=2CcQ'\Q=0
(7) {L}\@={L} 2 Q\ Q" ={L}
e (C-Kr1ril) The assumptions are that ® + C : 7 > p, ® + C loc-ok, {L} UNL(p) C Q, and
L ¢ cloc(0).
(1) Clearly C is well-typed.
(2) Clearly the spawned locations in C are well-scoped.
(3) By assumption, NL(p) C Q. As well, by Lemma 30 we can say that L ¢ NL(p), and so
NL(p) € Q\ {L} =".
(4) SL(C) \ SL(kill L afterC) =@ =Q"\ Q
(5) SL(kill L after C) \ SL(C) ={L} =Q\ &’

54

Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

(6) NL(p) \({L} UNL(p)) =2 C Q"\ Q=0
(7) ({L} UNL(p)) \NL(p) = {L} 2 Q\ Q" = {L}
]

Theorem 6 (Type Preservation). If© + C: 7 > p, © + C loc-ok, NL(p) € Q, and (C, Q) =}
(C", Q’), then there is some p’ such that all of the following properties hold.

() OrC' : 1> p’

(2) ® + C’ loc-ok

(3) NL(p') € &

(4) SL(C") \SL(C) =Q"\ Q

(5) SL(C) \ SL(C") = Q\ &’

(6) NL(p’) \NL(p) € Q"\ Q

(7) @\ Q" € NL(p) \ NL(p")

Proor. By induction on the length of the reduction sequence. If the reduction is of length 0, the
conclusion is immediate. Otherwise suppose that (Cy, Q1) =} (Cz, Q2) = (Cs, Q3), where we
can apply the inductive hypothesis to the first reduction sequence, and then apply Theorem 31 to
the last step. (1-3) hold by the conclusion of Theorem 31.

(4)

(7)

We show that SL(C;) \ SL(C;) C Q3 \ Q, with the opposite direction following a symmetric
argument. Let L € SL(C3) \ SL(Cy). In the case that L € SL(C,), we have that L € SL(C;) \
SL(Cy), so L € Q; \ Q; by (4) of the inductive hypothesis. It must be the case that L € Qs,
for otherwise L € Qj \ Q3, which implies that L € SL(C;) \ SL(C3) by (5) of Theorem 31, a
contradiction. Therefore L € Q3 \ Q; as desired. Now consider the case when L ¢ SL(C,).
Then L € SL(C3) \ SL(C,), so L € Q3 \ Q5 by (4) of the last step. It must be the case that
L ¢ Q, for otherwise L € Q; \ Q,, which implies that L € SL(C;) \ SL(C,) by (5) of the
induction, a contradiction. Therefore L € Q3 \ Q; as desired.
Symmetric to the argument for (4).
Suppose that L € NL(p3) \ NL(p1). In the case that L € NL(p;), then L € NL(p2) \ NL(p1),
so L € Q,\Q by (6) of the induction. L € NL(p3), so L € Q3 by (2) of the last step, and hence
L € Q3 \ Qq as desired. Otherwise in the case that L ¢ NL(p,), then L € NL(p3) \ NL(p2),
so L € Q3 \ Q; by (6) of the last step. L cannot be in Q, for otherwise L € Q; \ Q,, which
by (7) of the inductive hypothesis would imply that L € NL(p;) \ NL(p;), a contradiction.
Therefore L € Q3 \ Q; as (6) requires.
Suppose that L € Q; \ Q3. If L € Qy, by (7) of the last step we have L € NL(p2) \NL(p3). We
must have that L € NL(p,), for otherwise L € Q,\ Q; by (6) of the induction, a contradiction.
Thus L € NL(p;), and L € NL(p;1) \ NL(p3), as desired. Otherwise suppose that L ¢ Q,.In
this case, L € NL(p1) \ NL(p;) by (7) of the induction. We must have that L ¢ NL(ps), for
otherwise L € Q3 \ Q, by (6) of the last step, a contradiction. Therefore L € NL(p;) \ NL(ps3)
as (7) requires.

O

Theorem 7 (Type Preservation). If® + C : 7 > p, ® + C loc-ok, NL(p) C Q, and (C, Q) =
(C’,Q), then there is some p’ such that® + C" : > p’, © + C’ loc-ok, and NL(p’) € Q'.

Proor. An immediate corollary of Theorem 6. O

Theorem 8 (Progress). If + C : T > p then either C is a value, or there is some C’, Q', and R such
R
that (C, Q) = (C’, Q’).

Proor. By induction on the typing derivation + C: 7 > p.

Step in Tine: Forking Processes in Functional Choreographies 55

e (T-VaRr) This case is impossible as the context is empty.

e (T-DonE) By local progress.

e (T-Fun) This choreography is already a value.

o (T-Arp) If either C; or C; can take a step, then take it. Otherwise if both C; and C; are values,
then apply C-Arp.

e (T-TFunLoc, T-TFun) This choreography is already a value.

e (T-TArrLoc, T-TArp) If the function C; can take a step, then take it. Otherwise if C; is a
type function, then apply C-TAPpp.

o (T-PaIr) If either C; or C, can take a step, then take it. Otherwise if both C; and C, are
values, then the pair is a value.

o (T-InL, T-INR, T-FoLD) If the argument can take a step, then take it. Otherwise if it is a value,
then the program is a value.

o (T-Fst, T-Snp, T-Unrorp, T-CasE, T-LocAaLCAsE) If the argument can take a step, then take
it. Otherwise if it is a value, then apply the appropriate elimination rule.

e (T-LerLocar, T-LETLoc, T-LETLOCSET) If the head can take a step, then take it. Otherwise if
it is a value, then bind the variable as appropriate.

o (T-SEnD) If the argument can take a step, then take it. Otherwise if it is a value, then apply
C-SEnDV.

e (T-Sync) Apply C-Sync.

o (T-Fork) Apply C-Fork. By the assumptions of our system and local language, there should
always be another unused thread name, and a representation of that name.

o (T-Kirr) Apply C-KILL.

O

Corollary 4 (Type Soundness). If + C : 7 > p, + C loc-ok, and NL(p) C Q, then for any
reachable configuration (C, Q) =i (C’,Q’), either C’ is a value or there is some C”, Q", and R

R
where (C', Q') = (C", Q"").

Theorem 2 (Type Soundness). If - C : 7 > p, every location literal in C is in Q, and C contains no
kill-after expressions, then whenever (C, Q) =7 (C’, Q’), either C’ is a value, or (C’, Q") can step.

Proor. A direct consequence of Corollary 4. O
E.3 Bisimulation Relation
Lemma 32 (Less-Than is Reflexive). E < E for all network programs E.
Lemma 33 (Less-Than is Transitive). IfE; < E, and E; < E;3 then E; < Ej.
Lemma 34 (Less-Than Relation Preserves Free Variables). IfE; < E, then fv(E;) C fv(E,).
Lemma 35 (Merging Produces an Upper-Bound). IfE; UE; = E, then E; < E and E; < E.

Lemma 36 (Location Substitutions Preserve Less-Than). For any location substitution o, if E; < E,
then E1[o] < Ex[o].

Lemma 37 (Type Substitutions Preserve Less-Than). For any type substitution o, if E; < E, then
Ei[o] < Ez[0o].

