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Choreographic programming is a promising new paradigm for programming concurrent systems where a
developer writes a single centralized program that compiles to individual programs for each node. Existing
choreographic languages, however, lack critical features integral to modern systems, like the ability of one
node to dynamically compute who should perform a computation and send that decision to others. This
work addresses this gap with 𝜆qc, the first typed choreographic language with first class process names and
polymorphism over both types and (sets of) locations. 𝜆qc also improves expressive power over previous
work by supporting algebraic and recursive data types as well as multiply-located values. We formalize and
mechanically verify our results in Rocq, including the standard choreographic guarantee of deadlock freedom.

CCS Concepts: • Theory of computation→ Functional constructs; Type structures; •Computingmethod-
ologies → Concurrent programming languages.
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1 INTRODUCTION

Concurrent programs are integral to many modern software systems, but programming them
correctly is notoriously difficult. Traditionally, each process in the system runs a separate program,
but developers must reason about the interactions between these programs and the order in which
these events occur. This complex behavior can easily lead to bugs such as deadlocks, where execution
stalls due to nodes with mismatched send and receive expectations forever waiting on each other.
Choreographic programming [Montesi 2013, 2023] is an emerging paradigm that promises to

simplify development of correct concurrent systems. A choreography is a single top-level program
that describes the computation performed by every node, including the interactions between
them. A compiler then projects programs for individual nodes from this single top-level program.
Choreographies centralize code, putting global control flow in one place and leading to deadlock-
freedom by design, structurally eliminating a notoriously challenging issue in concurrent code.

The theory of choreographies has advanced rapidly in the last several years with the addition of
higher-order functions [Cruz-Filipe et al. 2022; Hirsch and Garg 2022], polymorphism over types
and processes [Graversen et al. 2024], and multiply-located values [Bates et al. 2025]. However,
none of these results allow for dynamic computation and sending of process names in a type-safe
manner. The ability to treat host names as first-class values and share them between nodes is
critical to many practical applications, such as dynamic load balancers. The only existing work
supporting first-class host names [Sweet et al. 2023] entirely lacks a type system, and consequently
lacks critical type-safety properties.
This paper presents the choreographic Quick Change calculus, 𝜆qc, the first choreographic

language to support first-class process names and types. To understand the value of these features,
and choreographic programming in general, consider a simple cloud computing example where
a client C wishes to outsource expensive computation 𝐹 on input 𝑋 . If C wishes to run 𝐹 on a
specific (statically known) worker W, they can do so using the following choreography. Here 𝑡@C
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indicates a value of type 𝑡 located at C.

runAtW : (𝑡 → 𝑡 ′)@C → 𝑡@C → 𝑡 ′@C

runAtW 𝐹 𝑋 = let W.𝑓 B 𝐹 ⇝W

W.𝑥 B 𝑋 ⇝W

in W.(𝑓 𝑥) ⇝ C

The notation 𝐹 ⇝W means that whoever owns 𝐹 (in this case C) should send it toW. So in this
program, C sends the code (𝐹 ) and the input (𝑋 ) toW, who locally binds them to variables 𝑓 and 𝑥 ,
respectively. ThenW computes 𝑓 𝑥 and sends the result back to C.
Real systems, however, typically include a pool of workers and a load balancer to manage task

assignment. Clients contact this pool manager, who then (a) selects a worker, (b) notifies the worker
of their new client, and (c) sends the client the worker’s identity. To implement such a thread pool
in a choreography, the client C can ask a pool managerM where to run the task, andM must be
able to reply with a dynamically chosen identity. A choreography for such a process might look as
follows, where acquireWorker and releaseWorker are local operations by the pool managerM to
locally track the state of the thread pool and select and return workers to the pool, respectively.

runWithWorker : (𝑡 → 𝑡 ′)@C → 𝑡@C → 𝑡 ′@C

runWithWorker 𝐹 𝑋 = let𝑊 B M.acquireWorker() ⇝ {C} ∪ pool

𝑊 .𝑓 B 𝐹 ⇝𝑊

𝑊 .𝑥 B 𝑋 ⇝𝑊

C.res B𝑊 .(𝑓 𝑥) ⇝ C

in𝑊 .“done”⇝ M ; M.(releaseWorker𝑤) ; C.res

On the first line of this program, the pool managerM selects an idle worker from the pool and sends
this dynamically computed value to the client C, where it is bound to the variable𝑊 . Additionally,
workers in the pool are all notified about which worker was chosen to prevent situations where a
worker is not aware that they have been selected.

As in the earlier runAtW function, the client then sends 𝐹 and 𝑋 to𝑊 , who binds them to 𝑓

and 𝑥 , computes 𝑓 𝑥 locally, and sends the result to C. Finally, the selected worker notifies the
manager that they have finished the job, the manager releases the worker back into the thread pool,
and the computation finishes by yielding the result.

The first line of this program has very similar syntax to sending and receiving local data, but is
critically different: it sends a location name which is then bound to the variable𝑊 known to all
parties in {C} ∪ pool and allows the programmer to use it as a location name within its scope. This
is the core feature of 𝜆qc: enabling first-class location names which can be dynamically computed
(and hence quickly changed) at runtime. While this feature appears simple on its face, it hides
several important complexities. First, the value is known to a set of hosts, not just a single host,
making it multiply-located. Second, location names in choreographies are generally part of the
language of types, not values. To support first-class location names without the need for dependent
types, we carefully separate locations from other values in the 𝜆qc type system, while still allowing
interaction between the two. These key insights allow us to intermingle dynamically chosen host
names with process polymorphism, such as in the example above.

The main contributions of this work are as follows.

• We generalize the constraints on the local (message) language of Pirouette [Hirsch and Garg 2022]
to allow for polymorphism, vastly increasing the expressivity of local computations (Section 3).
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• We present 𝜆qc, the first typed choreographic programming language with the ability to send and
receive first-class location names and types as messages. Our language includes polymorphism
over types, processes, and sets of processes, algebraic and recursive data types, and multiply-
located values. We formulate a sound, System F-like type system for our language without relying
on dependent types or an operational semantics for types (Section 4).

• We define a network language (Section 5) which serves as the compilation target for our endpoint
projection procedure. We show that compilation is complete, and is sound when all executed
local computations are terminating. This result, along with the soundness of our type system,
allows us to prove that projected systems are always deadlock-free (Section 6).

• We formalize and verify all results in the Rocq Prover (formerly Coq). This is the first mechanized
formalization both of process (set) polymorphism and of multiply-located values (Section 7).

2 BACKGROUND

To understand the contributions of this work, it is helpful to understand some background on
choreographies with higher-order functions, process polymorphism, and multiply-located values.

2.1 Pirouette

We generalize and build on Pirouette [Hirsch and Garg 2022], a higher-order choreographic pro-
gramming language. As with other choreographies, Pirouette uses a located syntax inspired by the
“Alice and Bob” syntax of cryptographic protocols. To specify that A should (locally) compute 2 + 3
and send the result to B, one would write A.(2 + 3) ⇝ B. For clarity, we use sans-serif for these
source-level operations and color choreographic operations in blue, local operations in green, and
location constants in red.

One core aspect of Pirouette’s design that we inherit is a clear separation between choreographic
operations and local operations. The choreographic operations are fixed by Pirouette, and are
agnostic to the local language. The local operations can be specified in nearly any language whose
values—possibly including functions—can be communicated between nodes via message-passing.
The local language need only have an operational semantics, a type system, and a type that can act
as a boolean (every value of that type can be used as true or false).

To connect the choreographic and local languages, Pirouette offers a form of let-expression that
binds local variables to the output of a choreography. For instance, the result of A.(2 + 3) ⇝ B is
a choreographic value located at B, so using it in B’s local computation requires binding a local
variable with the output of a choreographic computation. The following program demonstrates
how B can perform this binding and use the result locally as the variable 𝑥 .

let B.𝑥 B (A.(2 + 3) ⇝ B) in B.(4 ∗ 𝑥)
Pirouette also supports conditionals if 𝐶 then𝐶1 else𝐶2 where the choreography itself branches

based on the result of𝐶 , which should yield a boolean at some location ℓ . However, only ℓ can access
the branch condition, so others with differing behavior in the L(eft) and R(ight) branches cannot
proceed without knowing which to take. The location ℓ can communicate the choice 𝑑 ∈ {L,R} of
branch to another location ℓ ′ using a selection statement ℓ [𝑑] ⇝ ℓ ′ ; 𝐶 .
At the choreographic level, Pirouette is simply typed, containing only base types and function

types. The base types are of the form 𝑡@ℓ , and describe a value of local type 𝑡—any type from the
local language’s type system—located at ℓ . This mixing of the local and choreographic type systems
and the local variables bound by let-expressions, shown above, forces the type system to separately
track both choreographic and local variables.

Pirouette defines two separate semantics: one directly at the choreographic level to allow devel-
opers to more easily reason about the behavior of the choreography, and one using a translation
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called endpoint projection (EPP) that defines how to compile a choreography to separate programs
for each location. Despite operating directly on a choreography, the first semantics also captures
concurrent interleavings by allowing out-of-order execution as long as it does not reorder the
operations for any individual location. For example, consider the program shown below.

A.(2 + 3) ⇝ B ; C.(5 ∗ 4) ⇝ B

The local computations for A and C involve disjoint parties, so they can execute in either order.
The sends, however, both involve B and must occur in the order specified: B must receive 5 from A

before receiving 20 from C.
EPP defines how to compile a choreography into separate programs for each location that include

only the operations that location needs to run. The location being projected to is denoted by a
subscript to the projection operator, as in J𝐶KA and J𝐶KB. For instance, sending a value from A to B
requires A to compute the value and send it, and requires B to receive from A:

JA.(2 + 3) ⇝ BK
A
= send ret(2 + 3) to B JA.(2 + 3) ⇝ BK

B
= recv from A

We write operations of our target (network) language in orange teletype font.
Hirsch and Garg [2022] prove that running these projected programs in parallel produces the

same result as the first semantics, meaning that developers can safely reason using the top-level
semantics and, critically, any projected choreography is deadlock-free, meaning it cannot get stuck
with locations waiting to receive messages from each other (or for any other reason).

2.2 Process Polymorphism

While this work is the first to support first-class locations in a typed choreography, PolyChor𝜆 [Gra-
versen et al. 2024] introduced the notion of process polymorphism, providing a way to abstract
over the participants in a choreography. PolyChor𝜆 introduces a process abstraction Λℓ .𝐶 , akin to a
classic type abstraction, that binds variable ℓ representing a process name in choreography 𝐶 . In
our syntax, a programmer could write the following process function in which A computes a value
and sends it to a yet to be determined recipient ℓ .

𝐹 = Λℓ .A.(2 + 3) ⇝ ℓ

In PolyChor𝜆, the only way to use a process abstraction is to apply it to a location (e.g., 𝐹 B or 𝐹 C)
or a location variable created by another process abstraction (e.g., 𝐹 ℓ). Location names are not
first-class values that can be computed locally or sent between parties.
Despite process names being statically resolvable in PolyChor𝜆, the projection of a process

abstraction requires locations to behave differently depending on what the variable ℓ resolves to at
run time. This is accomplished using an “AmI” construct in the compiled language that produces a
local branch and reflects the fact that each process should know its own identity. Specifically, the
program AmI A then 𝐸1 else 𝐸2 will execute 𝐸1 when running at A and 𝐸2 when running elsewhere.
EPP can then project a process abstraction to an AmI statement where each branch is a different
projection of 𝐶: then replaces ℓ with the current process, while else assumes ℓ has resolved to a
different name. That is,

JΛℓ .𝐶K
A
= Λℓ . AmI ℓ then J𝐶 [ℓ ↦→ A]K

A
else J𝐶K

A
.

A feature of many polymorphic languages which is notably missing from PolyChor𝜆 is recursive
types. The addition of recursive types to this language would be challenging because their type
system—based on System 𝐹𝜔—includes an operational semantics, and as a result their endpoint
projection procedure requires types which appear in the choreography to be fully-reduced type
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values. Implementing this feature would require either that endpoint projection handle choreogra-
phies in which nonterminating types may appear, or that recursive types are limited in order to
force type computations to converge. Both of these options have significant drawbacks.

2.3 Multiply-Located Values

An alternative to the selection messages Pirouette and similar choreographies use in choreographic
conditionals is multiply-located values [Bates et al. 2025; Sweet et al. 2023]. These generalize the
notion of local values at one location to local values at a set of locations. This feature recognizes
that, after sending a value, all parties involved know that value, allowing the choreography to
guarantee that the locations agree.
For instance, the choreography {A,B}.(2 < 3) {A}⇝ C specifies that A and B should both

compute 2 < 3 and A should send the result to C. Notably, the result of this computation is the
multiply-located boolean value {A,B,C}.true, meaning a condition could branch on the result
without requiring further synchronization between these three parties.

3 SYSTEMMODEL

Before introducing the choreographic constructs in 𝜆qc, we specify the assumptions on the setting
in which it operates. As is standard in the choreography literature, we assume a fixed set of
locations L, each with a unique name. Names are taken to be opaque identifiers associated with an
underlying node, process, thread, etc.
Like Pirouette [Hirsch and Garg 2022], 𝜆qc abstracts over the language for local computation,

requiring only that it satisfy a small set of rules. To support type and location polymorphism
and multiply-located values, 𝜆qc adds a few assumptions beyond prior work, but it still supports
numerous languages.
The local language must have a syntax that specifies a set of values, a small-step operational

semantics, and a type system. We write 𝑒1 −→ 𝑒2 to denote that a local term 𝑒1 steps to 𝑒2 in the
local language’s semantics. The semantics must satisfy two properties:

(1) Values cannot step. That is, if Val(𝑣), then there is no 𝑒 such that 𝑣 −→ 𝑒 .
(2) Local steps satisfy the diamond property. That is, if 𝑒1 −→ 𝑒2 and 𝑒1 −→ 𝑒3, then either

𝑒2 = 𝑒3 or there is some 𝑒4 such that 𝑒2 −→ 𝑒4 and 𝑒3 −→ 𝑒4.
Property (1) is taken from Pirouette, while property (2) ensures multiply-located computations all
produce the same result. Property (2) may appear restrictive, but many pure functional languages
and all deterministic languages enjoy it. We believe it can be weakened to the more general
confluence statement that, if 𝑒1 −→∗ 𝑒2 and 𝑒1 −→∗ 𝑒3 then 𝑒2 −→∗ 𝑒4 and 𝑒3 −→∗ 𝑒4 for some 𝑒4,
but we leave the challenge of mechanically verifying this conjecture to future work.

3.1 Local Kinding and Type System

As 𝜆qc is constructed generically over the local language, 𝜆qc’s type system—and the guarantees
it provides—depend on the local language specifying a type system. In particular, we require the
local language to specify both a type system and a kinding system. For simplicity, we show only a
single local kind (∗𝑒 ) here, but the results generalize to an arbitrary non-empty set of local kinds,
which our Rocq formalization allows. The local type system can be polymorphic, but this is not
required—it may instead be a simple type system.

The local kinding and type systems are specified by a type well-formedness judgment Γ ⊩ 𝑡 and
an expression typing judgment Γ; Σ ⊩ 𝑒 : 𝑡 , respectively. The double-vertical turnstile ⊩ indicates
the local kind and type systems. In each judgment Γ is a kinding context, and Σ is a typing context.
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𝛼 ∈ Γ

Γ ⊩ 𝛼

Γ ⊩ 𝑡1 Γ, 𝛼 ⊩ 𝑡2

Γ ⊩ 𝑡2 [𝛼 ↦→ 𝑡1]
Γ; Σ ⊩ 𝑒 : 𝑡
Γ ⊩ Σ

Γ; Σ ⊩ 𝑒 : 𝑡
Γ ⊩ 𝑡

Γ ⊩ Σ 𝑥 :𝑡 ∈ Σ

Γ; Σ ⊩ 𝑥 : 𝑡
Γ; Σ ⊩ 𝑒1 : 𝑡1 Γ; Σ, 𝑥 :𝑡1 ⊩ 𝑒2 : 𝑡2

Γ; Σ ⊩ 𝑒2 [𝑥 ↦→ 𝑒1] : 𝑡2
Γ ⊩ 𝑡1 Γ, 𝛼 ; Σ ⊩ 𝑒2 : 𝑡2

Γ; Σ[𝛼 ↦→ 𝑡1] ⊩ 𝑒2 [𝛼 ↦→ 𝑡1] : 𝑡2 [𝛼 ↦→ 𝑡1]

Fig. 1. Required-admissible kinding and typing rules for the local language.

