
Nonmalleable Progress Leakage
Ethan Cecchetti

University of Wisconsin–Madison∗

cecchetti@wisc.edu

Abstract—Information-flow control systems often enforce
progress-insensitive noninterference, as it is simple to understand
and enforce. Unfortunately, real programs need to declassify
results and endorse inputs, which noninterference disallows, while
preventing attackers from controlling leakage, including through
progress channels, which progress-insensitivity ignores.

This work combines ideas for progress-sensitive security with
secure downgrading (declassification and endorsement) to identify
a notion of securely downgrading progress information. We use
hyperproperties to distill the separation between progress-sensitive
and progress-insensitive noninterference and combine it with
nonmalleable information flow, an existing (progress-insensitive)
definition of secure downgrading, to define nonmalleable progress
leakage (NMPL). We present the first information-flow type system
to allow some progress leakage while enforcing NMPL, and we
show how to infer the location of secure progress downgrades.
All theorems are verified in Rocq.

I. INTRODUCTION

Information flow control (IFC) is a powerful tool for
enforcing information security. The most common guarantee
is noninterference, which prohibits a program’s more-sensitive
inputs from influencing—interfering with—its less-sensitive
outputs [20]. Different requirements give rise to different
formulations, the most popular being progress-insensitive
noninterference (PINI)—which allows the program’s termi-
nation behavior to leak information—and progress-sensitive
noninterference (PSNI)—which does not. While PSNI provides
stronger security, enforcing it requires extreme limits on any
program construct that may not terminate, including simple
while loops, leading many tools to enforce PINI instead.

Unfortunately, PINI is unsuitable in many real systems for
two opposite reasons. First, noninterference is too restrictive.
Many applications need untrusted inputs to sometimes influence
decisions and allow controlled release of outputs derived
using secrets. Second, the termination channel left open by
progress-insensitivity allows arbitrary leakage, in theory in a
single run [8], or easily across multiple runs if the system
automatically restarts when hanging. This leakage makes PINI
too permissive in the presence of active attackers.

Applications mixing secrets with code from untrusted sources
provide an illustrative example. Arden et al. [4] suggest IFC
types to enforce security in such a setting, but nontermination
poses a concern. Consider the pseudocode in Figure 1 for a
mobile app that displays nearby attractions on a map, revealing
only the user’s region to the server. IFC types can ensure that
the application-supplied buildMap does not send loc to the
server, only region , but there remain termination channels.

∗Work done in part while author was at the University of Maryland.

1 loc = system.getLocation()
2 region = system.getRegion()
3 // Fetch attractions in region and loop
4 // over them, placing nearby ones on map
5 render(appCode.buildMap(loc, region))

Fig. 1. Pseudocode for app mapping nearby attractions.

Lines 1 or 2 might hang due to poor signal, revealing precise
location details. Line 5 could hang benignly, due to a code
bug or a non-responsive server, or maliciously, in an attempt
to reveal loc through a termination channel.

An application might reasonably choose to accept unlikely
and minimal leakage due to poor signal and ignore the app
server hanging, which leaks nothing, but disallow the last,
malicious, option. Unfortunately, enforcing PSNI would break
the application, disallowing the minimal poor-signal leakage,
while enforcing only PINI would allow the malicious progress
leakage. This work shows how to differentiate these termination
channels, formally define the desired restriction, and enforce
it with a type system.

To accomplish this goal, we turn to a long line of work
generalizing noninterference to support different notions of
secure declassification and endorsement, known collectively as
downgrading [12–15, 23, 24, 38, 39, 41, 48, 50]. Unfortunately,
these conditions are generally progress-insensitive, at best
suggesting enforcing a progress-sensitive variant by preventing
any progress leakage [6]. This solution, while effective,
imposes the same constraints as PSNI, either requiring all loop
conditions to be fully public values [31, 46], or prohibiting
any publicly visible operation after a loop with a non-public
condition [9, 27], making programming nearly untenable and
failing to address the above example.

To circumvent this crushing limitation, we allow programs
to explicitly downgrade progress information. Some prior work
supports progress downgrades, but they either appeal to halting
oracles [27], making them unrealistic, quantify how much
information leaks [27], making them non-compositional, or
provide intensional definitions of security based on the authority
of the declassifier [9]. Perhaps more importantly, they all
consider only confidentiality and are thus unable to create, or
even express, restrictions on who can influence the timing or
content of declassifications, precisely what is needed to safely
mix secrets with code and inputs from untrusted sources.