Lemma 38 (Local Substitutions Preserve Less-Than). For any local substitution o, if Ey < E, then
Ei[o] < E[o].

Lemma 39 (Substitutions Preserve Less-Than). For any pair o1, 02 of variable substitutions such
that 01(X) < 02(X) for all X, if E; < E,, then Eq[o] < E;[0o].

56 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

Corollary 5. IfE; < E; andV; < V,, then E1[X — V| < E;[X > V3.

Definition 6 (Network Program Collapsing). Let collapse(E) be the structurally homomorphic
function on network programs such that collapse(E; ; E;) = collapse(E;) § collapse(E,). For
instance, collapse(let x := E; in Ey) = let x = collapse(E;) in collapse(E,).

Lemma 40 (Collapsing Function is Less-Than). collapse(E) < E.

Proor. By induction on E. The only interesting case is when E = E; ; E;, which holds by
induction and as § preserves <. O

Lemma 41 (Program Merging on Values). IfE; U E, = E, then E; is a value & E; is a value & E is
a value.

Proor. By induction on Ej, and analyzing the possible cases of E,. O

Lemma 42 (Collapsing Preserves Program Merging). IfE;LE, = E then collapse(E;)Ucollapse(E;) =
collapse(E).

Proor. By induction on the definition of the merge function. The only interesting case is
when E1 = El,l ; El’z, Ez = E2,1 5 Ez’z, and E = (El,l L EZ,I) ; (EI,Z L Ez,z). First suppose that
collapse(E11) is a value, in which case by Lemma 41 and the inductive hypothesis collapse(E;)
and collapse(E;,1) LI collapse(Ez) are also values. This implies that
collapse(E;) L collapse(E,) = (collapse(E1 1) ¢ collapse(Eq2)) LI (collapse(Ey 1) § collapse(E;2))

= collapse(E;) U collapse(E;2)
(collapse(E7 1) U collapse(Es1)) § (collapse(Es) Ll collapse(E;2))
collapse(E;; LI Ep 1) § collapse(Eq 2 L Ey)
collapse((Ey; U Es1) 5 (E12 U Ezp))
= collapse(E).

Now if collapse(E; ;) is not a value, we similarly have that

collapse(E;) LI collapse(E,) = (collapse(E1 1) § collapse(Eq2)) LI (collapse(Ez 1) § collapse(E;2))
= (collapse(Eq1) ; collapse(E12)) U (collapse(Ez) ; collapse(E,2))
= (collapse(Eq,1) U collapse(Ez1)) ; (collapse(Es2) LI collapse(E;2))
= (collapse(Eq1) U collapse(Ez1)) § (collapse(E;2) LI collapse(E;2))
= collapse(E; LI E5 1) § collapse(Eq 2 Ll Ez3)
= collapse((E1; U Ez1) : (E12 U Ejy))
= collapse(E).

O

Lemma 43 (Less-Than Relation Reflects Network-Program Merging). If E] < Ei, E; < E,

collapse(E]) = Ej, collapse(E;) = E;, and E; U E; = E, then there is some E’ < E such that
E/UE,=F
1= 52 :

Proor. By induction and case analysis of <. The only interesting scenario is when the network
programs are allow-choice expressions or sequencing operations.

Step in Tine: Forking Processes in Functional Choreographies 57

First consider the case when

allow £ choice
| L= E1

| R = E3

allow ¢ choice <
| L= E] -

allow ¢ choice
| L= E4
| R = Ez

allow £ choice <
| R = E, -

and
allow £ choice
E= | L= El |_|E4

| R = E;UE,
Then we have that
11 hoi
allow £ choice allow £ choice aon {’/c oree
L= E H R E, = [L=E
1 2 | R = E;

This suffices because by Lemma 35, E] < Ey < E; U Ey, and E, < E; < E3 U E,. Now consider the
case when

allow £ choice allow £ choice
| L= Ef, < [L=Ei,
|R=Ef, |R = Eq;
allow £ choice allow £ choice
| L= Ej, < |L=Ey
|R=Ej, | R = E,

and
allow £ choice
E= | L ﬁEl,l |_|E2,1
|R = Ejp UE;;

Then by induction, there is some E3 < E;; U Eo; where E{; LU E], = E3, and some E4 < Ey3 U Ey)
where E;, | U E; , = E4. Then the term

allow ¢ choice
IL:>E3 ﬁE
I R=E,

suffices. The other allow-choice cases are analogous to these two.

For sequencing operations, we note that the rule E; < V ; E; does not apply because collapse(V ; E3) =
E, # V ; E;, which violates the assumptions. Therefore the only possible scenario is E] | ; E], <
Ei1; E1zand Eé,l ; Eg,z < Ej1: Eyp where E = (E;1 UEz1) 5 (E12 U E;2). Then by inducfion, there
is some E3 < E;; Ul E;; where E;,1 u Ei,z = E5, and some E; < E;5 Ul E;, where E;,l u E;,z = Ey4, so

the term E; ; E4 suffices.]

Lemma 44 (Less-Than Reflects Values). IfE; < E, and Val(E;), then Val(E,).

Proor. By induction on the relation E; < E,. Note that the case when E; < V ; E; is impossible,
because the right-hand side is not a value. The other cases are straightforward, as all other rules
(except allow-choice expressions, which are also not values) are homomorphic. O

58 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

) I !

Lemma 45 (Merging Preserves Steps). IfE; = E|, E; = EJ, and E; U E; = E, then there is some
1

E" and E” such thatE' < E”,E= E”, and E UE, = F'.

Proor. The interesting scenarios are for sequencing expressions and allow-choice expressions.
! ! . . .
Indeed, when E; ; ; Ey; = Ei,1 iEy1and Epy 5 Egp = E§,1 : E52, we can directly apply induction.

Otherwise if E;; ; Ez5 — E,, because Val(E;), then by Lemma 41 E; ; is a value, and hence this
is the only step the left-hand side can take, so the result is immediate. The same is symmetrically
true if E; ; is a value.

For allow-choice expressions, note that the label I of each step is identical. This means that
both E; and E, receive the same direction d, and because they are required to have that case defined,
must both have at least this case defined. o

Lemma 46 (Simulating Less-Than is a Subrelation of Less-Than). IfE; 5 E; then E; < E,.
Lemma 47 (Simulating Less-Than is Reflexive). E < E for all network programs E.
Lemma 48 (Simulating Less-Than is Transitive). IfE; < E; and E; < Es then E; < Es.

Lemma 49 (Location Substitutions Preserve Simulating Less-Than). For any location substitution
o, if Ey 3 E; then Ey[o] 3 Ex[o].

Lemma 50 (Type Substitutions Preserve Simulating Less-Than). For any type substitution o, if
El < Ez then E1 [O'] < Ez[O’].

Lemma 51 (Local Substitutions Preserve Simulating Less-Than). For any local substitution o, if
El < Ez then E1 [0'] < Ez[O’].

Lemma 52 (Substitutions Preserve Simulating Less-Than). For any pair o, o5 of variable substitu-
tions such that 01(X) < 02(X) for all X, if Ey < E, then E1[o] < Ez[0o].

Corollary 6. IfE; S E; and Vi <V, then E1[X — V1] < E;[X — V3.