We only require that the rules in Figure 1 be admissible—they must be true of the system, but need
not be axioms. These rules are standard for polymorphic type systems.
As in Pirouette, the local type system must include a type, which we write as bool, where

every value can be interpreted as either true or false. These are required to define the behavior of
conditionals, which branch on local values. We also require three more types: loc𝜌 , locset𝜌 , and
tyRep, defining the first-class local representations of location names, sets of locations, and local
types, respectively. The defining property of representations is that we can convert values of type
loc𝜌 to location names in L, values of type locset𝜌 to sets of location names, and values of type
tyRep to well-formed types in the local language. For example, one could represent location names
using integers, mapping 0 to A, 1 to B, and all other integers toC. We write representations of a type,
location name, or set of location names as ⌈𝑡⌋, ⌈𝐿⌋, or ⌈{𝐿1, . . . , 𝐿𝑛}⌋ respectively, to disambiguate
from the resolved type 𝑡 , location 𝐿, or set of locations {𝐿1, . . . , 𝐿𝑛}. In the above example, ⌈A⌋ is
syntactic sugar for 0, while A refers to the actual location A ∈ L. A location need not have a unique
representative, but each value can only represent one location. There is also no requirement that
all possible booleans, location names, etc. be present, or even that the local types be inhabited, but
uninhabited types will render choreographic features unavailable.

The subscript 𝜌 in the type loc𝜌 is an upper bound on the set of locations to which an expression
of that type may resolve. For instance, both ⌈A⌋ and if 𝑒 then ⌈A⌋ else ⌈B⌋ can have type loc{A,B} ,
but ⌈C⌋ cannot. For locset𝜌 , the annotation must be a superset of any value of this type (e.g.,
⌈{A,B}⌋ : locset{A,B,C} ). The precision of 𝜌 does not explicitly affect the operational semantics
of our language, but an imprecise annotation may require a choreography to add unnecessary
communication to remain well-typed (see Section 4.4). In practice, this static upper bound could
be computed in a multitude of ways, such as refinement types [Freeman and Pfenning 1991] or
a separate static analysis. In this work, we assume for simplicity that the annotations are given
directly by the local type system, and leave computing them precisely to future work.

Lastly, the local type system must provide standard progress and preservation guarantees:
• Local Progress: If ⊩ 𝑒 : 𝑡 then either 𝑒 is a value, or there is some 𝑒′ such that 𝑒 −→ 𝑒′.
• Local Preservation: If Γ; Σ ⊩ 𝑒 : 𝑡 and 𝑒 −→ 𝑒′, then Γ; Σ ⊩ 𝑒′ : 𝑡 .

3.1.1 Example Local Languages. Many simply-typed and polymorphic 𝜆-calculi satisfy our
requirements with very minor modification. To show that our requirements are both reasonable
and satisfiable we present two examples here, with the full details contained in our formalization.

Example 1 (Simply-Typed 𝜆-Calculus). The simply-typed, call-by-value 𝜆-calculus with primitive
integers satisfies our requirements. Specifically, integers can represent both booleans (zero is false
while all non-zero values are true) and location names. Having many representations of true is
not a concern, as each representation remains unambiguous. The space of both location sets and
types, locset𝜌 and tyRep, respectively, can both be the empty type, as not all representations are
required to exist. This choice will render first-class location sets and local types unavailable at the
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choreographic level, but does not otherwise interfere with the availability of choreographic type-,
location-, or location-set–polymorphism.

Example 2 (System F). System F with primitive booleans, integers representing locations, and
lists of integers representing location sets satisfies our requirements. Like using integers for true
and false, having multiple ordered lists represent the same set of locations is not a concern. We can
also include recursive functions, as there is no requirement that local expressions terminate.
To represent a non-trivial set of local types, we can define tyRep to be a primitive data type

with constructors ⌈int⌋, ⌈bool⌋, and 𝑒1 ⌈→⌋ 𝑒2. Since the representations are expressions not types,
tyRep behaves identically to the other primitive types of the language. The syntax of the resulting
example language is shown below.

Types 𝑡 F 𝛼 | loc𝜌 | locset𝜌 | int | bool | list(𝑡) | tyRep | 𝑡1 → 𝑡2 | ∀𝛼.𝑡
Expressions 𝑒 F 𝑥 | fun 𝑓 (𝑥 :𝑡) B 𝑒 | 𝑒1 𝑒2 | Λ𝛼.𝑒 | 𝑒 𝑡

| 𝑛 ∈ Z | 𝑒1 + 𝑒2 | 𝑒1 = 𝑒2 | 𝑒1 < 𝑒2
| true | false | if 𝑒 then 𝑒1 else 𝑒2
| nil | cons(𝑒1, 𝑒2) | case 𝑒 of (nil ⇒ 𝑒1) (cons(𝑥,𝑦) ⇒ 𝑒2)
| ⌈int⌋ | ⌈bool⌋ | 𝑒1 ⌈→⌋ 𝑒2

As an example of how the type system is used to provide a static upper-bound on representations
of locations, two of the typing rules for the loc𝜌 type are given below.

𝑛 ∈ 𝜌 ⊆ Z Γ ⊩ Σ

Γ; Σ ⊩ 𝑛 : loc𝜌

Γ; Σ ⊩ 𝑒 : bool Γ; Σ ⊩ 𝑒1 : loc𝜌 Γ; Σ ⊩ 𝑒2 : loc𝜌
Γ; Σ ⊩ if 𝑒 then 𝑒1 else 𝑒2 : loc𝜌

4 THE 𝜆QC LANGUAGE

We now present the Quick Change Choreographic calculus (𝜆qc), a polymorphic 𝜆-calculus for
choreographies that supports communication of dynamically generated (sets of) location names
and types, as well as multiply-located values and algebraic and recursive data types, while retaining
the traditional guarantee of deadlock freedom.

4.1 𝜆qc Syntax

Figure 2 presents the full syntax of 𝜆qc. To visually differentiate classes of variables, we write
choreographic program variables in uppercase Roman characters (𝑋,𝑌, 𝐹, . . . ), local program
variables in lowercase Roman characters (𝑥,𝑦, 𝑓 , . . . ), and type, location, and location set variables
in lowercase Greek characters (𝛼, 𝛽, . . . ). The metavariable ℓ denotes a location, 𝜌 a set of locations,
𝜏 a choreographic type, 𝑡 a local type, and 𝜅 a kind.

Much of the 𝜆qc syntax consists of standard algebraic and recursive datatypes lifted to chore-
ographies, but there are a few forms of note. First, the term 𝜌.𝑒 specifies that the set of locations 𝜌
should run local program 𝑒 . Note that 𝜌 must be non-empty, as an empty set of locations performing

Selection Labels 𝑑 F L | R
Choreographies 𝐶 F 𝑋 | 𝜌.𝑒 | fun 𝐹 (𝑋 ) B 𝐶 | 𝐶1 𝐶2 | Λ𝛼 ::𝜅.𝐶 | 𝐶 𝑡

| fold 𝐶 | unfold 𝐶 | (𝐶1,𝐶2) | fst 𝐶 | snd 𝐶
| inl 𝐶 | inr 𝐶 | case 𝐶 of (inl 𝑋 ⇒ 𝐶1) (inl 𝑌 ⇒ 𝐶2)
| 𝐶 {ℓ }⇝ 𝜌 | ℓ [𝑑] ⇝ 𝜌 ; 𝐶 | if𝜌 𝐶 then 𝐶1 else 𝐶2
| let 𝜌.𝑥 :𝑡 B 𝐶1 in 𝐶2 | let 𝜌.𝛼 ::𝜅 B 𝐶1 in 𝐶2

Fig. 2. Syntax of Choreographies
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a computation would be meaningless. We use the shorthand ℓ .𝑒 to mean {ℓ}.𝑒 . Local programs
can use local variables bound in the scope of either the choreography or the local program itself.
For these variables, every location has a separate namespace, so A.𝑥 denotes variable 𝑥 in the
namespace of A. Each location’s namespace is separate, so that A.𝑥 ≠ B.𝑥 , and this is reflected
in the substitution and renaming operations. Local variables can be multiply-located, where we
write 𝜌.𝑥 to mean that the local variable 𝑥 is in the namespace of every location in the set 𝜌 .

A core feature of choreographies is message passing, which 𝜆qc denotes as 𝐶 {ℓ }⇝ 𝜌 to indicate
sending the result of evaluating 𝐶 to all locations in the set 𝜌 . Here 𝐶 must produce a local value
located at ℓ (potentially among others); ℓ then sends that value as a message to everyone in 𝜌 .
When the result of 𝐶 exists only at a single location, we elide the ℓ on the arrow for simplicity.
After the message send, the locations that know the result of 𝐶 include 𝜌 and anyone who already
knew the output of 𝐶 . For example, the choreography A.3⇝ {B,C} reduces to {A,B,C}.3.

Choreographic conditionals, written if𝜌 𝐶 then𝐶1 else𝐶2, branch the entire choreography on the
result of a local computation. Here 𝐶 must produce a boolean known to 𝜌 . Although the locations
in 𝜌 know which branch to take, other participants in the program may not. This problem can be
solved in two ways: explicitly share the branch condition with all participants, or include selection
statements ℓ [𝑑] ⇝ 𝜌 ′ ; 𝐶 in the branches to inform locations in 𝜌 ′ of which branch was taken. The
former follows the literature on multiply-located values [Bates et al. 2025; Sweet et al. 2023], while
the latter follows literature on selection messages [see, e.g., Graversen et al. 2024; Hirsch and Garg
2022; Montesi 2013, 2023]. As the first choreographic language to incorporate both options, 𝜆qc
allows added flexibility and supports both of the following equivalent choreographies.

if {A,B} A.true⇝ B

then B.1
else B.2

if {A} A.true
then A[L] ⇝ B ; B.1
else A[R] ⇝ B ; B.2

The type abstraction Λ𝛼 ::𝜅.𝐶 and type application 𝐶 𝑡 together implement polymorphism. As
described in Section 4.3 below, 𝜆qc has four kinds, all of which are valid in type abstractions.

In addition, 𝜆qc includes typical algebraic and recursive data types including pairs, projections,
injections, case expressions, and the isorecursive constructor fold and eliminator unfold. These
constructs have the standard semantics for a strict functional language [Pierce 2002, Chapters 11 &
20], but note that they represent global data. As a result, after evaluating a choreographic sum type,
for instance, all participants know and agree on whether the result is of the form inl 𝑉1 or inr 𝑉2,
although their knowledge of the contents of 𝑉1 and 𝑉2 may differ.

A major contribution of this work is the presence of two let expressions: one for local values and
one for types. Local-let expressions act like standard let expressions, binding local variables to the
result of choreographic computations. If𝐶1 produces a value located at 𝜌 , then let 𝜌.𝑥 :𝑡 B 𝐶1 in𝐶2
binds the result to variable 𝑥 in the namespace of 𝜌 , making it available in future local computations.
Importantly, 𝜌 may be any subset of the locations who know the output of 𝐶1.

Our new type-let expressions, written let 𝜌.𝛼 ::𝜅 B 𝐶1 in𝐶2, convert representations of locations,
location sets, and types, into actual locations, location sets, and types. They are semantically similar
to a local-let binding above, except they bind type variables rather than local variables. Specifically,
𝐶1 must produce a representation known to 𝜌 of a location name, location set, or local type, which
is then reified to a type-level value and bound to 𝛼 in the body of𝐶2. We elide 𝜌 and 𝜅 for legibility
when they are obvious from context. Combining the type-let expression with the collecting sends
described above allows arbitrary local language computations to dynamically select locations and
propagate the choice to the choreographic level, as shown in Example 3.

Example 3 (Load Balancer). Recall the example of a distributed thread pool from Section 1.
Representations of type loc are a value like any other, so the local language could provide a function
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Redices 𝑅 F 𝜌.(𝑒1 → 𝑒2) | App | ℓ .𝑚⇝ 𝜌 | let 𝛼.𝜌 B 𝑡

rloc(𝑅) cloc(𝐶)

rloc(𝜌.(𝑒1 → 𝑒2)) = 𝜌

rloc(App) = L
rloc(ℓ .𝑚⇝ 𝜌) = {ℓ} ∪ 𝜌

rloc(let 𝜌.𝛼 B 𝑡) = 𝜌

cloc(𝑋 ) = ∅
cloc(𝜌.𝑒) = 𝜌

cloc(fun 𝐹 (𝑋 ) B 𝐶) = ∅
cloc(𝐶1 𝐶2) = L

cloc(𝐶 {ℓ }⇝ 𝜌) = cloc(𝐶) ∪ {ℓ} ∪ 𝜌

cloc(let 𝜌.𝛼 ::𝜅 B 𝐶1 in 𝐶2) = cloc(𝐶1) ∪ cloc(𝐶2) ∪ 𝜌

Fig. 3. Selected Redices and Location Function Rules. Here𝑚 is either a local value 𝑣 or a selection label 𝑑 .

tasks : loc → int that returns the number of tasks assigned to a worker. The (M)anager can then
balance the load between workers A and B by allocating computation 𝑒 as follows:

let 𝛼 B M.

(
if (tasks(⌈A⌋) < tasks(⌈B⌋))
then ⌈A⌋ else ⌈B⌋

)
⇝ {A,B,C} in 𝛼.𝑒 ⇝ C

Say A currently has fewer tasks than B, so the local program will evaluate to ⌈A⌋, meaning the first
expression in the let will evaluate to

M.⌈A⌋ ⇝ {A,B,C} =⇒𝑐 {M,A,B,C}.⌈A⌋
The type-let then reifies the representation ⌈A⌋ to an actual location, producing the step

let 𝛼 B {M,A,B,C}.⌈A⌋ in 𝛼.𝑒 ⇝ C =⇒𝑐 A.𝑒 ⇝ C

4.2 𝜆qc Semantics

The operational semantics of 𝜆qc consists of a small-step relation using a labeled transition system
of the form 𝐶1

𝑅
=⇒𝑐 𝐶2. The label 𝑅 represents a redex that tracks the specific reduction occurring.

Choreographies describe the actions of multiple locations, and so distinct locations should be
able to perform (unrelated) actions in any order. To capture this idea, our semantics includes
out-of-order reductions. Importantly, operations for any one location should always execute in the
specified order. To enforce this requirement, the semantics uses the redices in the step relation to
determine which locations are involved in the step, and only allows reordering of operations when
the computation it is jumping before involves a disjoint set of locations.

More precisely, the redex locations function rloc(𝑅) returns the set of locations involved in 𝑅 and
the choreography locations function cloc(𝐶) gives those involved in𝐶 . For example, if A sends 𝑣 to B
(denoted by the redex A.𝑣 ⇝ B), then precisely A and B participate, so rloc(A.𝑣 ⇝ B) = {A,B}.
The cloc(𝐶) function operates on a whole choreography, not just a single step, so even though A

must take multiple steps before B gets involved, cloc(let A.𝑥 B A.1 in (A.(1 + 𝑥) ⇝ B)) = {A,B}.
Figure 3 shows selected redices and definitions of both location functions. Note that all locations
participate in choreographic function application, so cloc(𝐶1 𝐶2) = rloc(App) = L.

It is then safe to move a step 𝑅 before an entire computation𝐶 if the set of participants are disjoint
(i.e., cloc(𝐶) ∩ rloc(𝑅) = ∅), even if a normal in-order execution would execute 𝐶 before step 𝑅.
The following out-of-order rule for type-let expressions exhibits this structure, also prohibiting the
out-of-order step from including locations binding a variable in the let.

[C-TyLetI]
𝐶2

𝑅
=⇒𝑐 𝐶

′
2 cloc(𝐶1) ∩ rloc(𝑅) = ∅ 𝜌 ∩ rloc(𝑅) = ∅

let 𝜌.𝛼 ::𝜅 B 𝐶1 in 𝐶2
𝑅
=⇒𝑐 let 𝜌.𝛼 ::𝜅 B 𝐶1 in 𝐶

′
2
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[C-Done]
𝑒1 −→ 𝑒2 fv(𝜌) = ∅

𝜌.𝑒1
𝜌.(𝑒1→𝑒2 )
==========⇒𝑐 𝜌.𝑒2

[C-TyLetV]
Val(⌈𝑡⌋) fv(𝜌) = ∅

let 𝜌.𝛼 ::𝜅 B 𝜌′ .⌈𝑡⌋ in 𝐶
let 𝜌.𝛼B𝑡
=========⇒𝑐 𝐶 [𝛼 ↦→ 𝑡]

[C-SendV]
Val(𝑣) 𝐿1 ∈ 𝜌1 fv(𝜌2) = ∅

𝜌1 .𝑣 {𝐿1 }⇝ 𝜌2
𝐿1 .𝑣⇝𝜌2
========⇒𝑐 (𝜌1 ∪ 𝜌2) .𝑣

Fig. 4. Selected 𝜆qc Operational Semantics

𝜆qc also allows out-of-order execution in the branches of an if-expression before fully evaluating
the branch condition. Such a step is safe only when: (1) the locations involved in the step are
disjoint from those computing the branching condition, similarly to C-TyLetI, and (2) this precise
step is guaranteed to happen eventually. The latter holds only if both branches take identical steps,
which we enforce by requiring identical redices. The result is the following C-IfI rule.

[C-IfI]

𝐶1
𝑅
=⇒𝑐 𝐶

′
1 𝐶2

𝑅
=⇒𝑐 𝐶

′
2

cloc(𝐶) ∩ rloc(𝑅) = ∅ 𝜌 ∩ rloc(𝑅) = ∅

if𝜌 𝐶 then 𝐶1 else 𝐶2
𝑅
=⇒𝑐 if𝜌 𝐶 then 𝐶′

1 else 𝐶
′
2

As an example, consider the choreography if A.𝑒 then B.(2 + 3) else B.(2 + 3). Although the
condition is not yet evaluated, B will run the same program on either branch, and B is not involved
in computing the branch condition. That is, no matter what A.𝑒 evaluates to, B will run B.(2 + 3). It
is thus safe to reduce both branches to B.5 and the overall choreography to if A.𝑒 then B.5 else B.5.
However, no reordering is possible in the following choreography.

ifA

(
let A.𝑥 B (B.5⇝ A) in A.(𝑥 < 4)

)
then B.(2 + 3) else B.(2 + 3)

Despite B performing identical computation in both branches and only A knowing which way the
branch will go, executing the branches before stepping B.5⇝ A in the condition would reorder
local operations for B, which is not permitted.
Figure 4 contains a selection of additional semantic rules. C-Done shows how local programs

execute in a choreography, C-TyLetV shows how type representations are reified to types, and
C-SendV formalizes the collecting message send semantics discussed in Section 4.1. Each rule also
requires fv(𝜌) = ∅, which simply demands all location variables to be resolved before taking a
step. Otherwise it would be impossible to know who is performing the computation. Due to the
out-of-order rules, this condition is nontrivial, even for closed choreographies.
The remaining rules are either very similar to those presented here or are standard for a strict

functional language. The complete semantics can be found in Appendix A.7.

4.2.1 Substitution. The separation between choreographic variables, local variables, and type
variables results in three corresponding types of variable substitution. Choreographic variable
substitution, denoted 𝐶1 [𝑋 ↦→ 𝐶2], follows standard capture-avoiding substitution rules. Local
variable substitution for locations or location sets, denoted𝐶 [ℓ |𝑥 ↦→ 𝑒] or𝐶 [𝜌 |𝑥 ↦→ 𝑒], respectively,
is similar, but it operates only over the namespace of the location ℓ (resp. 𝜌), which may itself be a
type variable. Notably, a multiply-located variable must be substituted for its entire namespace
simultaneously, so (𝜌.𝑥) [𝜌 |𝑥 ↦→ 𝑒] = 𝜌.𝑒 , but ({ℓ, ℓ ′}.𝑥) [ℓ |𝑥 ↦→ 𝑒] is undefined.
Type substitution, denoted 𝐶 [𝛼 ↦→ 𝑡], requires additional care when substituting locations

or location sets. A naïve implementation can capture variables due to namespace collisions. For
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example, consider the following choreography with a location variable 𝛼 and concrete location L.

𝐶 = let 𝛼.𝑥 B 𝛼.2
L.𝑥 B L.3
𝛼.𝑦 B L.𝑥 ⇝ 𝛼

in 𝛼.(𝑥 + 𝑦)

Because 𝛼 and L are (syntactically) distinct, the local variables 𝛼.𝑥 and L.𝑥 are also distinct, so this
choreography should always produce 𝛼.5 regardless of the concrete location to which 𝛼 resolves.
But when 𝛼 resolves to L, how do we define 𝐶 [𝛼 ↦→ L]? One might think that, since nothing

binds 𝛼 in 𝐶 , we can simply replace all instances of 𝛼 with L. However, doing so makes the
previously-distinct local variables 𝛼.𝑥 and L.𝑥 collapse. The variable 𝛼.𝑥 is incorrectly captured
by the definition of L.𝑥 and the choreography would wrongly evaluate to L.6. Note that, when
substituting [𝛼 ↦→ L], capture can occur when binding either 𝛼.𝑥 or L.𝑥 . Inside a binding of 𝛼.𝑥 ,
free instances of L.𝑥 in the body will be captured, and so too will free instances of 𝛼.𝑥 be captured
when substituting under a binding of L.𝑥 .

To avoid this namespace capture, substitutions of locations in local-let expressions must rename
variables when binding within either namespace. The following rules define safe location set
substitution for local-let bindings, with single location substitution defined as a special case by
replacing the set 𝜎 with the singleton {ℓ} in the side conditions. Here fv𝜌 (𝐶) denotes the local
variables free in 𝐶 for any location in 𝜌 .

(let 𝜌.𝑥 B 𝐶1 in𝐶2) [𝛼 ↦→ 𝜎] =



let (𝜌 [𝛼 ↦→ 𝜎]).𝑥 B 𝐶1 [𝛼 ↦→ 𝜎]
in 𝐶2 [𝛼 ↦→ 𝜎]

if 𝛼 ⊆ 𝜌 and 𝑥 ∉ fv𝜎−𝜌 (𝐶2)

let (𝜌 [𝛼 ↦→ 𝜎]).𝑦 B 𝐶1 [𝛼 ↦→ 𝜎]
in 𝐶2 [𝜌 |𝑥 ↦→ 𝑦] [𝛼 ↦→ 𝜎]

if 𝛼 ⊆ 𝜌, 𝑥 ∈ fv𝜎−𝜌 (𝐶2),
and 𝑦 ∉ fv𝜌∪𝜎 (𝐶2)

let 𝜌.𝑦 B 𝐶1 [𝛼 ↦→ 𝜎]
in 𝐶2 [𝜌 |𝑥 ↦→ 𝑦] [𝛼 ↦→ 𝜎]

if 𝛼 ⊈ 𝜌, 𝜎 ∩ 𝜌 ≠ ∅,
𝑥 ∈ fv𝛼 (𝐶2), and 𝑦 ∉ fv𝜌∪𝛼 (𝐶2)

let 𝜌.𝑥 B 𝐶1 [𝛼 ↦→ 𝜎]
in 𝐶2 [𝛼 ↦→ 𝜎]

if 𝛼 ⊈ 𝜌 and either
𝜎 ∩ 𝜌 = ∅ or 𝑥 ∉ fv𝛼 (𝐶2)

4.3 𝜆qc Kinding System

We now turn to our static semantics, which has two components: an elementary kinding system,
and a typing system. For notational brevity we assume throughout that new variables are always
fresh. A kinding judgment takes the form Γ ⊢ 𝑡 :: 𝜅 , where Γ is a kinding context, 𝑡 is a type, and 𝜅
is a kind. The kind 𝜅 classifies 𝑡 as either a program type (∗), a location (∗ℓ ), a set of locations (∗𝑠 ),
or a local program type (∗𝑒 ). Figure 5 presents the syntax for the 𝜆qc types and kinds.

Kinds 𝜅 F ∗ | ∗ℓ | ∗𝑠 | ∗𝑒
Local Program Types 𝑡𝑒 F 𝛼 | bool | tyRep | loc𝜌 | locset𝜌 | . . .
Locations L,A,B, . . . ∈ L
Choreography Types 𝜏, ℓ, 𝜌, 𝑡 F 𝛼 | 𝑡𝑒@𝜌 | 𝜏1 → 𝜏2 | ∀𝛼 ::𝜅.𝜏

| 𝜏1 × 𝜏2 | 𝜏1 + 𝜏2 | 𝜇𝛼.𝜏 | L | {ℓ} | 𝜌1 ∪ 𝜌2

Fig. 5. Syntax of Types and Kinds. Here 𝛼 is a type variable.
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[T-Done]

Γ ⊢ 𝜌 :: ∗𝑠 Γ; Σ|𝜌 ⊩ 𝑒 : 𝑡𝑒
Γ ⊢ Δ Γ ⊢ Σ

Γ;Δ; Σ ⊢ 𝜌.𝑒 : 𝑡𝑒@𝜌
[T-Send]

Γ;Δ; Σ ⊢ 𝐶 : 𝑡𝑒@𝜌1
ℓ ∈ 𝜌1 Γ ⊢ 𝜌2 :: ∗𝑠

Γ;Δ; Σ ⊢ 𝐶 {ℓ }⇝ 𝜌2 : 𝑡𝑒@(𝜌1 ∪ 𝜌2)

[T-LetLocal]

Γ;Δ; Σ ⊢ 𝐶1 : 𝑡𝑒@𝜌2 𝜌1 ⊆ 𝜌2
Γ;Δ; Σ, 𝜌1 .𝑥 :𝑡𝑒 ⊢ 𝐶2 : 𝜏

Γ;Δ; Σ ⊢ let 𝜌1 .𝑥 :𝑡𝑒 B 𝐶1 in 𝐶2 : 𝜏
[T-LetLoc]

Γ;Δ; Σ ⊢ 𝐶1 : loc𝜌1@𝜌3 𝜌1 ⊆ 𝜌2 ⊆ 𝜌3
Γ ⊢ 𝜏 :: ∗ Γ, 𝛼 ::∗ℓ ;Δ; Σ ⊢ 𝐶2 : 𝜏
Γ;Δ; Σ ⊢ let 𝜌2 .𝛼 ::∗ℓ B 𝐶1 in 𝐶2 : 𝜏

Fig. 6. Selected Typing Rules

All program types of kind ∗ directly extend their analogues from System F, except for base types.
Our base types take the form 𝑡𝑒@𝜌 and represent a single local program of type 𝑡𝑒 running at all
locations in the set 𝜌 . The kind ∗ℓ represents location names, which can refer to either concrete
locations L ∈ L, or in-context location variables. The kind ∗𝑠 classifies (non-empty) finite sets of
location names, which can be either a type variable, a singleton set ({ℓ}), or a union of sets (𝜌1 ∪ 𝜌2).
Finally, types of kind ∗𝑒 are precisely the types included in the local language under a given type
variable context. Notably, local types may use type variables bound in the choreography, even if
the local type system does not include a type variable binding mechanism.

The full kinding rules can be found in Appendix B.1.

4.4 𝜆qc Type System

The second component of our static semantics is the type system. Typing judgments for 𝜆qc take
the form Γ;Δ; Σ ⊢ 𝐶 : 𝜏 , where Γ is a kinding context, as described above, Δ is a choreographic
typing context that handles variables bound by choreographic functions and case expressions,
and Σ is a local typing context. These contexts are handled in a standard manner for a polymorphic
type system [Pierce 2002, Chapter 23]. The local typing context Σ is a list of ascriptions of the
form 𝜌.𝑥 :𝑡𝑒 tracking variables bound by local let expressions (see Section 4.1). Figure 6 contains a
selection of typing rules for 𝜆qc.
The T-Done rule type-checks local computations by appealing to the local type system, but it

needs to know which local variables are in scope. In a multiply-located computation 𝜌.𝑒 , every
location in 𝜌 should compute the same result, so each free variable in 𝑒 must be bound with the
same meaning at every location in 𝜌 . To check this requirement, we define a projection operation
Σ|𝜌 that restricts Σ to only those local variables bound in a namespace 𝜌 ′ where 𝜌 ⊆ 𝜌 ′. Formally,

Σ|𝜌 =


· if Σ = ·
Σ′ |𝜌 , 𝑥 :𝑡𝑒 if Σ = Σ′, 𝜌 ′ .𝑥 :𝑡𝑒 and 𝜌 ⊆ 𝜌 ′

Σ′ |𝜌 if Σ = Σ′, 𝜌 ′ .𝑥 :𝑡𝑒 and 𝜌 ⊈ 𝜌 ′

The T-Send rule ensures (1) that only local values can be sent by requiring𝐶 to have type 𝑡𝑒@𝜌1,
and (2) that the sender (ℓ) must know the value being sent. By locating the output type at 𝜌1 ∪ 𝜌2,
it captures the multiply-located collecting semantics described in Section 4.2.

The other two rules in Figure 6 are the two forms of let binding. The T-LetLocal rule for local-let
bindings is very similar to a traditional let binding rule. It just restricts to binding local values—𝐶1
has type 𝑡𝑒@𝜌2—and requires that 𝜌1 (the locations binding 𝑥 ) must all have access to the result of
the computation 𝐶1—that is, 𝜌1 ⊆ 𝜌2.

The T-LetLoc rule for type-let expressions, core to supporting first-class location names, is much
more subtle. Indeed, a naïve definition could introduce type dependency or unsoundness. Type
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dependency is the simpler concern, and is addressed by the premise Γ ⊢ 𝜏 :: ∗, which demands
that 𝜏 be a well-formed type in the context Γ without the newly-bound variable 𝛼 . As a result, while
the body 𝐶2 of the let may freely reference 𝛼 , its type 𝜏 may not. This restriction prevents the type
of the entire let expression from depending on the value of 𝐶1, thereby avoiding value dependency
in the type system. As an example, the program below on the left is not well-typed, because the
body has type int@𝛼 in which 𝛼 is free. By contrast, the program on the right is well-typed because
the body, and the choreography itself, has the type int@B.

⊬

(
let A.𝛼 B A.⌈A⌋
in 𝛼.(1 + 1)

)
: 𝜏 ⊢ ©«

let {A,B}.𝛼 B {A,B}.⌈A⌋
B.𝑥 B 𝛼.(1 + 1) ⇝ B

in B.𝑥

ª®¬ : int@B

The other unusual premise to T-LetLoc is 𝜌1 ⊆ 𝜌2 ⊆ 𝜌3, which is necessary to ensure soundness.
To understand why, recall Example 3, in which the thread-pool manager M dynamically assigns a
task to either A or B. Consider what happens if M were to inform only B and the client C of their
decision, but not A, the selected worker. As A is not aware that she should compute 𝑒 and send
back the result, C will wait forever on a message from A that never arrives, causing a deadlock.
Amazingly, the simple premise 𝜌1 ⊆ 𝜌2 ⊆ 𝜌3 prevents all deadlocks resulting from the type-let

expression. As described in Section 3.1, 𝜌1 is a static upper bound on the set of values to which
the dynamically generated location may resolve. The location variable is bound in the namespace
of 𝜌2, so only those locations may use the result, and all locations in 𝜌3 know the value of the
dynamically generated location name. The subset relationship therefore ensures that any location to
which 𝛼 may resolve will bind 𝛼 , and that all locations that bind 𝛼 know the value. In the unsound
hypothetical above, 𝜌1 = {A,B} and 𝜌2 = {M,B,C}, violating this premise.

The full type system, which can be found in Appendix B.2, is sound with respect to the operational
semantics, as demonstrated by the following mechanically verified theorems.

Theorem 1 (Type Preservation). If Γ;Δ; Σ ⊢ 𝐶1 : 𝜏 and 𝐶1 =⇒𝑐 𝐶2, then Γ;Δ; Σ ⊢ 𝐶2 : 𝜏 .

Theorem 2 (Progress). If ⊢ 𝐶1 : 𝜏 , then either𝐶1 is a value, or there is some𝐶2 such that𝐶1 =⇒𝑐 𝐶2.

5 NETWORK LANGUAGE

Choreographies specify the behavior of concurrent systems, and compiling them to a set of programs
that can actually run concurrently at different locations requires a language to specify that system.
We thus provide a network language for 𝜆qc. It specifies programs at individual locations and how
to compose them into a parallel system with concurrent operational semantics.

5.1 Network Language Syntax

The network language is a concurrent 𝜆-calculus where messages are values from the same local
language as choreographies. The syntax is similar to the choreographic syntax from Section 4,

Network Program 𝐸 F 𝑋 | ret(𝑒) | () | send 𝐸 to 𝜌 | recv from ℓ
| 𝐸1 ; 𝐸2 | fun 𝐹 (𝑋 ) B 𝐸 | 𝐸1 𝐸2 | Λ𝛼. 𝐸 | 𝐸 𝑡

| let 𝑥 B 𝐸1 in 𝐸2 | let 𝛼 ::𝜅 B 𝐸1 in 𝐸2
| allow ℓ choice (L ⇒ 𝐸1) (R ⇒ 𝐸2) | choose 𝑑 for 𝜌 ; 𝐸
| if 𝐸 then 𝐸1 else 𝐸2 | AmI∈ 𝜌 then 𝐸1 else 𝐸2

Systems Π F 𝐿1 ⊲ 𝐸1 ∥ . . . ∥ 𝐿𝑛 ⊲ 𝐸𝑛

Fig. 7. Selected Network Program Syntax. Here 𝐿 ∈ L is a concrete location name.
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except sending and receiving messages are now split into two separate constructs. Figure 7 contains
selected syntactic forms, using the same variable naming conventions as choreographies. The full
definition is available in Appendix C.1.
The network language counterpart of the choreographic local computation 𝜌.𝑒 is the return

expression ret(𝑒), which similarly executes the local language program 𝑒 . Since a network program
is only for a single location 𝐿, it should only run 𝑒 when 𝐿 ∈ 𝜌 and do nothing otherwise. We
include a unit value () to represent a network program that does nothing.
Choreographies have a single message sending operation, which represents both sending and

receiving the message. As the network language describes only a single location’s behavior, it splits
these into two constructs: send 𝐸 to 𝜌 which multicasts the results of 𝐸 to every location in 𝜌 ,
and recv from ℓ , which receives a local value from location ℓ . Note that send can only send local
values, so send () to 𝜌 , for instance, would be stuck.