Lemma 53 (Simulating Less-Than Preserves and Reflects Values). IfE; 5 E,, then Val(E;) &
Val(E3).

Lemma 54 (Simulating Less-Than is Reachable from Less-Than). IfE; < E, then there is some E,,

L
such that Ey 3 E; and L > E; =" E;, for any location L. That is, E; can reach E;, through a series of
internal steps.

Proor. By induction on the definition of <. For the case when E; < V ; E;, we can first step

V. E, — E,, and then by induction we can step E; —* E;, where E; 5 E;, which is satisfactory.
For those cases with a single head in the expression, apply the inductive hypothesis to the head
of the expression, which is satisfactory. Lastly, for those cases with multiple evaluation positions
(function applications and pairs), first apply the inductive hypothesis to the left expression. If it
yields a non-value expression, this should suffice. Otherwise if it yields a value, also apply the
inductive hypothesis to the right expression. O

R
Lemma 55 (Lifting Property). IfE; = E] and E; 5 E,, then there is some E), such that E] < E),

and E, é E;. That is, the following diagram holds:

Step in Tine: Forking Processes in Functional Choreographies 59

R ,
EZ::::::::::::::::>E2
|
Y IYE
|

R
E, 4

Proor. By induction on the definition of <. Each case follows by either applying the inductive
hypothesis, or by recalling that substitution (of each sort) preserves the relation, or produces terms
which are related by <. O

E.4 Endpoint Projection

The following lemmas relate EPP to the substitution operations and the type system. Notably, we
show that EPP is preserved under each of the sorts of variable substitution, with some specific
conditions on the substitution depending on the sort.

Lemma 56 (Values Project to Values). IfVal(V) then Val([V]L) for any L.

Proor. By induction on V. O
Lemma 57 (EPP Reduces Free Variables). fv([C]1) € fv(C).

Proor. By induction on C. O
Lemma 58 (Location Substitution Preserves EPP). If[C]L = E and L ¢ o, then [C|o]]L = E[o].

Proor. By induction on C. Each case follows directly by induction, noting that Lemmas 11 and
12 guarantee that the same sub-case of EPP will be selected by [C];. and [C[o]]L.]

Lemma 59. If[C], = E and NL(C) ¢ o then [C[0]](a) = El0].

Proor. Similar to Lemma 58. By induction on C, noting that the same sub-case of EPP will
be selected by [C], and [C[c]]+(«) because like location constants, variables are equal only to
themselves, and because any value a may resolve to does not appear in C by assumption, and so may
only appear in C[o] in places where « appears in C. For example, in the case of C = p.¢, if @ € p,
and hence a € fv(p), we have that [[p.e],[c] = ret(e)[c] = ret(e[c]). Then because o() € p[o],
we have that [p[c].e[0]]s(a) = ret(e[o]) as expected. Otherwise if & ¢ p, and hence a ¢ fv(p),
we have that [p.e]4[o] = ()[o] = (). Then because both & ¢ fv(p) and o(«) ¢ NL(p.e) = NL(p),
we have that o(a) ¢ p[o], and so [p[c].e[c]]s(a) = () as expected. O

Corollary 7. If[C], = E and L ¢ NL(C) then [Cla +— L]]L = E[a — L].

Lemma 60 (Type Substitution Preserves EPP). If[C]L = E, then for any type variable substitution
o we have that [C[o]]L = E[o].

Proor. By induction on C. All cases follow directly by induction, noting that no location or
location set in C will be affected by the substitution, so the same sub-case of EPP is selected. O

Lemma 61 (EPP is Fully Collapsed). If[C]. = E then collapse(E) = E.

Proor. By induction on C. Note that in the definition of EPP, the collapsing sequencing function
¢ is always used instead of the primitive ; for sequencing two programs. Therefore each case
follows directly by induction, and specifically because of the logic that if collapse(E;) = E; and
collapse(E;) = E,, then collapse(E; § E;) = collapse(E;) § collapse(E;) = E; § E,.]

60 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

Lemma 62 (Member Local Substitution Preserves EPP). If[C]L = E and L € p, then for any local
variable substitution o we have that [C[p|c]]L = collapse(E[0o]).

Proor. By induction on C, noting that no location or location sets in C will be affected by the
substitution. The interesting cases are for p’.e and when ; can appear in the projection of C, such
asC =let p’.x = C1 in C,.

e If p.e and L € p’, we have that

[(0"e)[plol], = [" elol], = ret(elo]) = collapse(ret(e[o])).
Otherwise if L ¢ p’ then [p’.e[c]]L = () = collapse(()).
e Forlet p’.x = C; in C; and L € p’, we have that
[(let p’.x == Cy in Co)[plo]]; = [let p".x := Ci[plo] in Caplal];
= let x = [Ci[plo]]; in [C2[plo]l;
= collapse(let x = [Cy[plo], in [Colplol],)
collapse(let x == [C1]; [o] in [Co]l; [o])
= collapse((let x == [C1]; in [C2]p) [o]).

Otherwise if L ¢ p’ then using Lemma 61 we see that

[let p".x := Ci[plo] in Cz[plal]y = [Cilplolly § [Calplally
= collapse([C1]; [o]) § collapse([C4]; [o])
= collapse(([C1]; 3 [C2]p) [o]).

e For case,r Cof (inl X = Cy) (inrY = C,),if L € p’ the argument is straightforward by
induction. Now consider the case when L ¢ p’. We have that

case, C of case, C[pl|o] of
|inlX = C1 |[[plol|l = | |inlX = Ci[plo]
L [
[

|inrY = G, linrY = Clplo] ||,
= [ClplallL 5 [Cilplal], U Calplol],
= collapse([C]; [o]) § collapse([C1]; [o]) Ll collapse([C]; [o])
= collapse(([C]; ¢ [C1]; U [Clp) [o]),

where the final equality uses Lemma 42.

]

Lemma 63 (Non-Member Local Substitution Preserves EPP). If[C]. = E and L ¢ p, then for any
local variable substitution o we have that [C|p|o]]. = E.

Proor. The proof is nearly identical to Lemma 62. O

Corollary 8 (Local Substitution Preserves EPP). If[C], = E, then for any local variable substitution
o there is some E’ < E such that [C[p|o]]L = E’.

Proor. If L € p then by Lemmas 40 and 62, E’ = collapse(E[c]) suffices. Otherwise if L ¢ p,
then by Lemma 63 and reflexivity of <, E’ = E suffices. O

Definition 7. For a choreographic variable substitution o; and a network-program variable
substitution o, say that [o1] = 0 if and only if [o1(X)]L = 02(X) for all program variables X.

Lemma 64 (Substitution Preserves EPP). If[C]. = E and [o1]L = o2, then[C[o1]]L = collapse(E[o2]).