Both local-let and type-let expressions are mirrored identically from choreographies to the
network language, as are recursive functions, type abstractions, and applications for both. The
network language also includes a primitive sequencing operator 𝐸1 ; 𝐸2 for a similar reason to why
it includes (). Specifically, a location 𝐿 may have computation to perform in the head and body of a
choreographic let expression, yet not be included in the locations binding a variable. In this case,
𝐿 will sequence their actions from the two parts of the let expression.

Finally, the network language contains three branching mechanisms for different purposes: the
standard if 𝐸 then 𝐸1 else 𝐸2 construct, allow-choice to implement choreographic selection
statements, and AmI∈, which branches based on the identity of the current location.
Recall from Section 4.1 that a selection statement ℓ [𝑑] ⇝ 𝜌 ; 𝐶 has ℓ send 𝑑 to each location

in 𝜌 so they know which branch to take in a choreographic if statement. As with message sends,
the network language splits the construct in two: sending and receiving. Each recipient is waiting
on an external choice. Some other location ℓ must pick either L or R, represented by the expression
allow ℓ choice (L ⇒ 𝐸1) (R ⇒ 𝐸2), which will execute 𝐸1 after receiving L or 𝐸2 after receiving R.
Meanwhile, ℓ knows the choice 𝑑 and can send it to all locations in 𝜌 before executing 𝐸 using the
expression choose 𝑑 for 𝜌 ; 𝐸.
Note that an allow-choice with only one branch, such as allow ℓ choice (L ⇒ 𝐸), is valid.

This one-sided branch will execute 𝐸 if ℓ sends L, but will get stuck if ℓ sends R. We write 𝐸⊥ for
the program in a branch that might be missing.

The last form of branching is the “AmI-In” expression AmI∈ 𝜌 then 𝐸1 else 𝐸2, which conditions
on whether the currently executing location is in 𝜌 . That is, when executing at location 𝐿, 𝐸1 will
execute if 𝐿 ∈ 𝜌 , and 𝐸2 will execute otherwise. This construct generalizes the “AmI” expression of
PolyChor𝜆 [Graversen et al. 2024], which uses a single location ℓ instead of a set 𝜌 , and branches
based on equality with ℓ rather than inclusion. We write AmI ℓ then 𝐸1 else 𝐸2 as a shorthand
for AmI∈ {ℓ} then 𝐸1 else 𝐸2.

5.2 Network Language Operational Semantics

The network language semantics is a labeled transition system 𝐿 ⊲𝐸1
𝑙
=⇒ 𝐸2 where 𝐿 is the location

executing the program and 𝑙 is the label on the step. Just as network programs specify the operations
of a single location, the labels only acknowledge the view of that location. Figure 8 shows selected
transition labels and rules, with the full semantics available in Appendix C.3.
The 𝜄 label denotes an internal step, where either the network program or the local program

reduces without interaction between locations. The N-Ret rule for local steps shows an example
use of 𝜄.
The synchronized internal label 𝜄sync denotes internal steps where all locations must take that

step at the same time. It is used for steps like 𝛽-reduction (N-App) where the corresponding
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Transition Labels 𝑙 F 𝜄 | 𝜄sync | 𝑚⇝ 𝜌 | 𝐿.𝑚⇝

[N-Ret]
𝑒1 −→ 𝑒2

𝐿 ⊲ ret(𝑒1)
𝜄

=⇒ ret(𝑒2)
[N-App]

𝑓 = fun 𝐹 (𝑋 ) B 𝐸 Val(𝑉 )

𝐿 ⊲ 𝑓 𝑉
𝜄sync
====⇒ 𝐸 [𝐹 ↦→ 𝑓 , 𝑋 ↦→ 𝑉 ]

[N-Send]
Val(𝑣) fv(𝜌) = ∅

𝐿 ⊲ send ret(𝑣) to 𝜌
𝑣⇝𝜌\{𝐿}
==========⇒ ret(𝑣)

[N-Recv]
Val(𝑣) 𝐿′ ≠ 𝐿

𝐿 ⊲ recv from 𝐿′
𝐿′ .𝑣⇝
======⇒ ret(𝑣)

[N-Choose]
fv(𝜌) = ∅

𝐿 ⊲ choose 𝑑 for 𝜌 ; 𝐸
𝑑⇝𝜌\{𝐿}
==========⇒ 𝐸

[N-AllowL]
𝐿′ ≠ 𝐿

𝐿 ⊲

allow 𝐿′ choice
| L ⇒ 𝐸1
| R ⇒ 𝐸2⊥

𝐿′ .L⇝
======⇒ 𝐸1

Fig. 8. Selected Network Language Operational Semantics

System Label 𝑙𝑆 F 𝜄 | 𝜄sync | 𝐿1.𝑚⇝ 𝜌

[Internal]

𝐿 ⊲ Π(𝐿) 𝜄
=⇒ 𝐸

Π
𝜄

=⇒𝑆 Π[𝐿 ↦→ 𝐸]

[Sync-Internal]

∀𝐿 ∈ dom(Π).
(
𝐿 ⊲ Π(𝐿)

𝜄sync
====⇒ Π′ (𝐿)

)
Π

𝜄sync
====⇒𝑆 Π′

[Comm]

𝐿1 ∉ 𝜌 𝐿1 ⊲ Π(𝐿1)
𝑚⇝𝜌
======⇒ 𝐸1

∀𝐿 ∈ 𝜌.

(
𝐿 ⊲ Π(𝐿)

𝐿1 .𝑚⇝
=======⇒ 𝐸𝐿

)
Π

𝐿1 .𝑚⇝𝜌
========⇒𝑆 Π[𝐿1 ↦→ 𝐸1, 𝜌 ↦→ 𝐸𝐿]

Fig. 9. System Semantics and Labels

choreographic step modifies the choreography for all participants. Synchronization in these cases
is a technical requirement needed to prove correctness of the system, which we compare to other
approaches in Section 8.1.

The labels𝑚⇝ 𝜌 and 𝐿.𝑚⇝ appear with message sends and receives, respectively, including
selection messages. As recipients do not know the value in advance, N-Recv is non-deterministic,
allowing any value to arrive. The system semantics below ensures senders and receivers agree
on the message. The same is true for N-AllowL and a symmetric N-AllowR rule. The sender’s
perspective is governed by N-Send and N-Choose, which ensure that the transition label matches
the message and recipients intended by the program.

5.2.1 Network Systems. A choreography specifies interactions between multiple locations,
which we represent with a parallel composition of network programs at different locations. Formally,
a system Π = ∥𝐿∈𝔏 (𝐿 ⊲ 𝐸𝐿) maps each location 𝐿 in a finite set 𝔏 ⊆ L to the network program 𝐸𝐿
it is currently executing. The system semantics is itself a larger labeled transition system, with
combined labels shown in Figure 9. While network program labels show only one side of a send
or receive, system labels reflect both sides and the semantics ensures that senders and recipients
agree on the content of a message.

Figure 9 also shows how to lift the operational semantics of the network language to systems with
three rules. Internal allows one location to independently take an internal step. Sync-Internal
allows all locations to simultaneously perform a synchronized step. Comm parties sending and
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(
allow ℓ choice
| L ⇒ 𝐸1

)
⊔
(
allow ℓ choice
| R ⇒ 𝐸2

)
=

allow ℓ choice
| L ⇒ 𝐸1
| R ⇒ 𝐸2(

allow ℓ choice
| L ⇒ 𝐸1

)
⊔
(
allow ℓ choice
| L ⇒ 𝐸′1

)
=

allow ℓ choice
| L ⇒ 𝐸1 ⊔ 𝐸′1(

allow ℓ choice
| L ⇒ 𝐸1

)
⊔ ©«

allow ℓ choice
| L ⇒ 𝐸′1
| R ⇒ 𝐸2

ª®¬ =
allow ℓ choice
| L ⇒ 𝐸1 ⊔ 𝐸′1
| R ⇒ 𝐸2

Fig. 10. Selected Merge Operator Definitions

receiving messages together, requiring the sender and all specified recipients step at the same time
with the same message value. Notationally, Π[𝜌 ↦→ 𝐸𝐿] denotes the updated system mapping 𝐿

to 𝐸𝐿 if 𝐿 ∈ 𝜌 and Π(𝐿) otherwise.

6 ENDPOINT PROJECTION

With the compilation target fixed, we turn to the endpoint projection procedure that defines how
to compile a choreography into a concurrent network system.

6.1 Network Program Merging

It is important to keep the projection definition compositional for simplicity and scalability, but
choreographic if statements complicate this process and necessitate amerge operator. To understand
why, consider the following choreography 𝐶 .

if A.𝑒 then (A[L] ⇝ B ; B.1) else (A[R] ⇝ B ; B.2)

allow A choice
| L ⇒ ret(1)

allow A choice
| R ⇒ ret(2)⊔ =

allow A choice
| L ⇒ ret(1)
| R ⇒ ret(2)

= 𝐶

J·KB J·KB J·KB

In the then branch, A will always send B the selection message L. In the projection of this branch,
B should therefore wait to receive L and then return 1. There are no instructions for what to do if B
receives R in this branch—which will never happen—so that side of the allow-choice is empty.
Similarly, in the else branch, B can only ever receive R, so the L side of the allow-choice is empty.

In the full if statement, however, both branches are possible, so B’s projection must include both
options. To compositionally combine the allow-choice statements from each branch, we use a
merge operator 𝐸1 ⊔ 𝐸2. Specifically, ⊔ is an idempotent partial binary function defined structurally
homomorphically on matching network programs that incorporates allow-choice branches that
exist on only one side (and homomorphically merges those that exist in both). Figure 10 shows a
few of the rules defining merge, with the full definition available in Appendix D.1.

This merge operator is extremely similar to the one in Pirouette [Hirsch and Garg 2022], but we
allow functions to merge if their bodies merge, not just if their bodies are syntactically equal.

6.2 Endpoint Projection Definition

Using this merge function, we can define endpoint projection (EPP). The projection of a choreogra-
phy 𝐶 to a location (endpoint) 𝐿, denoted J𝐶K𝐿 , is the network program 𝐿 runs to implement its
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J𝜌.𝑒K𝐿 =

{
ret(𝑒) if 𝐿 ∈ 𝜌

() otherwise

J𝐶 {ℓ }⇝ 𝜌K𝐿 =


send J𝐶K𝐿 to 𝜌 if 𝐿 = ℓ

J𝐶K𝐿 # recv from ℓ if 𝐿 ≠ ℓ and 𝐿 ∈ 𝜌

J𝐶K𝐿 otherwise

Jℓ [𝑑] ⇝ 𝜌 ; 𝐶K𝐿 =


choose 𝑑 for 𝜌 ; J𝐶K𝐿 if 𝐿 = ℓ

allow ℓ choice (𝑑 ⇒ J𝐶K𝐿) if 𝐿 ≠ ℓ and 𝐿 ∈ 𝜌

J𝐶K𝐿 otherwise

q
if𝜌 𝐶 then 𝐶1 else 𝐶2

y
𝐿
=

{
if J𝐶K𝐿 then J𝐶1K𝐿 else J𝐶2K𝐿 if 𝐿 ∈ 𝜌

J𝐶K𝐿 # (J𝐶1K𝐿 ⊔ J𝐶2K𝐿) otherwise

JΛ𝛼 ::𝜅.𝐶K𝐿 =


Λ𝛼 ::∗ℓ . AmI 𝛼 then J𝐶 [𝛼 ↦→ 𝐿]K𝐿 else J𝐶K𝐿 if 𝜅 = ∗ℓ
Λ𝛼 ::∗𝑠 . AmI∈ 𝛼 then J𝐶 [𝛼 ↦→ {𝐿} ∪ 𝛼]K𝐿 else J𝐶K𝐿 if 𝜅 = ∗𝑠
Λ𝛼 ::𝜅. J𝐶K𝐿 otherwise

Jlet 𝜌.𝛼 ::∗ℓ B 𝐶1 in 𝐶2K𝐿 =


let 𝛼 ::∗ℓ B J𝐶1K𝐿
in AmI 𝛼 then J𝐶2 [𝛼 ↦→ 𝐿]K𝐿 else J𝐶2K𝐿

if 𝐿 ∈ 𝜌

J𝐶1K𝐿 # J𝐶2K𝐿 if 𝐿 ∉ 𝜌 and 𝛼 ∉ fv(J𝐶2K𝐿)
undefined otherwise

Fig. 11. Selected EPP Definitions

part of 𝐶 . EPP is partial (i.e., a choreography may fail to project) both because the merge operator
is partial and because it must verify that locations only use type variables which they have bound.

EPP is defined as a structurally recursive function over the syntax of the choreography. Most of
the rules simply convert choreographic syntax into its network language counterpart, but in some
cases more involved translation is required. Figure 11 shows these cases.

The first four projection definitions capture intuitions described previously. For 𝜌.𝑒 , only locations
in 𝜌 should compute 𝑒 while others should do nothing. For 𝐶 {ℓ }⇝ 𝜌 , everyone should perform
their portion of the computation specified by 𝐶 , then location ℓ should send a message, locations
in 𝜌 should receive a message, and that is all. For selection messages, location ℓ should announce
the choice, while other locations in 𝜌 wait for it and condition their behavior on the result. As
there is only one choice here, the allow-choice only has one branch. The other branch can appear
when projecting conditionals, where everyone first performs any computation specified by the
condition, then locations who know the result of that condition—locations in 𝜌—simply branch,
while EPP combines the branches for other locations using the merge operation defined above.
Merging can fail, so EPP also fails for this location if it is undefined.

Sequencing Function. Note that the rules do not directly use the network language’s native
sequencing primitive 𝐸1 ; 𝐸2, but instead use a collapsing sequencing function 𝐸1 # 𝐸2 defined by

𝐸1 # 𝐸2 =

{
𝐸2 if Val(𝐸1)
𝐸1 ; 𝐸2 otherwise.
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This can be seen as a peephole optimization to eliminate null sequences whose primary purpose is
to enable projected systems to properly simulate out-of-order choreographic steps. For instance,
without collapsing sequenced values, B’s projection of the choreography let A.𝑥 B A.𝑒 in B.(2 + 3)
would be () ; ret(2 + 3). An out-of-order step at B would reduce to let A.𝑥 B A.𝑒 in B.5, but to
simulate this step, the projection would need to reduce to () ; ret(5), which is impossible because
the reduction occurs to the right of a semicolon. The actual EPP defined above, however, projects
these choreographies to ret(2 + 3) and ret(5), respectively, eliminating the concern.

Collapsing values also adds flexibility to EPP. To see why, consider the following choreography.

𝐶 = if A.𝑒 then (let A.𝑥 B A.(1 + 1) in B.3) else B.3

Intuitively,B takes identical actions—returning 3—in both branches, so J𝐶KB should simply be ret(3).
However, without the sequencing function, the then branch would project to () ; ret(3), while
the else branch would project to ret(3). These network programs do not merge, so 𝐶 would not
project. Collapsing the then branch to ret(3) allows the expected projection.

Process Polymorphism. The final two projections in Figure 11 concern location (set) abstraction.
Choreographic type abstractions project to network type abstractions. When the type variable is a
location (∗ℓ ) or location set (∗𝑠 ), however, the body must behave differently depending on how the
location executing relates to the value the type variable resolves to. Graversen et al. [2024] solve
this problem with the AmI construct, executing J𝐶 [𝛼 ↦→ 𝐿]K𝐿 when the locations match and J𝐶K𝐿
when they do not. When the locations match, this projection is clearly correct. When they do not,
the projection is correct because EPP treats location variables as abstract identifiers that are equal
only to themselves, meaning J𝐶K𝐿 will behave as though 𝛼 ≠ 𝐿.
Location set abstraction generalizes this idea. Replacing AmI with AmI∈ is straightforward, as

is J𝐶K𝐿 treating 𝛼 as an abstract set where 𝐿 ∉ 𝛼 . The other branch, where 𝛼 resolves to a set
containing 𝐿, is more subtle. This projection of 𝐶 must treat 𝛼 as though it contains 𝐿, without
changing the meaning of 𝛼 . We accomplish this by explicitly adding 𝐿 to the set in this branch and
using J𝐶 [𝛼 ↦→ {𝐿} ∪ 𝛼]K𝐿 . The symbolic containment relation recognizes that 𝐿 ∈ {𝐿} ∪ 𝜌 for
any 𝜌 , including the variable 𝛼 , so the projection will properly treat 𝐿 as being in the set. Moreover,
despite symbolically changing the set, the operational semantics remain correct. This branch only
executes when 𝛼 resolves to some 𝜌 where 𝐿 ∈ 𝜌 , in which case {𝐿} ∪ 𝜌 = 𝜌 .
Finally, type-let expressions combine a structurally recursive projection, also used in local-let

expressions, with the location-based conditionals of type abstraction. For locations binding the type
variable, the projection first computes the type, binds it, and then uses AmI to condition based on its
value. For other locations, EPP simply sequences the head of the let with its body. Notably, the type
system, to avoid dependency, does not prevent locations outside of 𝜌 from referencing 𝛼 . Any such
invalid reference would leave 𝛼 unbound in the body of the let, so EPP checks that 𝛼 ∉ fv(J𝐶2K𝐿).
If both 𝛼 is free and 𝐿 ∉ 𝜌 , there is no correct way for 𝐿 to execute its part of 𝐶2, so the projection
is undefined. The projection for type-let expressions where 𝛼 has kind ∗𝑠 are nearly identical, with
AmI∈ in place of AmI and the approach described above for type abstractions when 𝐿 ∈ 𝜌 .

This EPP definition gives the network program corresponding to one location. Combining these
programs into a parallel system (see Section 5) gives an executable interpretation of the entire
choreography. Specifically, we lift EPP point-wise to a finite set of locations 𝔏 ⊆ L, defining
J𝐶K𝔏 = ∥𝐿∈𝔏 (𝐿 ⊲ J𝐶K𝐿), which also requires J𝐶K𝐿 to be defined for all 𝐿 ∈ 𝔏.

6.3 Bisimulation Relation

Next, we will examine the relationship between our choreographic operational semantics and the
semantics given by EPP, with two main goals in mind. Firstly, to exhibit a bisimulation between
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these two semantics to justify the correctness of EPP. Secondly, to give a guarantee of deadlock
freedom by design for compiled systems.

To construct a bisimulation, we must choose which systems are related to a given choreography.
The natural choice is to say that a choreography𝐶 is related only to its projection J𝐶K𝔏. However, this
relation is too strict. When a choreography branches, the branch which is not taken is discarded, but
in the projected system, that branch may be preserved by locations waiting on selection messages.
For instance, consider the following example where 𝐶1 reduces to 𝐶2.

if A.true

then A[L] ⇝ B ; B.1
else A[R] ⇝ B ; B.2

A[L] ⇝ B ; B.1

allow A choice
| L ⇒ ret(1)
| R ⇒ ret(2)

allow A choice
| L ⇒ ret(1)

𝐶1 = = 𝐶2

J𝐶1KB = = J𝐶2KB

𝑐

ifA true

J·KB J·KB

≠

Once 𝐶1 takes the left branch, A can never send the selection message R to B. While this makes
sense from A’s perspective, it does not make sense for B, whose projected program has discarded
the R branch without receiving any input from A. We expect that choreographic steps will only
affect the projection of locations involved in the step.

An additional wrinkle stems from EPP’s use of the collapsing sequencing function 𝐸1 # 𝐸2: local
programs (in an arbitrary subexpression) which resolve to a value after a substitution may be
removed from the projected program, as in the following example.

let {A,B}.𝑥 B {A,B}.1
in fun 𝐹 (𝑋 ) B

let A.𝑦 B {A,B}.𝑥 in A.2

fun 𝐹 (𝑋 ) B
let A.𝑦 B {A,B}.1 in A.2

let 𝑥 B ret(1) in
fun 𝐹 (𝑋 ) B ret(𝑥) ; () fun 𝐹 (𝑋 ) B ()

𝐶1 = = 𝐶2

J𝐶1KB = = J𝐶2KB

𝑐

let {A,B}.𝑥 B 1

J·KB J·KB

⧸

This reduction substitutes 1 for 𝑥 in the body of the function. While J𝐶1KB can analogously substi-
tute 𝑥 , the resultant program fun 𝐹 (𝑋 ) B ret(1) ; () differs from J𝐶2KB, as the projection collapses
the body of the function to ret(1) # () = (). As the mismatch is in the function body, there are no
steps B can take to correct it.
We account for both types of mismatches using a relation 𝐸1 ⪯ 𝐸2 indicating that 𝐸1 may have

discarded some unneeded code—either choices or sequenced values—that 𝐸2 retains. Formally, it
is the smallest partial order on network programs that is structurally compatible—it admits rules
like 𝐸1 ⪯ 𝐸′

1 𝐸2 ⪯ 𝐸′
2

𝐸1 ;𝐸2 ⪯ 𝐸′
1 ;𝐸

′
2

—and admits the following three rules. The first two handle additional branches,
while the third covers collapsing sequences.

𝐸1 ⪯ 𝐸′1

allow ℓ choice
| L ⇒ 𝐸1

⪯
allow ℓ choice
| L ⇒ 𝐸′1
| R ⇒ 𝐸′2

𝐸2 ⪯ 𝐸′2

allow ℓ choice
| R ⇒ 𝐸2

⪯
allow ℓ choice
| L ⇒ 𝐸′1
| R ⇒ 𝐸′2

𝐸1 ⪯ 𝐸2 Val(𝑉 )
𝐸1 ⪯ 𝑉 ; 𝐸2
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The relation also lifts point-wise to systems (with identical domains 𝔏):

Π1 ⪯ Π2 = ∀𝐿 ∈ 𝔏.Π1 (𝐿) ⪯ Π2 (𝐿).

By relaxing the bisimulation to relate a choreography 𝐶 not only to J𝐶K𝔏, but to any system Π
where J𝐶K𝔏 ⪯ Π, we avoid the problems described above. In the first example, J𝐶2KB ⪯ J𝐶1KB, and
in the second, J𝐶1KB =⇒ 𝐸 where J𝐶2KB ⪯ 𝐸, as needed.

6.4 Soundness, Completeness, and Deadlock Freedom

The above correspondence is sufficient to show that our choreographic and projected system
semantics are equivalent and yield deadlock freedom of compiled systems as a result. To this end,
we prove the choreographic semantics is sound and complete with respect to the projected system.

The theorems require that all location names in 𝐶 , denoted LN(𝐶), are included in the projected
system: LN(𝐶) ⊆ 𝔏. This requirement formalizes the implicit assumption that all locations specified
by the choreography are present in the system, lest, for instance, A be unable to compute A.2⇝ B

because B is not in the system. We similarly require 𝔏 ≠ ∅ to ensure someone is computing.
The completeness theorem is straightforward, and says the projected semantics simulate the

choreographic semantics.

Theorem 3 (Completeness). If Γ;Δ; Σ ⊢ 𝐶 : 𝜏 , 𝐶 =⇒𝑛
𝑐 𝐶′, and LN(𝐶) ⊆ 𝔏 ≠ ∅, then there is some

Π and 𝑘 ≥ 𝑛 such that J𝐶K𝔏 =⇒𝑘
𝑆
Π and J𝐶′K𝔏 ⪯ Π.

The mechanized proof first shows the system can simulate a single step and then extends it
to multiple steps by induction. It also uses the fact that, if 𝐸1 ⪯ 𝐸2 and 𝐸1 is the projection of a
choreography, then 𝐸1 and 𝐸2 can make the same reductions, plus 𝐸2 possibly taking administrative
steps to remove extra un-collapsed semicolons.
We would like a soundness theorem that says the choreographic semantics can simulate the

projected system, but there are some technical complications. First, after a single reduction in a
projected system, the reduced system does not necessarily correspond to any choreography, and
may instead be some intermediate state. The following example shows a case where the projected
system J𝐶1K{A,B} can reduce to a state Π which no choreography projects to.

A ⊲ ret(2 + 3)
B ⊲ ret(2 + 3)

{A,B}.(2 + 3)

A ⊲ ret(5)
B ⊲ ret(2 + 3)

=

Π

A ⊲ ret(5)
B ⊲ ret(5)

{A,B}.5𝐶1 = = 𝐶2

J𝐶1K{A,B} = = J𝐶2K{A,B}

𝑐

𝑆 𝑆

J·K{A,B} J·K{A,B}

To reach the system corresponding to the projection of 𝐶2, Π must continue to progress. As a
result, even our single-step soundness theorem must allow the system to continue to reduce until
it reaches a point where the original choreography can match its progress.

The second technicality is a fundamental challenge stemming from the combination of nontermi-
nation andmultiply-located local computations. In the system, each participant in a multiply-located
local computation evaluates it independently. If one location performs such a step while another is
blocked by an earlier infinite loop, however, the choreography will be unable to match the system.
For instance, in let A.𝑥 B A.loop in {A,B}.(1 + 1) the only possible choreographic step is to run
the infinite loop at A, but in the projected system, B may reduce the local expression 1 + 1 to 2.

To avoid such situations, our soundness theorem only holds for choreographies𝐶 where all local
computations terminate. Specifically, if 𝐶 =⇒∗

𝑐 𝐶
′ and 𝜌.𝑒 is in an evaluation position of 𝐶′, then 𝑒
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must terminate. Importantly, this condition does not require the local language to be terminating,
only the specific local computations that execute in 𝐶 .

With these two caveats in place, we can now state a single-step version of soundness.

Proposition 1 (Single-Step Soundness). If ⊢ 𝐶 : 𝜏 , J𝐶K𝔏 =⇒𝑆 Π, LN(𝐶) ⊆ 𝔏 ≠ ∅, and all local
programs that𝐶 executes terminate, then for some Π′ and𝐶′, Π =⇒∗

𝑆
Π′,𝐶 =⇒+

𝑐 𝐶
′, and J𝐶′K𝔏 ⪯ Π′.

Extending this result to simulate multiple system steps with a naïve induction runs into another
problem: the steps that we wish to simulate and the extra—possibly different—steps needed to
ensure the system is not in an intermediate state are independent reduction sequences. To reduce
the endpoints of these diverging paths to a common system, we employ a confluence theorem,
which critically relies on confluence of the local language.

Proposition 2 (System Confluence). If Π1 =⇒∗
𝑆
Π2 and Π1 =⇒∗

𝑆
Π3, then there is some Π4 such

that Π2 =⇒∗
𝑆
Π4 and Π3 =⇒∗

𝑆
Π4.

Combining confluence with Proposition 1 is enough to prove soundness beginning with any
number of system steps.

Theorem 4 (Soundness). If ⊢ 𝐶 : 𝜏 , J𝐶K𝔏 =⇒∗
𝑆
Π, LN(𝐶) ⊆ 𝔏 ≠ ∅, and all local programs that 𝐶

executes terminate, then for some Π′ and 𝐶′, Π =⇒∗
𝑆
Π′, 𝐶 =⇒∗

𝑐 𝐶
′, and J𝐶′K𝔏 ⪯ Π′.

Having demonstrated the correspondence between the choreographic and system semantics,
we can now prove deadlock-freedom. Although bisimulation only holds when all executed local
programs terminate, deadlock-freedom holds for all projected systems, even in the presence of
non-terminating local computations. By combining the soundness of the type system (Theorems 1
and 2) and the completeness of EPP (Theorem 3), we prove that the system either enters an infinite
loop for some location or terminates in a value for all locations, which is sufficient.

Theorem 5 (Deadlock Freedom by Design). If ⊢ 𝐶 : 𝜏 , J𝐶K𝔏 =⇒∗
𝑆
Π, and LN(𝐶) ⊆ 𝔏, then either

every location in Π maps to a value, or there is some Π′ such that Π =⇒𝑆 Π′.

7 ROCQ DEVELOPMENT

We now discuss some details of our Rocq formalization and how they differ from the presentation
above. For clarity, we presented 𝜆qc in a standard style with named variables in the paper, but
for ease of development, the Rocq code uses a nameless style with de Bruijn indices for both
program and type variables. As in Pirouette [Hirsch and Garg 2022], the local language must also
use de Bruijn indices, and provide common guarantees about substitution.
This change also forces a different handling of location- and location-set–variable substitution

in the Rocq code. As described in Section 4.2.1, care must be taken when performing location
substitution to avoid variable capture between the namespaces of different locations. The Rocq
encoding, however, avoids this issue by not separating namespaces by location. Instead, it treats
all local variables uniformly as part of a single global namespace of de Bruijn indices. With this
formulation, no capture is possible upon substituting location variables when using the standard
capture-avoiding definition of location substitution.
Finally, our formalization proves deadlock freedom in two pieces. The first uses bisimulation

(Theorems 3 and 4 together) to prove deadlock-freedom when all local programs that execute termi-
nate. The second assumes the presence of a non-terminating local computation and proves deadlock
freedom directly. The proof of Theorem 5, which does not condition on local (non-)termination is
immediate by combining these, but assumes the law of the excluded middle (LEM) to differentiate
between the cases. We make the LEM a premise to this theorem to explicitly indicate the use of a
non-constructive assumption.



22 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

8 RELATEDWORK

As mentioned in Section 1, choreographic programming has seen substantial recent development.
This paper fits into the emerging paradigm of functional choreographic programming with process
polymorphism, originally proposed by Graversen et al. [2024]. Choreographic programming as a
whole arises from concurrency theory and the study of 𝜋-calculi. We discuss each of these in turn.

8.1 Functional Choreographic Programming

Choreographic programming was crystallized as an independent paradigm in 2013 by the work
of Carbone and Montesi [2013], especially Montesi’s Ph.D. thesis [Montesi 2013]. For the next 10
years, it advanced, but remained tied to a lower-order model of computing [see, e.g., Carbone et al.
2014; Cruz-Filipe and Montesi 2017a,b; Cruz-Filipe et al. 2018; Lanese et al. 2013].
That bind was broken in 2022 by two independent developments: Pirouette [Hirsch and Garg

2022] and Chor𝜆 [Cruz-Filipe et al. 2022]. These works combine the primitives of choreographic
programming with 𝜆 calculi, allowing for (sequential) composition of choreographies and program
reuse. However, neither support any type of polymorphism or multiply-located values.
𝜆qc is based on Pirouette, inheriting many of its features including a separate language of mes-

sages (the local language) and out-of-order semantics that require all participants to synchronize on
choreographic function applications. Chor𝜆, by contrast, combines the languages of choreographies
and messages. It originally had a strictly sequential semantics [Cruz-Filipe et al. 2022], but recent
work showed how to give it an out-of-order semantics without global synchronization [Cruz-
Filipe et al. 2023]. These semantics use commuting conversions, a set of semantics-preserving
rewrite rules such as (𝜆𝑋 .𝐶1) 𝐶2 𝐶3 ⇛ (𝜆𝑋 .𝐶1 𝐶3) 𝐶2, and allow reductions inside function
bodies. However, commuting conversions are fragile. For instance, they fail to preserve types in
the presence of named recursive functions, like those in 𝜆qc. That is, the hypothetical rewrite
(fun 𝐹 (𝑋 ) B 𝐶1) 𝐶2 𝐶3 ⇛ (fun 𝐹 (𝑋 ) B 𝐶1 𝐶3) 𝐶2 changes the type of 𝐹 , which is bound in 𝐶1.
Polymorphism and recursive types produce similar difficulties.
We thus adopt the more restrictive semantics of Pirouette, and leave finding an appropriate

semantics without global synchronization as future work. Importantly, nothing in this paper relies
on this global synchronization except for the statement of EPP correctness (Section 6.4). We believe
an appropriate statement of EPP correctness could support a semantics without this synchronization,
but identifying such a statement requires significant research in its own right.

8.2 Process Polymorphism

More recently, Graversen et al. [2024] extended Chor𝜆 with process polymorphism, allowing chore-
ographies to abstract over (the identity of) their participant processes. This extension, PolyChor𝜆,
introduced the process abstraction and shows how to project it by adding the “AmI” construct to
the target language. PolyChor𝜆 is based on System 𝐹𝜔 , and includes quantification over processes,
types, and types of higher-order kinds, but does not include quantification over sets of processes.
Their work also does not attempt to define an out-of-order semantics, and instead settles for a
sequential, call-by-value semantics for its choreographies.