Step in Tine: Forking Processes in Functional Choreographies 61

Proor. By induction on C.

e If C = X, then [X[o1]]L = [o1(X)]L = 62(X) by the assumption and by Lemma 61.
o Let C = let p.x = Cy in Cp. If L € p, the conclusion follows immediately by induction.
Otherwise if L ¢ p, then

[(let p.x == Cyin C2)[o1]]; = [let p.x = Cy[o1] in C2[a1]];
= [Cilou]] 5 [Calon]],
= collapse([C1]; [o2]) § collapse([C2]; [o2])
= collapse(([C1]; § [Ca];)[02])
= collapse([let p.x := Cy in G| [02]).

o Let C = case, Cof (inl X = Cy) (inrY = C;).IfL € p, the conclusion follows immediately
by induction. Otherwise if L ¢ p then, noting that X ¢ fv([C,]L) and Y ¢ fv([C;]L), we
have that

case, C of case, C[o1] of
|[int X =C; |[o]]|l = |InlX=C[X— XY 0(Y)]
(|inrY:>C2) L linrY = G[XH X, Y- o) |,

=[Clall s [CiIX = X, Y = a(N]], U [C[X — X, Y = a1 (V)]],
= collapse([C]; [o2]) ¢ collapse([C1]; [o2]) U collapse([Cz]; [o2])

= collapse(([C]; ¢ [C1]; U [C2] ;) [o2])-

by applying Lemma 42.
o The other cases follow similar logic to those above.

Corollary 9. [C[X — V]]. < [C]L[X — [V]L].
Lemma 65 (Projection of Non-Participants). If® + C: 7> p, L ¢ p, and [C]r = E, then Val(E).

Proor. By induction on the typing derivation © + C : 7 > p. Most cases are straightforward or
follow similar logic to a case shown below.

e (T-VAR) We have [X]; = X, which is a value.

e (T-Dong) If the MLV is a value, we have either [p.v]; = ret(v) or [p.v]r = (), which is a
value in either case. Otherwise if the MLV is not a value then L ¢ p, so [p.e] = ().

e (T-Fun) If [fun, F(X) := C] is defined, then it is either fun or (), both of which are values.

e (T-ArpP) Let® + C; : 14 2, T > p1, O F Cy i Ty > po, and p’ = tloc(®; 77) U tloc(©;72) U p.
By assumption L ¢ p’ U p; U p,, so we can apply induction to C; and C, to see that
[C1 8y CollL = [Ci]lL 3 [Co]r § () = () as both [C1] and [C,]; are values.

e (T-TFunLoc) If [tfun, F(a) = C]y is defined, then it is either tfun or (), both of which are
values.

e (T-TArrLoc) Let ©® Cy : Yar:: *ioc [p]. T > p1, O F £ =2 #)c, and p’ = tloc(O; 1y [a > £]) U
pla — ¢]. By assumption L ¢ p’ U p1, so we can apply induction to C; to see that
[Ci$p]l =T[Ci]L 5 O =0).

e (T-PAIR) Let® + C; : 71 > p; and © + C; : 71 > p,. By induction, both [C]L and [C;]. are
values. Therefore because either [(Cy, C;),]1r = [Ci]1 § [C2]r = [Co]lL if L € p or otherwise
[(C1,C2),]r = ([Ci]L, [C2]L), in either case the projection is a value. The argument for
other introduction forms are identical.

62 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

o (T-CasE) Let®@ - C: i+ 1 > p, 0, X:1y F Cy i 7> pr,and ©,Y:1p + Gy 1 T > py. As
L ¢ pUpiUpyUp’, we can apply induction to all of C, Cy, and C,. Therefore the projection
is [[case,y Cof (inl X = Cy) (inrY = C)]1 = [Clr 5 [Ci]r U [Co]r = [Ci]r U [C2]r. By
the assumption that the projection exists, it must be that X ¢ fv([C1]1), Y ¢ fv([C2]L), and
the merge [C;] U [C2] exists. Using Lemma 41, we find that [C;]; U [C;]L is also a value.
The argument for other elimination forms are identical.

e (T-LeTLocar, T-LETLOC, T-LETLOCSET) Let ® + Cy : t,@p > p; and ©, p’ . x:t, + Cy : T > ps.
The assumption is that L ¢ p’ U p; U p, so by induction [let p’.x:t, := C; in G| = [C1]r §
[C:]r = [C2]L, which is a value or variable. The same argument applies to the type-let
expression.

o (T-Fork) Let ©, a::#oc, {f,a}.x:locg FC: 7> pand ©® k7 %, . IfL ¢ {£} U (p \ {a}),
then [let (&, x) = £.fork() in C]|; = [C]L. By assumption, [C]; must be defined. As well,
since L # a, we have that L ¢ p, so we can apply induction to C as desired.

o (KitL) Let ® F C: 71> p,and L ¢ p U {L’}. Then [kill L” after C];, = [C]y is a value or
variable by induction.

]

Lemma 66 (Projection of Non-Owners). If® + C: 7> p, L ¢ p U tloc(©;7), and [C]| = E, then
E=()orE=X.

Proor. By induction on the typing derivation © + C : 7 > p. Most cases are straightforward or
follow similar logic to a case shown below.

e (T-Var) [X]L = X.
e (T-DonE) If L ¢ p then [p.e]L = ().
e (T-Fun) If [fun, F(X) := C]y is defined and L ¢ p, then it projects to ().

o (T-Arr)Let® + C; : 7q 2, o > p1, O F Cy i 13 > py, and p’ = tloc(O; 1) Utloc(O; 72) U p. By

assumption L ¢ p” U p; U py, so as L ¢ tloc(®; 1) and L ¢ tloc(©; 1y 2, 1) = tloc(®; 77) U
tloc(©; 7,) U p we can apply induction to C; and C;, to see that [C; $,» Co] 1 = [Ci]1 § [Co]l1 §
0=0.

e (T-TFunLoc) This case is vacuous as we can never have L ¢ tloc(O;Va:x,[p].7) = T.

o (T-TFun) If L ¢ tloc(®;Va:k[p].7) = p Utloc(O, a::k; 1) = p’, then [tfun, F(a) := C]L =
0.

o (T-TArrLoc, T-TAprp) Let© + C; : Var:kp[p]. T > p1,O F £ =2 #joc,and p” = tloc(O; r[a — £])U
pla — ¢]. By assumption, L ¢ p’ U p;. Then by Lemma 65, [C;]), must be a value. Therefore
[C1$, £]r = [Ci]L § () = (). The argument for T-TApp is analogous.

o (TPAIR)Let O F Cy iy > prand O + Cp : 75 > py. As L ¢ tloc(®; 11 X 1) = tloc(©;17) U
tloc(©; 73) = p, by induction, both C; and C; project to () or a variable. Therefore [(Cy, C2),] =
[Ci]L § [C2]L is a value or variable. The argument for the other introduction forms is similar.

o (T-Casp) Let @ F C: i+ 12 > p, ©,X:1y F Cy : T > p1©y,and O, Vi - Cp : 7 B> py.
By assumption L ¢ p U p; U p, U p’ U tloc(O; 1), so we can apply induction to C; and Cs.
By Lemma 65, [C]l; must be a value. Therefore the projection is [case, C of (inl X =
Cy) (inrY = C)]r = [Clr 3 [Ci]r U [Co]r = [Ci]L L [C2] L By the assumption that the
projection exists, it must be that X ¢ fv([C1]1), Y ¢ fv([C2]L), and the merge [C1]L U [C2]L
exists. If either [C1]. or [C2]L equals (), they both must be, and hence their merge equals
(). If either is a variable, they both must be the same variable by the fact that the merge
exists, and hence their merge is a variable. The argument for the other elimination forms is
similar.