Bates et al. [2025] separately introduced the idea of census polymorphism, which allows choreogra-
phies to abstract over the quantity and identity of their participants. Their work presents extensive
real-world uses cases for multiply-located values and abstraction over sets of processes and high-
lights several practical implementations (e.g., in MultiChor, ChoRus, and ChoreoTS). However, the
formal model is limited and lacks deadlock-freedom guarantees in the presence of polymorphism.
Our work not only supports first-class location set polymorphism and multiply-located values

(missing from PolyChor𝜆) and a deadlock freedom guarantee (missing from the work of Bates et al.),
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but we mechanically verify all results in Rocq. To our knowledge, the only prior mechanizations
of choreographic results concern Pirouette [Hirsch and Garg 2022] and simpler lower-order sys-
tems [Cruz-Filipe et al. 2021a,b], meaning this work contains the first formalization of choreographic
process polymorphism or of multiply-located values, let alone 𝜆qc’s full suite of features.

8.3 Higher-Order Communication

Another important aspect of concurrent systems is higher-order communication: communicating a
channel (or channel name) over a channel. This feature is critical to model systems with a dynamic
communication topology, and can be expressed natively in many untyped process calculi such
as the 𝜋-calculus and its higher-order variant the HO𝜋-calculus [Sangiorgi 1993]. Previous work
proving deadlock-freedom for concurrent languages with higher-order communication has relied
on advanced typing regimes, like higher-order session types [see, e.g., Costa et al. 2022; Mostrous
and Yoshida 2007; Poças et al. 2023], that are highly complex and impose significant restrictions on
communication patterns, like requiring them to be from a regular or context-free grammar.
PolyChor𝜆 supports a restricted form of higher-order communication using delegation, where

one process can request that another perform an interaction on their behalf. In particular, they allow
processes to communicate entire choreographies, which may themselves contain communication.
However, the type system prevents delegated computation from containing unresolved location
variables, limiting the expressive power.

Computing and sending first-class location names is a distinct form of higher-order communi-
cation from both 𝜋-calculus channels and PolyChor𝜆’s delegation. Channels represent a limited
capacity to perform a specific action, like sending one value, while choreographic process names
are identifiers of participants who may be asked, by name, to perform many actions. Meanwhile,
providing first-class data and location names to choreographic functions and type abstractions
replicate much of the functionality of delegation, but must be specified manually.

9 CONCLUSION

This work presented the choreographic Quick Change calculus, 𝜆qc, a choreographic calculus
supporting process (set) and type polymorphism, algebraic and recursive data types, multiply-
located values, and first-class location names. While prior choreographic languages implement
some of the first three features, none support all three, and 𝜆qc is the first to support first-class
location names in a typed choreography.
We showed how to integrate polymorphism over types, processes, and sets of processes using

a System F-like type system. The 𝜆qc type system simultaneously allows first-class treatment of
(sets of) location names and considers locations type-level values. Yet it still avoids dependency
by restricting the types of computations which use these locations to not depend on values. To
prevent deadlocks, 𝜆qc statically ensures that each location knows if it has been selected by any
dynamic location computation.

We also showed how to project the constructs in 𝜆qc to a network language that faithfully models
the concurrent execution of a multi-party system, and we proved the classic choreographic result:
all systems projected from well-typed choreographies are deadlock-free. We mechanically verified
proofs of this result as well as others in the paper, providing the first mechanized formalization for
any choreography supporting any form of process polymorphism or multiply-located values.
While there is still a wealth of future research in expanding and refining the features of our

calculus, even now, it is able to facilitate practical and safe programming of concurrent systems.
Our paradigmatic example of a distributed thread pool with a load balancer can be concisely written
in 𝜆qc, yet is far beyond the capabilities of prior typed choreographic languages.
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APPENDICES

A CHOREOGRAPHY OPERATIONAL SEMANTICS

A.1 Choreography Values

Choreography Values 𝑉 F 𝜌.𝑣 | fun 𝐹 (𝑋 ) B 𝐶 | Λ𝛼 ::𝜅.𝐶
| (𝑉1,𝑉2) | inl 𝑉 | inr 𝑉 | fold 𝑉

A.2 Redices and Evaluation Contexts

Messages 𝑚 F 𝑣 | 𝑑
Redices 𝑅 F 𝜌.(𝑒1 → 𝑒2) | Fun(𝑅) | Arg(𝑅) | App | TApp | UnfoldFold

| PairL(𝑅) | PairR(𝑅) | FstPair | SndPair | CaseInl | CaseInr
| let 𝜌 B 𝑣 | let 𝜌 B 𝑡 | ℓ .𝑚⇝ 𝜌 | if𝜌 true | if𝜌 false

Evaluation Contexts 𝜂 F [·] 𝐶 | 𝑉 [·] | [·] 𝑡 | fold [·] | unfold [·]
| ( [·],𝐶) | (𝑉 , [·]) | fst [·] | snd [·]
| inl [·] | inr [·] | case [·] of (inl 𝑋 ⇒ 𝐶1) (inl 𝑌 ⇒ 𝐶2)
| let 𝜌.𝑥 :𝑡𝑒 B [·] in 𝐶2 | let 𝜌.𝛼 ::𝜅 B [·] in 𝐶2
| [·] {ℓ }⇝ 𝜌 | if𝜌 [·] then 𝐶1 else 𝐶2

A.3 Redex Blocked Locations

rloc(𝜌.(𝑒1 → 𝑒2)) = 𝜌 rloc(Fun(𝑅)) = rloc(𝑅) rloc(Arg(𝑅)) = rloc(𝑅) rloc(App) = L

rloc(TApp) = L rloc(UnfoldFold) = L rloc(PairL(𝑅)) = rloc(𝑅)

rloc(PairR(𝑅)) = rloc(𝑅) rloc(FstPair) = L rloc(SndPair) = L rloc(CaseInl) = L

rloc(CaseInr) = L rloc(let 𝜌 B 𝑣) = 𝜌 rloc(let 𝜌 B 𝑡) = 𝜌 rloc(ℓ .𝑚⇝ 𝜌) = {ℓ} ∪ 𝜌

rloc(if𝜌 true) = 𝜌 rloc(if𝜌 false) = 𝜌

A.4 Choreography Blocked Locations

cloc(𝑋 ) = ∅ cloc(𝜌.𝑒) = 𝜌 cloc(fun 𝐹 (𝑋 :𝜏) B 𝐶) = ∅ cloc(𝐶1 𝐶2) = L

cloc(Λ𝛼 ::𝜅.𝐶) = ∅ cloc(𝐶 𝑡) = L cloc(fold 𝐶) = cloc(𝐶) cloc(unfold 𝐶) = L

cloc((𝐶1,𝐶2)) = cloc(𝐶1) ∪ cloc(𝐶2) cloc(fst 𝐶) = L cloc(snd 𝐶) = L

cloc(inl 𝐶) = cloc(𝐶) cloc(inr 𝐶) = cloc(𝐶)

cloc(case 𝐶 of (inl 𝑋 ⇒ 𝐶1) (inl 𝑌 ⇒ 𝐶2)) = L

cloc(let 𝜌.𝑥 :𝑡𝑒 B 𝐶1 in 𝐶2) = 𝜌 ∪ cloc(𝐶1) ∪ cloc(𝐶2)

cloc(let 𝜌.𝛼 ::𝜅 B 𝐶1 in 𝐶2) = 𝜌 ∪ cloc(𝐶1) ∪ cloc(𝐶2) cloc(𝐶 {ℓ }⇝ 𝜌) = {ℓ} ∪ 𝜌 ∪ cloc(𝐶)

cloc(ℓ [𝑑] ⇝ 𝜌 ; 𝐶) = {ℓ} ∪ 𝜌 ∪ cloc(𝐶)

cloc(if𝜌 𝐶 then 𝐶1 else 𝐶2) = 𝜌 ∪ cloc(𝐶) ∪ cloc(𝐶1) ∪ cloc(𝐶2)



26 Ashley Samuelson, Andrew K. Hirsch, and Ethan Cecchetti

A.5 Redex for an Evaluation Context

If 𝜂 is an evaluation context and 𝑅 is a redex, we define 𝜂 [𝑅] to be the redex which corresponds to
making the reduction given by 𝑅 in the context 𝜂.

( [·] 𝐶) [𝑅] = Fun(𝑅) (𝑉 [·]) [𝑅] = Arg(𝑅) ( [·] 𝑡) [𝑅] = 𝑅 (fold [·]) [𝑅] = 𝑅

(unfold [·]) [𝑅] = 𝑅 ( [·],𝐶) [𝑅] = PairL(𝑅) (𝑉 , [·]) [𝑅] = PairR(𝑅) (fst [·]) [𝑅] = 𝑅

(snd [·]) [𝑅] = 𝑅 (inl [·]) [𝑅] = 𝑅 (inr [·]) [𝑅] = 𝑅

(case [·] of (inl 𝑋 ⇒ 𝐶1) (inl 𝑌 ⇒ 𝐶2)) [𝑅] = 𝑅 ( [·] {ℓ }⇝ 𝜌) [𝑅] = 𝑅

(let 𝜌.𝑥 :𝑡𝑒 B [·] in 𝐶) [𝑅] = 𝑅 (let 𝛼 ::𝜅 B [·] in 𝐶) [𝑅] = 𝑅

(if𝜌 [·] then 𝐶1 else 𝐶2) [𝑅] = 𝑅

A.6 Location Set Relations

Here we define precisely the containment ℓ ∈ 𝜌 , disjointness 𝜌1 ∩ 𝜌2 = ∅, and subset 𝜌1 ⊆ 𝜌2
relations, with special care given to how they are defined when the types in question are non-ground.
In particular, we define two versions of containment: necessary containment □(ℓ ∈ 𝜌), and possible
containment ♢(ℓ ∈ 𝜌). The un-annotated containment relation is treated as necessary containment
(ℓ ∈ 𝜌 = □(ℓ ∈ 𝜌)), and the disjointness relation (to be interpreted as necessary disjointness) is
defined as follows:

(𝜌1 ∩ 𝜌2 = ∅) = ∀ℓ .¬(♢(ℓ ∈ 𝜌1) ∧ ♢(ℓ ∈ 𝜌2)) .

The difference between the two versions of containment is that location sets which are variables
(or a singleton of a variable) can possibly contain any location, while variable location sets do
not necessarily contain any location. Note here that the metavariable ℓ stands for either a type
variable 𝛼 or a concrete location 𝐿 ∈ L, and the metavariable 𝜌 stands for any location set, including
possibly a type variable.

□(ℓ ∈ {ℓ})
□(ℓ ∈ 𝜌1)
□(ℓ ∈ 𝜌1 ∪ 𝜌2)

□(ℓ ∈ 𝜌2)
□(ℓ ∈ 𝜌1 ∪ 𝜌2)

♢(ℓ ∈ 𝛼) ♢(ℓ ∈ {𝛼}) ♢(𝐿 ∈ {𝐿})
♢(ℓ ∈ 𝜌1)
♢(ℓ ∈ 𝜌1 ∪ 𝜌2)

♢(ℓ ∈ 𝜌2)
♢(ℓ ∈ 𝜌1 ∪ 𝜌2)

To define the (necessarily a) subset relation, we first note that we cannot use the naïve definition
in terms of the necessary containment relation. That is, ∀ℓ .□(ℓ ∈ 𝜌1) ⇒ □(ℓ ∈ 𝜌2) would not serve
as a correct definition for 𝜌1 ⊆ 𝜌2 in the presence of type variables. This is because ¬□(ℓ ∈ 𝛼)
for every location ℓ , so with this definition we would have that 𝛼 ⊆ 𝜌 for every set 𝜌 . The subset
relation (and relations of □ modality in general) should be preserved under substitution, but our
example shows that this is not the case when using the naïve definition. Instead, the subset relation
must be defined inductively as follows.

∅ ⊆ 𝜌 𝜌 ⊆ 𝜌

𝜌 ⊆ 𝜌1

𝜌 ⊆ 𝜌1 ∪ 𝜌2

𝜌 ⊆ 𝜌2

𝜌 ⊆ 𝜌1 ∪ 𝜌2

□(ℓ ∈ 𝜌)
{ℓ} ⊆ 𝜌

𝜌1 ⊆ 𝜌 𝜌2 ⊆ 𝜌

𝜌1 ∪ 𝜌2 ⊆ 𝜌
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A.7 Choreography Operational Semantics

[C-Ctx]

𝐶1
𝑅
=⇒𝑐 𝐶2

𝜂 [𝐶1]
𝜂 [𝑅 ]
====⇒𝑐 𝜂 [𝐶2]

[C-Done]
𝑒1 −→ 𝑒2 fv(𝜌) = ∅

𝜌.𝑒1
𝜌.(𝑒1→𝑒2 )
=========⇒𝑐 𝜌.𝑒2

[C-App]
𝑓 = fun 𝐹 (𝑋 ) B 𝐶 Val(𝑉 )

𝑓 𝑉
App

===⇒𝑐 𝐶 [𝐹 ↦→ 𝑓 , 𝑋 ↦→ 𝑉 ]

[C-TApp]

(Λ𝛼 ::𝜅.𝐶) 𝑡
TApp

====⇒𝑐 𝐶 [𝛼 ↦→ 𝑡]

[C-UnfoldFold]
Val(𝑉 )

unfold (fold 𝑉 ) UnfoldFold

=========⇒𝑐 𝑉

[C-FstPair]
Val(𝑉1) Val(𝑉2)

fst (𝑉1,𝑉2)
FstPair

======⇒𝑐 𝑉1

[C-SndPair]
Val(𝑉1) Val(𝑉2)

snd (𝑉1,𝑉2)
SndPair

======⇒𝑐 𝑉2

[C-CaseInl]
Val(𝑉 )

case (inl 𝑉 ) of (inl 𝑋 ⇒ 𝐶1) (inl 𝑌 ⇒ 𝐶2)
CaseInl

======⇒𝑐 𝐶1 [𝑋 ↦→ 𝑉 ]

[C-CaseInr]
Val(𝑉 )

case (inr 𝑉 ) of (inl 𝑋 ⇒ 𝐶1) (inl 𝑌 ⇒ 𝐶2)
CaseInr

======⇒𝑐 𝐶2 [𝑋 ↦→ 𝑉 ]

[C-LetV]
Val(𝑣) fv(𝜌) = ∅

let 𝜌.𝑥 :𝑡𝑒 B 𝜌 ′ .𝑣 in 𝐶
let 𝜌B𝑣
=======⇒𝑐 𝐶 [𝜌 |𝑥 ↦→ 𝑣]

[C-LetI]

𝐶2
𝑅
=⇒𝑐 𝐶

′
2 cloc(𝐶1) ∩ rloc(𝑅) = ∅ 𝜌 ∩ rloc(𝑅) = ∅

let 𝜌.𝑥 :𝑡𝑒 B 𝐶1 in 𝐶2
𝑅
=⇒𝑐 let 𝜌.𝑥 :𝑡𝑒 B 𝐶1 in 𝐶

′
2

[C-TyLetV]
Val(⌈𝑡⌋) fv(𝜌) = ∅

let 𝜌.𝛼 ::𝜅 B 𝜌 ′ .⌈𝑡⌋ in 𝐶
let 𝜌.𝛼B𝑡
========⇒𝑐 𝐶 [𝛼 ↦→ 𝑡]

[C-TyLetI]

𝐶2
𝑅
=⇒𝑐 𝐶

′
2 cloc(𝐶1) ∩ rloc(𝑅) = ∅ 𝜌 ∩ rloc(𝑅) = ∅

let 𝜌.𝛼 ::𝜅 B 𝐶1 in 𝐶2
𝑅
=⇒𝑐 let 𝜌.𝛼 ::𝜅 B 𝐶1 in 𝐶

′
2

[C-SendV]
Val(𝑣) 𝐿1 ∈ 𝜌1 fv(𝜌2) = ∅

𝜌1 .𝑣 {𝐿1 }⇝ 𝜌2
𝐿1 .𝑣⇝𝜌2
========⇒𝑐 (𝜌1 ∪ 𝜌2).𝑣

[C-Sync]
fv(𝜌) = ∅

𝐿[𝑑] ⇝ 𝜌 ; 𝐶
𝐿.𝑑⇝𝜌
======⇒𝑐 𝐶
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[C-SyncI]

𝐶
𝑅
=⇒𝑐 𝐶

′ ℓ ∉ rloc(𝑅) 𝜌 ∩ rloc(𝑅) = ∅

ℓ [𝑑] ⇝ 𝜌 ; 𝐶
𝑅
=⇒𝑐 ℓ [𝑑] ⇝ 𝜌 ; 𝐶′

[C-IfT]
fv(𝜌) = ∅

if𝜌 𝜌.true then 𝐶1 else 𝐶2
if𝜌 true

======⇒𝑐 𝐶1

[C-IfF]
fv(𝜌) = ∅

if𝜌 𝜌.false then 𝐶1 else 𝐶2
if𝜌 false

=======⇒𝑐 𝐶2

[C-IfI]