Step in Tine: Forking Processes in Functional Choreographies 63

e (T-LeTLocar, T-LETLOC, T-LETLOCSET) Let ® + Cy : t,@p > p; and ©, p’ . x:t, + Cy : T > po.
The assumption is that L ¢ p’ U p; U p; Utloc(©; 7), so by induction [C,]1 is () or a variable,
and by Lemma 65 [C;]], must be a value. Therefore [let p’.x:t, = C; in C]Jp = [C1]1 ¢
[C2]L = [C2]L- The same argument applies to the type-let expression.

o (T-Fork) Let ©, at:: #|oc, {f, a}.x:locg FC 7> pand O k7 %, If L ¢ {£} U (p \ {a}) U
tloc(®; 7), then [let (@, x) = £.fork() in C]L = [C]r. By assumption, [C]; must be defined.
As well, since L # @, we have that L ¢ p U tloc(®; 7), so we can apply induction to C as
desired.

o (TKitr) Let® - C: 71> p,and L ¢ p U {L’'} U tloc(®; 7). Then [kill L’ after C]. = [C]L
which satisfies the requirement by induction.

]

Lemma 67 (Projection of Non-Participant Values). If® + V : r > p, Val(V) and L ¢ tloc(©; 1),
then [V]L = ().

Proor. By induction on the typing derivation ® + V : 7 > p, similarly to Lemma 65. Note,
however, that this Lemma is different than Lemma 65 because that there we pre-suppose that [C].
exists, whereas here we do not.]

Lemma 68. IfL ¢ cloc(C) and [C]r, = E, then Val(E).

Proor. By induction on C. O

E.5 Completeness, Soundness, and Deadlock-Freedom

1
Lemma 69 (Labels Uniquely Determine Active Locations). If L » (E;, Q) = (E},Q]) and L»>
I
(Ea, Q) = (E;, Q) then Q) = Q.

Proor. By induction on the step, noting that the only times that Q changes is when [=
fork(L’,E). But in this case, as the labels on the steps are identical, the same location must
be added to Q in both steps. O

Lemma 70 (Non-Participant Local Completeness). If® + C : = > p, (C,Q) éc (C’,Q),
L e Q\1loc(R), and [C]L = E, then there is some E' < E such that [C']L = E’. That is, the following
diagram holds.

L¢R
C > C
C’
[Jnr
z *
E--rmmmmm - E

R
Proor. By induction on the step (C, Q) =, (C’, Q).

e (C-Crx) Straightforward by induction.
e (C-DonE) Both sides of the step project to ().

e (C-Arp) Let ©,F: 1y 2y 75, X:11 F C : 1, > pyq, tloc(©;71) U tloc(©;75) U p; = p, and
O+ V:r > p;. By Lemma 67, the left side of the step projects to

[F$V],=05VILs0=0350350=0,

Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

where f = fun, F(X) := Cand L ¢ p. By Lemma 22, @ + C[F = f,X = V] : 1, > py.
Therefore as [C] . must exist by the definition of EPP on fun, by Lemma 65 [C[F + f, X >
V1] is either a unit () or variable Z, both of which are satisfactory because Z < () and
0=<0.

e (C-TArpr) We handle the case when the function’s type variable is a location. The as-
sumptions are that ©, F:Va :xjoc[p1]. T, aii%0c F C: T > p, O F £ it %o, and L € p =
tloc(©; r[a > £]) U pi[a > ¢]. The left side of the step projects to [f $,] = ()5 () = (),
where f = tfun, F(a) = C. By Lemma 22, ©,a::#,c - C[F — f] : 7 > pq, and by
Lemma 17,0 + C[F - f, a > €] : t[a > £] > pi[a > £]. Therefore as [C]; must exist
by the definition of EPP on tfun, by Lemma 65 [C[F + f, a > ¢£]]; is either a unit or
variable. The arguments when the function’s type variable is a location set, program type,
or local type are analogous.

e (C-UnrorpForp) By Lemma 67, the left side projects to [unfold, (fold, V)]r =[V]r § () =
(). The right side also projects to [V]r = ().

e (C-FsTPAIR, C-SNDPAIR) By Lemma 67, the left side projects to [fst, (Vi,V2),]r = [Vi]1 $
[V2]r 5§ () = (). The right side also projects to [Vi]r = (). The case for C-SNDPAIR is
symmetric.

e (C-CaskINt, C-CastINR) By Lemma 67, the left side projects to

[case, (inl, V) of (inl X = Cy) (inrY = G|, = [V], § [Gi], L [Ce], = [Ci], u [Ce], -
As X ¢ tv([C1]L) by the above projection and by Lemma 64, the right side projects to
[Cix - VI, =[G, [X i [[V]]L] =[G, =[G u[C],

The case for C-CASEINR is symmetric.

e (C-LETV) The left side projects to [let p1.x = ps.0 in C]r = [p2.0]r ¢ [C]L = [C]L- By
Lemma 63, the right side projects to [C[p;]|x — o]]L = [C]y.

e (C-TYLETV) The left side projects to

[let pa.a:sioe == ps.[L"] in C]; = [ps.[L"]]; 5 [C], = [C], -

By soundness of the local loc type, we must have that L’ € p; C p, € ps, and hence L # L.
Therefore by Lemma 58, and as @ ¢ fv([C]L), the right side projects to [Cla +— L']]L =
[C]Lla = L’] = [C]L which suffices. The cases when the type variable is a location set is
analogous.

e (C-SEnDV) The left side projects to [p1.0 (L'} pa] L = [p1.0]L, and the right side projects to
[(p1U p2).v]L. Because L ¢ p,, whether or not L € p; we have that projections are identical.

e (C-Sync) The left and right side both project to [L'[d] ~> p ; C]1 = [C]L.

e (C-Fork) Let " be the newly spawned location. As L € Q but L”" ¢ Q, we have that L # L".
Therefore by Lemmas 58 and 63, and as a, x ¢ fv([C].), we have that

[let (@, x) = L".fork() in C]; = [C],
=[C], [a+ L", x> [L"]]
=[Cla - L", {L,L'}.x — [L" 1], ,
which suffices.

e (C-KiLy) For L # L', we directly have that [kill L” after V]; = [V]L, so the conclusion is
satisfied by reflexivity of <.

e (C-K1rLI) Suppose the step is (kill L” after C, Q) é% (C,Q\ {L"}) with L’ ¢ cloc(C) and
L # L'. Then [kill L" after C] = [C]L, so the conclusion similarly follows.

Step in Tine: Forking Processes in Functional Choreographies 65

e (C-CasEl) First consider the case when L ¢ p. We can apply the inductive hypothesis to C;
and C, to see that

[case, C of (inl X = Cy) (inrY = Cp)], = [C]; 5 [C1], L [Ce],
= [Cl.s (Gl uic],
= [case, Cof (inl X = C}) (inr Y = C;)]]L,

where the inequality holds because of Lemmas 43 and 61. The second equality holds because
X ¢ fv([C{]) and Y ¢ fv([C;]1) by Lemma 34 and the assumption that the original
choreography projects. In the alternate case that L € p the logic is straightforward:

[[casep Cof (infX = Cy) (inrY = Cg)]L

case [C]; of (inl X = Cy) (inr Y = C3)
> case [C]; of (inl X = C)) (inr Y = Cy)
[case, Cof (inl X = C}) (inrY = C;)]]L.