𝐶1
𝑅
=⇒𝑐 𝐶

′
1 𝐶2

𝑅
=⇒𝑐 𝐶

′
2

cloc(𝐶) ∩ rloc(𝑅) = ∅ 𝜌 ∩ rloc(𝑅) = ∅

if𝜌 𝐶 then 𝐶1 else 𝐶2
𝑅
=⇒𝑐 if𝜌 𝐶 then 𝐶′

1 else 𝐶
′
2

[C-AppI]

𝐶2
𝑅
=⇒𝑐 𝐶

′
2 cloc(𝐶1) ∩ rloc(𝑅) = ∅

𝐶1 𝐶2
𝑅
=⇒𝑐 𝐶1 𝐶

′
2

[C-PairI]

𝐶2
𝑅
=⇒𝑐 𝐶

′
2 cloc(𝐶1) ∩ rloc(𝑅) = ∅

(𝐶1,𝐶2)
𝑅
=⇒𝑐 (𝐶1,𝐶

′
2)

B STATIC SEMANTICS

B.1 𝜆qc Kinding System

[K-Var]
𝛼 ::𝜅 ∈ Γ

Γ ⊢ 𝛼 :: 𝜅

[K-Local]
Γ ⊩ 𝑡𝑒

Γ ⊢ 𝑡𝑒 :: ∗𝑒

[K-At]
Γ ⊢ 𝑡𝑒 :: ∗𝑒 Γ ⊢ 𝜌 :: ∗𝑠

Γ ⊢ 𝑡𝑒@𝜌 :: ∗

[K-Arrow]
Γ ⊢ 𝜏1 :: ∗ Γ ⊢ 𝜏2 :: ∗

Γ ⊢ 𝜏1 → 𝜏2 :: ∗

[K-All]
Γ, 𝛼 ::𝜅 ⊢ 𝜏 :: ∗
Γ ⊢ ∀𝛼 ::𝜅.𝜏 :: ∗

[K-Prod]
Γ ⊢ 𝜏1 :: ∗ Γ ⊢ 𝜏2 :: ∗

Γ ⊢ 𝜏1 × 𝜏2 :: ∗

[K-Sum]
Γ ⊢ 𝜏1 :: ∗ Γ ⊢ 𝜏2 :: ∗

Γ ⊢ 𝜏1 + 𝜏2 :: ∗

[K-Rec]
Γ, 𝛼 ::∗ ⊢ 𝜏 :: ∗
Γ ⊢ 𝜇𝛼.𝜏 :: ∗

[K-Loc]
𝐿 ∈ L

Γ ⊢ 𝐿 :: ∗ℓ

[K-Sng]
Γ ⊢ ℓ :: ∗ℓ
Γ ⊢ {ℓ} :: ∗𝑠

[K-Union]
Γ ⊢ 𝜌1 :: ∗𝑠 Γ ⊢ 𝜌2 :: ∗𝑠

Γ ⊢ 𝜌1 ∪ 𝜌2 :: ∗𝑠

[WF-EmpCtx]

Γ ⊢ ·

[WF-AddCtx]
𝑋 ∉ Δ Γ ⊢ Δ

Γ ⊢ 𝜏 :: ∗
Γ ⊢ Δ, 𝑋 :𝜏

[WF-AddLocalCtx]
𝑥 ∉ Σ Γ ⊢ Σ

Γ ⊢ 𝑡𝑒 :: ∗𝑒 Γ ⊢ 𝜌 :: ∗𝑠
Γ ⊢ Σ, 𝜌 .𝑥 :𝑡𝑒

B.2 𝜆qc Type System

[T-Var]
𝑋 :𝜏 ∈ Δ

Γ ⊢ Δ Γ ⊢ Σ

Γ;Δ; Σ ⊢ 𝑋 : 𝜏

[T-Done]
Γ ⊢ 𝜌 :: ∗𝑠 Γ; Σ|𝜌 ⊩ 𝑒 : 𝑡𝑒

Γ ⊢ Δ Γ ⊢ Σ

Γ;Δ; Σ ⊢ 𝜌.𝑒 : 𝑡𝑒@𝜌

[T-Fun]
Γ;Δ, 𝐹 :𝜏1 → 𝜏2, 𝑋 :𝜏1; Σ ⊢ 𝐶 : 𝜏2
Γ;Δ; Σ ⊢ fun 𝐹 (𝑋 ) B 𝐶 : 𝜏1 → 𝜏2

[T-App]
Γ;Δ; Σ ⊢ 𝐶1 : 𝜏1 → 𝜏2 Γ ⊢ 𝐶2 : 𝜏1

Γ ⊢ 𝐶1 𝐶2 : 𝜏2

[T-Abs]
Γ, 𝛼 ::𝜅;Δ; Σ ⊢ 𝐶 : 𝜏

Γ;Δ; Σ ⊢ Λ𝛼 ::𝜅.𝐶 : ∀𝛼 ::𝜅.𝜏



Choreographic Quick Changes: First-Class Location (Set) Polymorphism 29

[T-TApp]
Γ;Δ; Σ ⊢ 𝐶 : ∀𝛼 ::𝜅.𝜏 Γ ⊢ 𝑡 :: 𝜅

Γ;Δ; Σ ⊢ 𝐶 𝑡 : 𝜏 [𝛼 ↦→ 𝑡]

[T-Fold]
Γ;Δ; Σ ⊢ 𝐶 : 𝜏 [𝛼 ↦→ 𝜇𝛼.𝜏]
Γ;Δ; Σ ⊢ fold 𝐶 : 𝜇𝛼.𝜏

[T-Unfold]
Γ;Δ; Σ ⊢ 𝐶 : 𝜇𝛼.𝜏

Γ;Δ; Σ ⊢ unfold 𝐶 : 𝜏 [𝛼 ↦→ 𝜇𝛼.𝜏]

[T-Pair]
Γ;Δ; Σ ⊢ 𝐶1 : 𝜏1 Γ;Δ; Σ ⊢ 𝐶2 : 𝜏2

Γ;Δ; Σ ⊢ (𝐶1,𝐶2) : 𝜏1 × 𝜏2

[T-Fst]
Γ;Δ; Σ ⊢ 𝐶 : 𝜏1 × 𝜏2

Γ;Δ; Σ ⊢ fst 𝐶 : 𝜏1

[T-Snd]
Γ;Δ; Σ ⊢ 𝐶 : 𝜏1 × 𝜏2

Γ;Δ; Σ ⊢ snd 𝐶 : 𝜏2

[T-Inl]
Γ;Δ; Σ ⊢ 𝐶 : 𝜏1 Γ ⊢ 𝜏2 :: ∗

Γ;Δ; Σ ⊢ inl 𝐶 : 𝜏1 + 𝜏2

[T-Inr]
Γ;Δ; Σ ⊢ 𝐶 : 𝜏2 Γ ⊢ 𝜏1 :: ∗

Γ;Δ; Σ ⊢ inr 𝐶 : 𝜏1 + 𝜏2

[T-Case]
Γ;Δ; Σ ⊢ 𝐶 : 𝜏1 + 𝜏2

Γ;Δ, 𝑋 :𝜏1; Σ ⊢ 𝐶1 : 𝜏 Γ;Δ, 𝑌 :𝜏2; Σ ⊢ 𝐶2 : 𝜏
Γ;Δ; Σ ⊢ case 𝐶 of (inl 𝑋 ⇒ 𝐶1) (inl 𝑌 ⇒ 𝐶2) : 𝜏

[T-LetLocal]
Γ;Δ; Σ ⊢ 𝐶1 : 𝑡𝑒@𝜌2 𝜌1 ⊆ 𝜌2

Γ;Δ; Σ, 𝜌1 .𝑥 :𝑡𝑒 ⊢ 𝐶2 : 𝜏
Γ;Δ; Σ ⊢ let 𝜌1 .𝑥 :𝑡𝑒 B 𝐶1 in 𝐶2 : 𝜏

[T-LetLoc]
Γ;Δ; Σ ⊢ 𝐶1 : loc𝜌1@𝜌3 𝜌1 ⊆ 𝜌2 ⊆ 𝜌3

Γ ⊢ 𝜏 :: ∗ Γ, 𝛼 ::∗ℓ ;Δ; Σ ⊢ 𝐶2 : 𝜏
Γ;Δ; Σ ⊢ let 𝜌2 .𝛼 ::∗ℓ B 𝐶1 in 𝐶2 : 𝜏

[T-LetLocSet]
Γ;Δ; Σ ⊢ 𝐶1 : locset𝜌1@𝜌3 𝜌1 ⊆ 𝜌2 ⊆ 𝜌3

Γ ⊢ 𝜏 :: ∗ Γ, 𝛼 ::∗𝑠 ;Δ; Σ ⊢ 𝐶2 : 𝜏
Γ;Δ; Σ ⊢ let 𝜌2 .𝛼 ::∗𝑠 B 𝐶1 in 𝐶2 : 𝜏

[T-LetLocalTy]
Γ;Δ; Σ ⊢ 𝐶1 : tyRep@𝜌2 𝜌1 ⊆ 𝜌2
Γ ⊢ 𝜏 :: ∗ Γ, 𝛼 ::∗𝑒 ;Δ; Σ ⊢ 𝐶2 : 𝜏
Γ;Δ; Σ ⊢ let 𝜌1 .𝛼 ::∗𝑒 B 𝐶1 in 𝐶2 : 𝜏

[T-Send]
Γ;Δ; Σ ⊢ 𝐶 : 𝑡𝑒@𝜌1

ℓ ∈ 𝜌1 Γ ⊢ 𝜌2 :: ∗𝑠
Γ;Δ; Σ ⊢ 𝐶 {ℓ }⇝ 𝜌2 : 𝑡𝑒@(𝜌1 ∪ 𝜌2)

[T-Sync]
Γ ⊢ ℓ :: ∗ℓ Γ ⊢ 𝜌 :: ∗𝑠

Γ;Δ; Σ ⊢ 𝐶 : 𝜏
Γ;Δ; Σ ⊢ ℓ [𝑑] ⇝ 𝜌 ; 𝐶 : 𝜏

[T-If]
Γ;Δ; Σ ⊢ 𝐶 : bool@𝜌

Γ;Δ; Σ ⊢ 𝐶1 : 𝜏 Γ;Δ; Σ ⊢ 𝐶2 : 𝜏
Γ;Δ; Σ ⊢ if𝜌 𝐶 then 𝐶1 else 𝐶2 : 𝜏

C NETWORK LANGUAGE

C.1 Network Language Expressions

Network Program 𝐸 F 𝑋 | () | ret(𝑒) | 𝐸1 ; 𝐸2
| fun 𝐹 (𝑋 ) B 𝐸 | 𝐸1 𝐸2 | Λ𝛼. 𝐸 | 𝐸 𝑡

| (𝐸1, 𝐸2) | fst 𝐸 | snd 𝐸
| inl 𝐸 | inr 𝐸 | case 𝐸 of (inl 𝑋 ⇒ 𝐸1) (inr 𝑌 ⇒ 𝐸2)
| fold 𝐸 | unfold 𝐸
| send 𝐸 to 𝜌 | recv from ℓ
| let 𝑥 B 𝐸1 in 𝐸2 | let 𝛼 ::𝜅 B 𝐸1 in 𝐸2
| if 𝐸 then 𝐸1 else 𝐸2
| choose 𝑑 for ℓ ; 𝐸
| allow ℓ choice (L ⇒ 𝐸1⊥) (R ⇒ 𝐸2⊥)
| AmI∈ 𝜌 then 𝐸1 else 𝐸2

Network Values 𝑉 F () | ret(𝑣) | fun 𝐹 (𝑋 ) B 𝐸 | Λ𝛼. 𝐸
| (𝑉1,𝑉2) | inl 𝑉 | inr 𝑉 | fold 𝑉
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C.2 Transition Labels and Evaluation Contexts

Transition Labels 𝑙 F 𝜄 | 𝜄sync | 𝑚⇝ 𝜌 | 𝐿.𝑚⇝

Evaluation Contexts 𝜂 F [·] ; 𝐸 | [·] 𝐸 | 𝑉 [·] | [·] 𝑡 | fold [·] | unfold [·]
| ( [·], 𝐸) | (𝑉 , [·]) | fst [·] | snd [·] | inl [·] | inr [·]
| case [·] of (inl 𝑋 ⇒ 𝐸1) (inr 𝑌 ⇒ 𝐸2)
| send [·] to 𝜌 | let 𝑥 B [·] in 𝐸 | let 𝛼 ::𝜅 B [·] in 𝐸
| if [·] then 𝐸1 else 𝐸2

C.3 Network Language Operational Semantics

[N-Ctx]

𝐿 ⊲ 𝐸1
𝑙
=⇒ 𝐸2

𝐿 ⊲ 𝜂 [𝐸1]
𝑙
=⇒ 𝜂 [𝐸2]

[N-Ret]
𝑒1 −→ 𝑒2

𝐿 ⊲ ret(𝑒1)
𝜄

=⇒ ret(𝑒2)

[N-Seq]
Val(𝑉 )

𝐿 ⊲𝑉 ; 𝐸
𝜄

=⇒ 𝐸

[N-App]
𝑓 = fun 𝐹 (𝑋 ) B 𝐸 Val(𝑉 )

𝐿 ⊲ 𝑓 𝑉
𝜄sync
====⇒ 𝐸 [𝐹 ↦→ 𝑓 , 𝑋 ↦→ 𝑉 ]

[N-TApp]

𝐿 ⊲ (Λ𝛼 ::𝜅. 𝐸) 𝑡
𝜄sync
====⇒ 𝐸 [𝛼 ↦→ 𝑡]

[N-UnfoldFold]
Val(𝑉 )

𝐿 ⊲ unfold (fold 𝑉 )
𝜄sync
====⇒ 𝑉

[N-FstPair]
Val(𝑉1) Val(𝑉2)

𝐿 ⊲ fst (𝑉1,𝑉2)
𝜄sync
====⇒ 𝑉1

[N-SndPair]
Val(𝑉1) Val(𝑉2)

𝐿 ⊲ snd (𝑉1,𝑉2)
𝜄sync
====⇒ 𝑉2

[N-CaseInl]
Val(𝑉 )

𝐿 ⊲ case (inl 𝑉 ) of (inl 𝑋 ⇒ 𝐸1) (inr 𝑌 ⇒ 𝐸2)
𝜄sync
====⇒ 𝐸1 [𝑋 ↦→ 𝑉 ]

[N-CaseInr]
Val(𝑉 )

𝐿 ⊲ case (inr 𝑉 ) of (inl 𝑋 ⇒ 𝐸1) (inr 𝑌 ⇒ 𝐸2)
𝜄sync
====⇒ 𝐸2 [𝑋 ↦→ 𝑉 ]

[N-Let]
Val(𝑣)

𝐿 ⊲ let 𝑥 B ret(𝑣) in 𝐶 𝜄
=⇒ 𝐶 [𝑥 ↦→ 𝑣]

[N-TyLet]
Val(⌈𝑡⌋)

𝐿 ⊲ let 𝛼 ::𝜅 B ret(⌈𝑡⌋) in 𝐸 𝜄
=⇒ 𝐸 [𝛼 ↦→ 𝑡]

[N-Send]
Val(𝑣) fv(𝜌) = ∅

𝐿 ⊲ send ret(𝑣) to 𝜌
𝑣⇝𝜌\{𝐿}
==========⇒ ret(𝑣)

[N-Recv]
Val(𝑣) 𝐿′ ≠ 𝐿

𝐿 ⊲ recv from 𝐿′
𝐿′ .𝑣⇝
======⇒ ret(𝑣)

[N-Choose]
fv(𝜌) = ∅

𝐿 ⊲ choose 𝑑 for 𝜌 ; 𝐸
𝑑⇝𝜌\{𝐿}
==========⇒ 𝐸

[N-AllowL]
𝐿′ ≠ 𝐿

𝐿 ⊲ allow 𝐿′ choice (L ⇒ 𝐸1) (R ⇒ 𝐸2⊥)
𝐿′ .L⇝
======⇒ 𝐸1
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[N-AllowR]
𝐿′ ≠ 𝐿

𝐿 ⊲ allow 𝐿′ choice (L ⇒ 𝐸1⊥) (R ⇒ 𝐸2)
𝐿′ .R⇝
======⇒ 𝐸2

[N-IAmIn]
𝐿 ∈ 𝜌

𝐿 ⊲ AmI∈ 𝜌 then 𝐸1 else 𝐸2
𝜄

=⇒ 𝐸1

[N-IAmNotIn]
𝐿 ∉ 𝜌

𝐿 ⊲ AmI∈ 𝜌 then 𝐸1 else 𝐸2
𝜄

=⇒ 𝐸2

D COMPILATION

D.1 Network Program Merging

We show the patterns for which 𝐸1 ⊔ 𝐸2 is defined; if there is no matching pattern, then 𝐸1 ⊔ 𝐸2 is
undefined.

undefined ⊔ undefined = undefined

undefined ⊔ 𝐸2 = 𝐸2

𝐸1 ⊔ undefined = 𝐸1

𝑋 ⊔ 𝑋 = 𝑋

() ⊔ () = ()

ret(𝑒) ⊔ ret(𝑒) = ret(𝑒)

(𝐸1,1 ; 𝐸1,2) ⊔ (𝐸2,1 ; 𝐸2,2) = 𝐸1,1 ⊔ 𝐸2,1 ; 𝐸1,2 ⊔ 𝐸2,2

(fun 𝐹 (𝑋 ) B 𝐸1) ⊔ (fun 𝐹 (𝑋 ) B 𝐸2) = fun 𝐹 (𝑋 ) B (𝐸1 ⊔ 𝐸2)

(𝐸1,1 𝐸1,2) ⊔ (𝐸2,1 𝐸2,2) = (𝐸1,1 ⊔ 𝐸2,1) (𝐸1,2 ⊔ 𝐸2,2)

(Λ𝛼 ::𝜅. 𝐸1) ⊔ (Λ𝛼 ::𝜅. 𝐸2) = Λ𝛼 ::𝜅. (𝐸1 ⊔ 𝐸2)

(𝐸1 𝑡) ⊔ (𝐸2 𝑡) = (𝐸1 ⊔ 𝐸2) 𝑡

(fold 𝐸1) ⊔ (fold 𝐸2) = fold (𝐸1 ⊔ 𝐸2)

(unfold 𝐸1) ⊔ (unfold 𝐸2) = unfold (𝐸1 ⊔ 𝐸2)

(𝐸1,1, 𝐸1,2) ⊔ (𝐸2,1, 𝐸2,2) = ((𝐸1,1 ⊔ 𝐸2,1), (𝐸1,2 ⊔ 𝐸2,2))

(fst 𝐸1) ⊔ (fst 𝐸2) = fst (𝐸1 ⊔ 𝐸2)

(snd 𝐸1) ⊔ (snd 𝐸2) = snd (𝐸1 ⊔ 𝐸2)

(inl 𝐸1) ⊔ (inl 𝐸2) = inl (𝐸1 ⊔ 𝐸2)

(inr 𝐸1) ⊔ (inr 𝐸2) = inr (𝐸1 ⊔ 𝐸2)

©«
case 𝐸1,1 of
| inl 𝑋 ⇒ 𝐸1,2
| inr 𝑌 ⇒ 𝐸1,3

ª®¬ ⊔ ©«
case 𝐸2,1 of
| inl 𝑋 ⇒ 𝐸2,2
| inr 𝑌 ⇒ 𝐸2,3

ª®¬ =
case (𝐸1,1 ⊔ 𝐸2,1) of
| inl 𝑋 ⇒ 𝐸1,2 ⊔ 𝐸2,2
| inr 𝑌 ⇒ 𝐸1,3 ⊔ 𝐸2,3

(let 𝑥 B 𝐸1,1 in 𝐸1,2) ⊔ (let 𝑥 B 𝐸2,1 in 𝐸2,2) = let 𝑥 B (𝐸1,1 ⊔ 𝐸2,1) in (𝐸1,2 ⊔ 𝐸2,2)

(let 𝛼 ::𝜅 B 𝐸1,1 in 𝐸1,2) ⊔ (let 𝛼 ::𝜅 B 𝐸2,1 in 𝐸2,2) = let 𝛼 ::𝜅 B (𝐸1,1 ⊔ 𝐸2,1) in (𝐸1,2 ⊔ 𝐸2,2)

(send 𝐸1 to 𝜌) ⊔ (send 𝐸2 to 𝜌) = send (𝐸1 ⊔ 𝐸2) to 𝜌
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(recv from ℓ) ⊔ (recv from ℓ) = recv from ℓ

(choose 𝑑 for ℓ ; 𝐸1) ⊔ (choose 𝑑 for ℓ ; 𝐸2) = choose 𝑑 for ℓ ; (𝐸1 ⊔ 𝐸2)

©«
allow ℓ choice
| L ⇒ 𝐸1,1
| R ⇒ 𝐸1,2

ª®¬ ⊔ ©«
allow ℓ choice
| L ⇒ 𝐸2,1
| R ⇒ 𝐸2,2

ª®¬ =
allow ℓ choice
| L ⇒ 𝐸1,1 ⊔ 𝐸1,2
| R ⇒ 𝐸2,1 ⊔ 𝐸2,2

©«
if 𝐸1,1
then 𝐸1,2
else 𝐸1,3

ª®¬ ⊔ ©«
if 𝐸2,1
then 𝐸2,2
else 𝐸2,3

ª®¬ =
if (𝐸1,1 ⊔ 𝐸2,1)
then (𝐸1,2 ⊔ 𝐸2,2)
else (𝐸1,3 ⊔ 𝐸2,3)(

AmI∈ 𝜌 then 𝐸1,1
else 𝐸1,2

)
⊔
(
AmI∈ 𝜌 then 𝐸2,1

else 𝐸2,2

)
=

AmI∈ 𝜌 then (𝐸1,1 ⊔ 𝐸2,1)
else (𝐸1,2 ⊔ 𝐸2,2)

D.2 Endpoint Projection

Note that AmI ℓ then 𝐸1 else 𝐸2 is shorthand for AmI∈ {ℓ} then 𝐸1 else 𝐸2.

J𝑋 K𝐿 = 𝑋

J𝜌.𝑒K𝐿 =

{
ret(𝑒) if 𝐿 ∈ 𝜌

() otherwise

Jfun 𝐹 (𝑋 :𝜏) B 𝐶K𝐿 = fun 𝐹 (𝑋 ) B J𝐶K𝐿

J𝐶1 𝐶2K𝐿 = J𝐶1K𝐿 J𝐶2K𝐿

JΛ𝛼 ::𝜅.𝐶K𝐿 =


Λ𝛼 ::∗ℓ . AmI 𝛼 then J𝐶 [𝛼 ↦→ 𝐿]K𝐿 else J𝐶K𝐿 if 𝜅 = ∗ℓ
Λ𝛼 ::∗𝑠 . AmI∈ 𝛼 then J𝐶 [𝛼 ↦→ {𝐿} ∪ 𝛼]K𝐿 else J𝐶K𝐿 if 𝜅 = ∗𝑠
Λ𝛼 ::𝜅. J𝐶K𝐿 otherwise

J𝐶 𝑡K𝐿 = J𝐶K𝐿 𝑡

Jfold 𝐶K𝐿 = fold J𝐶K𝐿

Junfold 𝐶K𝐿 = unfold J𝐶K𝐿

J(𝐶1,𝐶2)K𝐿 = (J𝐶1K𝐿 , J𝐶2K𝐿)

Jfst 𝐶K𝐿 = fst J𝐶K𝐿

Jsnd 𝐶K𝐿 = snd J𝐶K𝐿

Jinl 𝐶K𝐿 = inl J𝐶K𝐿

Jinr 𝐶K𝐿 = inr J𝐶K𝐿
u

v
case 𝐶 of

| inl 𝑋 ⇒ 𝐶1
| inl 𝑌 ⇒ 𝐶2

}

~

𝐿

=

case J𝐶K𝐿 of
| inl 𝑋 ⇒ J𝐶1K𝐿
| inr 𝑌 ⇒ J𝐶2K𝐿

Jlet 𝜌.𝑥 :𝑡𝑒 B 𝐶1 in 𝐶2K𝐿 =


let 𝑥 B J𝐶1K𝐿 in J𝐶2K𝐿 if 𝐿 ∈ 𝜌

J𝐶1K𝐿 # J𝐶2K𝐿 if 𝐿 ∉ 𝜌 and 𝑥 ∉ fv(J𝐶2K𝐿)
undefined otherwise
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Jlet 𝜌.𝛼 ::∗𝑒 B 𝐶1 in 𝐶2K𝐿 =


let 𝛼 ::∗𝑒 B J𝐶1K𝐿 in J𝐶2K𝐿 if 𝐿 ∈ 𝜌

J𝐶1K𝐿 # J𝐶2K𝐿 if 𝐿 ∉ 𝜌 and 𝛼 ∉ fv(J𝐶2K𝐿)
undefined otherwise

Jlet 𝜌.𝛼 ::∗ℓ B 𝐶1 in 𝐶2K𝐿 =


let 𝛼 ::∗ℓ B J𝐶1K𝐿
in AmI 𝛼 then J𝐶2 [𝛼 ↦→ 𝐿]K𝐿 else J𝐶2K𝐿

if 𝐿 ∈ 𝜌

J𝐶1K𝐿 # J𝐶2K𝐿 if 𝐿 ∉ 𝜌 and 𝛼 ∉ fv(J𝐶2K𝐿)
undefined otherwise

Jlet 𝜌.𝛼 ::∗𝑠 B 𝐶1 in 𝐶2K𝐿 =



let 𝛼 ::∗𝑠 B J𝐶1K𝐿
in AmI∈ 𝛼 then J𝐶2 [𝛼 ↦→ {𝐿} ∪ 𝛼]K𝐿

else J𝐶2K𝐿

if 𝐿 ∈ 𝜌

J𝐶1K𝐿 # J𝐶2K𝐿 if 𝐿 ∉ 𝜌 and 𝛼 ∉ fv(J𝐶2K𝐿)
undefined otherwise

J𝐶 {ℓ }⇝ 𝜌K𝐿 =


send J𝐶K𝐿 to 𝜌 if 𝐿 = ℓ

J𝐶K𝐿 # recv from ℓ if 𝐿 ≠ ℓ and 𝐿 ∈ 𝜌

J𝐶K𝐿 otherwise

Jℓ [𝑑] ⇝ 𝜌 ; 𝐶K𝐿 =


choose 𝑑 for 𝜌 ; J𝐶K𝐿 if 𝐿 = ℓ

allow ℓ choice (L ⇒ J𝐶K𝐿) if 𝐿 ≠ ℓ and 𝐿 ∈ 𝜌 and 𝑑 = L
allow ℓ choice (R ⇒ J𝐶K𝐿) if 𝐿 ≠ ℓ and 𝐿 ∈ 𝜌 and 𝑑 = L
J𝐶K𝐿 otherwise

q
if𝜌 𝐶 then 𝐶1 else 𝐶2

y
𝐿
=

{
if J𝐶K𝐿 then J𝐶1K𝐿 else J𝐶2K𝐿 if 𝐿 ∈ 𝜌

J𝐶K𝐿 # J𝐶1K𝐿 ⊔ J𝐶2K𝐿 otherwise

D.3 Locations Named by a Type or Choreography

LN(𝛼) = ∅

LN(𝐿) = {𝐿}

LN({ℓ}) = LN(ℓ)

LN(𝜌1 ∪ 𝜌2) = LN(𝜌1) ∪ LN(𝜌2)

LN(𝑋 ) = ∅

LN(𝜌.𝑒) = LN(𝜌)

LN(fun 𝐹 (𝑋 :𝜏) B 𝐶) = LN(𝐶)

LN(𝐶1 𝐶2) = LN(𝐶1) ∪ LN(𝐶2)

LN(Λ𝛼 ::𝜅.𝐶) = LN(𝐶)

LN(𝐶 𝑡) = LN(𝐶) ∪ LN(𝑡)

LN(fold 𝐶) = LN(𝐶)

LN(unfold 𝐶) = LN(𝐶)

LN((𝐶1,𝐶2)) = LN(𝐶1) ∪ LN(𝐶2)
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LN(fst 𝐶) = LN(𝐶)

LN(snd 𝐶) = LN(𝐶)

LN(inl 𝐶) = LN(𝐶)

LN(inr 𝐶) = LN(𝐶)

LN ©«
case 𝐶 of

| inl 𝑋 ⇒ 𝐶1
| inl 𝑌 ⇒ 𝐶2

ª®¬ = LN(𝐶) ∪ LN(𝐶1) ∪ LN(𝐶2)

LN(let 𝜌.𝑥 :𝑡𝑒 B 𝐶1 in 𝐶2) = LN(𝜌) ∪ LN(𝐶1) ∪ LN(𝐶2)

LN(let 𝜌.𝛼 ::𝜅 B 𝐶1 in 𝐶2) = LN(𝜌) ∪ LN(𝐶1) ∪ LN(𝐶2)

LN(𝐶 {ℓ }⇝ 𝜌) = LN(ℓ) ∪ LN(𝜌) ∪ LN(𝐶)

LN(ℓ [𝑑] ⇝ 𝜌 ; 𝐶) = LN(ℓ) ∪ LN(𝜌) ∪ LN(𝐶)

LN(if𝜌 𝐶 then 𝐶1 else 𝐶2) = LN(𝜌) ∪ LN(𝐶) ∪ LN(𝐶1) ∪ LN(𝐶2)

D.4 The Less-Than Relation

undefined ⪯ 𝐸

𝐸1 ⪯ 𝐸2 Val(𝑉 )
𝐸1 ⪯ 𝑉 ; 𝐸2 𝑋 ⪯ 𝑋 () ⪯ () ret(𝑒) ⪯ ret(𝑒)

𝐸1,1 ⪯ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

𝐸1,1 ; 𝐸1,2 ⪯ 𝐸2,1 ; 𝐸2,2

𝐸1 ⪯ 𝐸2

fun 𝐹 (𝑋 ) B 𝐸1 ⪯ fun 𝐹 (𝑋 ) B 𝐸2

𝐸1,1 ⪯ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

𝐸1,1 𝐸1,2 ⪯ 𝐸2,1 𝐸2,2

𝐸1 ⪯ 𝐸2

Λ𝛼. 𝐸1 ⪯ Λ𝛼. 𝐸2

𝐸1 ⪯ 𝐸2

𝐸1 𝑡 ⪯ 𝐸2 𝑡

𝐸1 ⪯ 𝐸2

fold 𝐸1 ⪯ fold 𝐸2

𝐸1 ⪯ 𝐸2

unfold 𝐸1 ⪯ unfold 𝐸2

𝐸1,1 ⪯ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

(𝐸1,1, 𝐸1,2) ⪯ (𝐸2,1, 𝐸2,2)
𝐸1 ⪯ 𝐸2

fst 𝐸1 ⪯ fst 𝐸2

𝐸1 ⪯ 𝐸2

snd 𝐸1 ⪯ snd 𝐸2

𝐸1 ⪯ 𝐸2

inl 𝐸1 ⪯ inl 𝐸2

𝐸1 ⪯ 𝐸2

inr 𝐸1 ⪯ inr 𝐸2

𝐸1,1 ⪯ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2 𝐸1,3 ⪯ 𝐸2,3

case 𝐸1,1 of
| inl 𝑋 ⇒ 𝐸1,2
| inr 𝑌 ⇒ 𝐸1,3

⪯
case 𝐸2,1 of
| inl 𝑋 ⇒ 𝐸2,2
| inr 𝑌 ⇒ 𝐸2,3

𝐸1,1 ⪯ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

let 𝑥 B 𝐸1,1 in 𝐸1,2 ⪯ let 𝑥 B 𝐸2,1 in 𝐸2,2

𝐸1,1 ⪯ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

let 𝛼 ::𝜅 B 𝐸1,1 in 𝐸1,2 ⪯ let 𝛼 ::𝜅 B 𝐸2,1 in 𝐸2,2

𝐸1 ⪯ 𝐸2

send 𝐸1 to 𝜌 ⪯ send 𝐸2 to 𝜌

recv from ℓ ⪯ recv from ℓ

𝐸1 ⪯ 𝐸2

choose 𝑑 for ℓ ; 𝐸1 ⪯ choose 𝑑 for ℓ ; 𝐸2
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𝐸1,1 ⪯ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

allow ℓ choice
| L ⇒ 𝐸1,1
| R ⇒ 𝐸1,2

⪯
allow ℓ choice
| L ⇒ 𝐸2,1
| R ⇒ 𝐸2,2

𝐸1,1 ⪯ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2 𝐸1,3 ⪯ 𝐸2,3

if 𝐸1,1
then 𝐸1,2
else 𝐸1,3

⪯
if 𝐸2,1
then 𝐸2,2
else 𝐸2,3

𝐸1,1 ⪯ 𝐸2,1 𝐸1,2 ⪯ 𝐸2,2

AmI∈ 𝜌 then 𝐸1,1
else 𝐸1,2

⪯ AmI∈ 𝜌 then 𝐸2,1
else 𝐸2,2
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