\4

The other out-of-order steps follow similar logic.

]

Corollary 10. IfO +C: 7> p, (C, Q) éc (C’,), L € Q\ rloc(R), and [[C]]? = E, then there is
some E' < E such that [C'] = E".

Proor. If L ¢ SL(C), then this follows immediately by Lemma 70. Otherwise if L € SL(C), then
it either follows by setting E’ = E in the case that the reduction does not occur in the scope of
the kill expression that L is executing, and otherwise if it does, the result also follows by applying
Lemma 70 to that subexpression. O

Definition 8. For Q a set of locations, let Q|; be the subset of Q representing the children of L.
Thatis, L’ € Q|; if and only if L’ € Q and L has spawned L’.

R
Lemma 71 (Participant Local Completeness). If© - C : 7 > p,(C, Q) =, (C’, Q’), L € QUrloc(R),
R is not a kill step, and [C]; = E, there is some E| and E,, such that E] < E}, [C']; = E}, and

R
L>(E, Q|;) [[:H:L::»J' (E}, Q'|1). That is, the following diagram holds.

LeR
c : ¢
(RIF3 EML
E:::::::[L:H£::::::>E’Z[[CIHL

Proor. By induction on the step (C, Q) éc (C’, Q).
e (C-Crx) Straightforward by induction.
e (C-DonE) Apply N-RET.
o (C-Arp) The left side of the step projects to
[f$, V], = (funF(X) = [C]}) [V, .

We can apply N-Arp to step to [C]L[F — [f]r, X — [V].], which is satisfactory by
Lemma 64.

66

Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

e (C-TArp) We consider the case when the type variable is a location. The left side of the step
projects to

[f$p], = (tfunF(a) == AnI a then [Cla +— L]]; else [C],) ¢.
We first apply N-TAPP to step to
Anl ¢ then [Cla +— L], [F = [f];] else [C], [F— [f],. a €]
If L = ¢, we apply N-IAMIN to then step to
[Cla = LI, [F = [fl.] = [CIF = f,a > L1, = [C],..

Otherwise suppose L # £. We apply N-IAMNOTIN to step to [C]L[F > [f]L, « — £], and
by Lemmas 58 and 64 have that

[Cl, =[CIF ¥ f,am¢]], = [CIF — fl]; [a— €] < [C], [F - [fl, a— f]

as required. The argument when the type variable is a location set, program type, or local
type are analogous.
e (C-CaskInNL, C-CastINR) The left side projects to

case,, (inl, V) of case inl [V]g of
linl X = ¢ = linlX = [C]s
|infY = G, L |inrY = [C]L

We apply N-CasEtINL to step to [C;]L[X — V], which is satisfactory by Lemma 64. The
argument for C-CASEINR is symmetric.

e (C-LETV) The left side projects to [let p;.x = ps.0in CJp = let x = ret(v) in [C]L
because L € p; C py. We apply N-LET to step to [C]L[p1|x — 0], which is satisfactory by
Corollary 8.

e (C-TYLETV) We consider the case when the type variable is a location. The left side of the
step projects to

[let po.a == ps.[L"] in C]; = let a == ret([L’]) in AnI a then [Cla + L]]; else [C],
because L € p, C ps. We first apply N-TYLET to step to

AmIL L then [Cla + L]], else [C], [a — L].
If L = L', we apply N-IAMIN to then step to
[Cla - L1, = [Cla = L'T], = [C], -

Otherwise if L # L” we apply N-IAMNoOTIN to step to [C].[a +> L], and by Lemma 58 we
have that

[€]e = [Cla = L], = [C]; [a = L]

as required. The argument when the type variable is a location set or local type are analogous.
e (C-Fork) Let L’ be the newly spawned location. As L € Q but L’ ¢ Q, we have that L # L’.

Thus the left side of the step projects to

[let (a,x) = L.fork() in C], = let (a,x) = fork([C],) in [C];.
By applying N-Fork we can step to [C].[e — L', x — [L’]], and by Lemma 58 and
Corollary 8
[€] =[Cla— L' {LL"}.x — [L']]], < [C], [a - L', x = [L]]

as required.

Step in Tine: Forking Processes in Functional Choreographies 67

e (C-CasEtl) We can apply the inductive hypothesis to C; and C, to find some E; and E; such

IR] R]
that [C]]L < Ey, [C)L < Ep ([Ci]L, Q) == (E1, Q'), and ([C]1, Q) —=* (E, @),

where the Q’ are equivalent by Lemma 43. Because p N rloc(R) = @ and L € rloc(R), we
must have that L ¢ p. Similarly because cloc(C) N rloc(R) = @, we have that L ¢ cloc(C).
Thus by Lemma 68, [C];, is a value. Then the projection of the left-hand side is

[case, C of
[inlX =G =[Cl sG] vlC], =[Gl viC],.

| [inrY=C ||,

and the projection of the right-hand side is

[case, C of
|inl X = C] =[C]; s [Ci] v cs], = [Ci], uC, -
| |inrY = C} |

L
Using Lemma 45 allows the required steps to be made on the right-hand side. The other
out-of-order steps follow similar logic.

]

R
Corollary 11. IfO - C : 7 > p, (C,Q) =, (C',Q’), L € Q Urloc(R), R is not a kill step, and

R
= E, there is some E/ an such that E! < E/, = E!, and Lv (E, —t EL Q).
Cl" =E, th E} and E} such that E; < Ej, [C']" = E/, and L EQLH '

Proor. If L ¢ SL(C), then this follows immediately by Lemma 71. Otherwise if L € SL(C), then
the reduction must occur in the scope of the kill expression that L is executing, and the result also
follows by applying Lemma 71 to that subexpression. O

Kill(L
Lemma 72 (Kill-Step Local Completeness). If© - C : 7 > p, (C, Q) %c (C',Q"), L € Q, and

HC]]? =FE, thenE 2:' 0.

R
Proor. By induction on the step, similarly to Lemma 71. For the step C-KiLL where (kill L after V, Q) =,
(V, Q\{L}), the projection for L simply steps as [V] § exit = exit LN () because by Lemma 56,

R
[V]L is a value. If instead the step C-KirLl occurs and (kill L after C, Q) =, (C,Q \ {L}), the
projection for L steps as [C]L § exit = exit LN () because by Lemma 68, [C] is a value. O
Definition 9 (System Label Extraction). The label extraction function |[ls]} is a partial function
which maps system labels to network program labels as follows:
m ifL=L
; ifL =1, pz 1 !
L, I = [Li.m ~ po|p =4 Li.m -~ ifL#LiandL € p,

undefined otherwise
undefined otherwise

fork(Ly,E) ifL =L,

undefined otherwise

exit if L =1,

L;.fork(Ly, E =
L1-Fork(Lz E) |1 { undefined otherwise

[kill(L)]L = {

Lemma 73 (Single System Step Combining). For all system labels Is that are not fork orkill, if
1
(1) for all locations L such that |Is|p =1, both L € Q and L» (II(L), Q|;) = (II'(L), Q|;),

68 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

(2) for all locations L such that |Is|; = undefined, either L ¢ Q orII(L) = II'(L),
I
then 1 =g II’, where Q = dom(IT) = dom(II’).

ProoF. By case analysis of the label I, noting that |Is]y is defined precisely for those locations
that will participate in the step. O
Definition 10 (catMaybes). Let catMaybes : list(maybe(t)) — list(¢) be the function which
selects all defined entries in a list. For instance,

catMaybes([1, undefined, 2, 3, undefined]) = [1, 2, 3].

Corollary 12 (System Step Combining). For all sequences of system labelsls1, Isz, ..., lsn which
are not fork orkill, if
tMaybes([LIs1]r , LszlL LsnlL])
(1) L> (TU(L), Q) 2 (L), Q1) for all L € dom(ID) = ©,

(2) L € Q forall L such that at least one of the | Is ;] is defined,

Isi,ls2, sl

Sn g ’
thenll ——r——r-—o> s IT.
Proor. By induction on the length of the reduction, applying Lemma 73 repeatedly. O

Lemma 74 (Redex Projection Commutes). For all locations L and redices R,
catMaybes([LIs]r | Is € [R] ;1) = [R], -
That is, the subsequence of system labels in [R] ; which involve a location L is given precisely by the
single-location projection [R]L.
Proor. By induction on R. O

L.fork(L’,C"
Lemma 75. If (C, Q) ol (/. 0, @ - C: 7t > p, © C loc-ok, NL(p) C Q, and

[C]. = E, then there is some E such that [C"];; < E” and [C']?, = [C"]1s § exit.

Proor. By induction on the step. The out-of-order steps and steps in an evaluation context
follow by induction, noting that L’ ¢ Q, and hence L” ¢ SL(C), so no other kill expressions than
the one created by this step may contain L’. For a C-Forxk step let (a, x) := L.fork() in C"” =,
kill L” after C”[a + L', x +— [L’|] with L’ ¢ NL(C"), the assumption that the left-hand side
projects for L means that [C”'], must exist. Then by Lemmas 59 and 62, we have that

[C7la - L x = [L']]], < [C7[am L] [x — [L']]
=[C"] la—L,x— [L']]
which, as desired, is defined, and > the required projections. O

Lemma 76 (Single-Step Completeness). If@© - C: 7> p,® + C loc-ok,NL(p) C Q, [[C}]g =11, and

R R
(C,Q) = (C', Q), then there is someIl; andII} such that I} < II, [[C’]]g, =11/, andII %;’ IT;,.

That is, the following diagram holds.

Step in Tine: Forking Processes in Functional Choreographies 69

Proor. First the case for steps which are not fork or kill. By Corollary 12 and Lemma 74, it
suffices to prove that

0] IRl , ’
L»>{[C]}, Q) ==" {15(L), Ql)

and [[C’M < II),(L) for each location L € Q.If L ¢ rloc(R), this holds by Corollary 10, noting that
[R]L is empty. Otherwise if L € rloc(R), this is precisely Corollary 11. To apply Corollary 12 we
also need to show that rloc(R) C Q. This follows by soundness of participants (Theorem 1), and as
NL(p) € Q by assumption. That is, L € rloc(R) € NL(p) C Q. As well, there is always at least one
location in the system that makes a step.

For the case of a L.fork(L’, C") step, for each location already in the system—in Q—we can either
apply Corollary 10 for L”" # L,L’, or Corollary 11 for L. The new thread L’ does not need to make a
step, but we must show that [C’]!, < [C""]1 : exit, and that this projection exists—this is precisely
Lemma 75.

For a kill(L) step, for each location L’ # L, we apply Corollary 10. For L, since they were removed
from Q and the system, we do not need to worry about their projection, and can simply apply
Lemma 72 to allow the system to perform a kill(L) step. O

1
Lemma 77 (System Single-Step Lifting). IfTl; =5 II} andIl; < II; then there is some II;, such
1
that I, =5 1T, and I1} < 1T,

Proor. Follows via a case analysis of the step and using Lemma 55, noting that by definition if
IT; < II; then dom(IT;) = dom(Il,), so for the fork and kill steps, the respective systems after
the steps will still have the same domains, and the network program of any spawned thread will be
identical in IT] and I, O

Corollary 13. IfTl; < II, then there is some Il such thatI1; 3 II, and II, =>§ IT5,.

Proor. Follows by Lemmas 54 and 73, noting that the reduction sequence taken by each location
are all 1 steps, and hence can all happen independently. O

Lemma 78 (System Lifting Property). IfTI; =% II| and I1; < II, then there is some Il andk > n
such that I1, =>§ I, and IT} < 1T,

Proor. By induction on the length n of the initial reduction sequence. If n = 0 the conclusion is
trivial by choosing k = 0 and IT/, = IT,. Otherwise suppose the reduction is I, =¢ I} = II7..
By induction, there is some II) and k > n where II, z’; IT}, and IT] < II;. By Corollary 13, we
can step I}, =7 TI}/ where IT{ 3 II}/. By Lemma 77, we can take a step II)) = IT}”” to some IT}”
where IT7 < II7”. Then the reduction sequence II, :>]§ I}, =5 I =g 113" is precisely as is
required. O

Theorem 9 (Completeness). If© - C: 7> p,® C loc-ok, NL(p) € Q, (C,Q) =7 (C', '),
and [[C]]gh2 =TI, then there is some k > n, I1}, and IT;, such that 1] < II;, [[C’]]g, =11}, and 11 ::»’Sc IT;,.

Proor. By induction on the number of steps n. The case when n = 0 is trivial. For n > 0, we
have a reduction sequence of the form

(C1, Q1) =¢ (C2, Qa) = (C3,Q3).
By the inductive hypothesis, there is some k > n and II, where [[Cz]]gz <TII, and [[Cl]]g.‘21 z’; I1,.

By Type Preservation (Theorem 7), C; is typed as © + C;, : T > p; for some p;, ©® + C, loc-ok,
and NL(p;) € Qj. Thus we can apply Lemma 76 to C, to find some II5 such that [[Cg]]g3 < Il

70 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

and [[Cz]]gz =% II;. By Lemma 78, there is some IT; > II3 such that [T, =% II;. Then ITj is
satisfactory, as [[Cl]]gh21 :>’§ IT, =§ 15 and [[C3ﬂg3 < II3 < II;. The argument is summarized by
the following diagram.

[, 11, I,
| |
v v
| h —;:ﬁ |
[[CZHQZ 11‘3
1\
M
[[C3]]QS

]

Theorem 3 (Completeness). If® + C : 7 > p, every location literal in C is in Q, and C contains no
kill-after expressions, then whenever (C, Q) =7 (C’, Q’), there is someIl’ such that [[Cﬂg = I
and [[C’]]g, <II.

Proor. Follows directly from Theorem 9. O

I L
Lemma 79 (Network Program Diamond Lemma). IfL»> (E;, Q1) = (E3, Q3) and L > (E1, Q1) =
(Es, Q3), where E; # Es, then either both steps are message receives from the same sender, or we can

L I
find some E4 and Q4 such that L > (E;, Q3) = (E4, Q4) and L > (E3, Q3) - (Eq, Q4),

Proor. By induction on the first step, and case analysis of the second step. The only interesting
cases are when both reductions are : steps to reduce the same local program. If this is the case,
because we assume the diamond lemma (Property (2)) for local programs, we can reduce the local
programs—and hence network programs—to a common reduct. O

Lemma 80 (System Diamond Lemma). IfIl; =g I, and II; =g 113, where I, # 113, then there
is some Il where Il, =g I14 and I1; =g I1,.

Proor. By case analysis of the steps. If both steps are different cases (i.e., an ¢ step and message
receive), or when both steps are 1, kill, or fork, we can apply Lemma 79. Note for fork steps that
there is non-determinism in the choice of spawned thread name. This is not an issue, as we can
simply equate two systems modulo a permutation given by the choice of spawned thread name.

Now consider the case when both steps are message sends of the form L;.m; ~» p; and Ly,.m; ~»
p2. We must have that L; # L, for otherwise as there is exactly one message the sender can send,
we would have m; = m; and p; = p,, which violates the assumption that IT, # II5. But in this case
we can simply apply Lemma 79 as the senders are distinct. O

Lemma 81. IfII; = II; and 114 =3 I, then either I, =>g_1 113, or there is some Iy such that
11, :g 114 and II; =5 114

Proor. By induction on n. If the second reduction sequence is of length 0, we trivially satisfy
the second case as I3 = II;. Otherwise suppose the reduction sequence is of the form I, =¥
I1; = I14. We can apply induction to the pair IT, and I13. In the first case, where II, =>g‘1 115,
the first case also applies for the larger reduction sequence with the witness II, =% ~" II3 =5 I14

of length n. Otherwise suppose that there is some IT5 where IT; =7 IIs and I13 = IIs.

Step in Tine: Forking Processes in Functional Choreographies 71

First suppose that Iy # II5. Then by Lemma 80, we can find some Il such that IT; =5 IIs and
15 =5 Ils, which is satisfactory with the witness reduction sequence I, =7 II5 = 1, of
length n + 1.

Otherwise let IT4 = ITs. But then we have a reduction IT, =7 T4, which is satisfactory.]

Lemma 82 (System Confluence). IfIl; =7 II, and Il; =7 I3, then there is some I1y, m’, and n’
where I1, :g’ I, 115 ::»g" Iy, m <m,n <n,andm’ > m-n.

Proor. By induction on n. If n = 0, the conclusion follows by choosing II4 = II,. Otherwise
suppose the second reduction sequence is of the form II; =>¢ I3 = Il,. First we apply the
inductive hypothesis to find some IIs, m’, and n’ with the required properties. Now we apply
Lemma 81 to the two reductions II3; =g II4 and I1; zg" I1s.

First the case where Il :'S"”l IT5. The reduction sequences II, =>’Sl Il5 and 114 :g",’l I
are satisfactory because m’ —1 <m’ <m,n’ <nandm’ >m-n=m'-1>m—- (n+1).

Now consider the case when there is some IIy where I14 zg” Il and IIs =g II¢. Then the
reduction sequences II, :»g II; = Ily and I, =>g" I1 are satisfactory because m’ < m,
n<n=n+1<n+lL,andm' 2m-n=>m'>2m-(n+1). O

Theorem 4 (Soundness). If - C : 7 > p, every location literal in C is in Q, C contains no kill-after
expressions, and [C]% =% I1 where I1 is final, then (C, Q) =% (V, Q') where [V]3, <L

Proor. First we claim that C must terminate. Indeed, if it did not, then by Corollary 4, it will
loop. But then by completeness (Theorem 9) and confluence (Lemma 82), IT must be able to take a
step, contradicting the fact that it is final.

Now suppose that that C is executed as (C, Q) = (V, Q’). Then by completeness, there is some
I > [V]%, such that [C]{ =} II". By confluence, there is then some IT” where IT =} II"” and
I ::»g IT”. However, both IT and IT” are final, and hence equivalent, so that V is satisfactory. O

Theorem 10 (Deadlock Freedom). If + C : 7 > p, + C loc-ok, NL(p) C Q, [[C]]g = II, and
II :Z‘ IT’, then either II' is a value for every location, or there is some I1" such thatII' =g I1"”.

Proor. By Corollary 4, C either terminates or loops forever. First the case if C terminates,
where the argument is similar to Theorem 4. If (C, Q) evaluates to (V, Q’), then by Completeness
there is some Iy > [V]]g, such that [T = IIy. By Lemma 54, we can step [y =7 II}, where
I, > [V] g,. By Confluence (Lemma 82), we can step II' =7 II},. Then by Lemmas 53 and 56, II},
is a value. Lastly, there is either at least one step in the reduction sequence I1" =7 II}, satisfying
the conclusion, or there are no steps, in which case IT’ is itself a value, satisfying the theorem in
either case.

Now the case when C loops forever. Suppose that the reduction sequence IT =7 II" is of length
n. Then we can find some C” and Q" where (C, Q) =!*" (C”, Q"). By Completeness (Theorem 9),
we can step II =>§ 1" where k > 1+ nand [C”]?, < II”. By Confluence (Lemma 82), II”” can

QH
then make at least k —n > 14+ n — n = 1 steps, satisfying the theorem. O

Theorem 5 (Deadlock Freedom). If + C : 7 > p, every location literal in C is in Q, and C contains
no kill-after expressions, then whenever [[C]]gm2 = II, eitherIl is final or it can step.

Proor. Follows directly from Theorem 10. O

	Abstract
	1 Introduction
	2 Background
	2.1 Functional Choreographies
	2.2 Process Polymorphism
	2.3 Process Spawning

	3 System Model
	3.1 Local Operational Semantics
	3.2 Local Type System
	3.3 Example Local Languages

	4 The Lambda-Fork Language
	4.1 Lambda-Fork Syntax
	4.2 Operational Semantics
	4.3 Static Semantics

	5 Network Language
	5.1 Network Language Syntax
	5.2 Network Language Operational Semantics

	6 Endpoint Projection
	6.1 Network Program Merging
	6.2 Endpoint Projection Definition
	6.3 Soundness, Completeness, and Deadlock Freedom

	7 Related Work
	7.1 Functional Choreographic Programming
	7.2 Process Spawning in Choreographies
	7.3 Process Spawning in (Multiparty) Session Types

	8 Conclusion
	References
	A Choreography Operational Semantics
	A.1 Choreography Values
	A.2 Redices and Evaluation Contexts
	A.3 Projection of a Redex
	A.4 Redex Blocked Locations
	A.5 Choreography Blocked Locations
	A.6 Redex for an Evaluation Context
	A.7 Location Set Relations
	A.8 Choreography Operational Semantics

	B Static Semantics
	B.1 Lambda-Fork Kinding System
	B.2 Lambda-Fork Type System
	B.3 Spawned Thread Well-Scopedness Judgment

	C Network Language
	C.1 Network Language Expressions
	C.2 Transition Labels and Evaluation Contexts
	C.3 Network Language Operational Semantics

	D Compilation
	D.1 Network Program Merging
	D.2 Endpoint Projection
	D.3 Locations Named by a Type or Choreography
	D.4 Spawned Locations in a Choreography
	D.5 The Less-Than Relation
	D.6 The Simulating Less-Than Relation

	E Proofs
	E.1 Substitution Lemmas
	E.2 Type Soundness
	E.3 Bisimulation Relation
	E.4 Endpoint Projection
	E.5 Completeness, Soundness, and Deadlock-Freedom