This work addresses this shortcoming by defining progress-
based variants of robust declassification (RD) [50], and its
extensions transparent endorsement and nonmalleable informa-

mailto:cecchetti@wisc.edu

tion flow (NMIF) [12], and showing how to restrict progress
downgrades to enforce them. These conditions constrain the
impact of attackers on declassifications and secrets on endorse-
ments, exactly what is needed when combining secrets and
untrusted code. However, all existing enforcement mechanisms
are progress-insensitive [6, 12, 14, 25, 29], seriously limiting
their power to secure complex systems.

To build these conditions, we formalize leakage-free
progress (LFP)—the distinction between PSNI and PINI—
as a hyperproperty [16]. Hyperproperties, or sets of sets of
traces, provide a framework for relating multiple executions
of the same program, making them ideal for defining complex
information security properties. Our approach draws insights
from the definitions of LFP as well as RD and NMIF to
define nonmalleable progress leakage (NMPL), a progress-
based variant of NMIF that separates progress-sensitive and
progress-insensitive NMIF.

We also define the first information-flow type system to
enforce NMPL without prohibiting all progress leakage. This
result shows that meaningful end-to-end security is achievable
in the presence of malicious code and data without imposing
draconian restrictions on basic looping constructs. For instance,
it supports the desired policy in the mapping example above.

Finally, we leverage the static type system to infer progress
downgrades. The inference procedure is efficient, adds a
minimal number of downgrades, and is sound and complete
with respect to the type system—any program it produces is
well-typed, and it will find a way to add well-typed progress
downgrades if one exists. The existence of such a procedure is
a powerful result. It can automatically verify that all progress
leakage satisfies NMPL while identifying where leakage can
occur to support programmer audits.

The main contributions of this work are as follows.
• Section III defines LFP as a hyperproperty and generalizes

it to define NMPL and progress-sensitive NMIF.
• Section IV defines a calculus and type system to enforce

progress-sensitive NMIF and proves it secure.
• Section V presents a sound, complete, and efficient procedure

for inferring a syntactically minimal placement of progress
downgrade instructions within a program.

• All theorems in this paper have been mechanically verified
in the Rocq Prover (formerly Coq) [34], the first mechanized
statements or proofs of RD and NMIF of which we are aware.
Section VI gives an overview of the verification effort.

Section VII presents related work and Section VIII concludes.

II. LABEL MODEL

Before defining new notions of security, we first describe the
structure of our security policies. As is standard, we express
information flow policies through a set of labels L that form
a preorder. That is, there must be a reflexive and transitive
ordering relation v (pronounced “flows-to”) where `1 v `2
means that `2 is at least as restrictive as `1, so data with label `1
may safely influence data with label `2.

Because the primary security conditions in this work—robust
declassification, transparent endorsement, and nonmalleable

information flow (NMIF)—concern the interaction of confiden-
tiality and integrity, the labels must express both. Prior work
accomplishes this goal by demanding a distributive lattice over
a set of principals representing their authority. A label is then
an ordered pair of the confidentiality authority and the integrity
authority [3, 12, 14, 49]. This structure is simple and creates
an obvious way to convert between confidentiality and integrity,
which is necessary for defining and enforcing security. However,
it also forces the space of confidentiality labels and integrity
labels to be the same, limiting its applications.

This work extends NMIF-style definitions and results to a
wider range of information-flow policy spaces by decoupling
the confidentiality policies C from the integrity policies I . Each
must form a preorder (denoted vC and vI , respectively), but
the sets of policies need not be the same, or even contain any
overlapping elements. Intuitively, c vC c′ means the policy c′

demands at least as much secrecy as c, while i vI i′ means
that i is at least as trusted as i′. It is therefore safe to use data
labeled c (or i) in a context expecting data labeled c′ (or i′).
Labels are simply ordered pairs L = C × I with v defined
pointwise. We also require a least label ⊥ ∈ L such that ⊥ v `
for any label `.

Though confidentiality policies and integrity policies come
from different spaces, we still need a way to relate the two.
We thus require mappings between them in both directions.
Using the language of Cecchetti et al. [12], we call these the
voice, ∇ : C → I, and the view, ∆ : I → C. The voice of a
confidentiality policy c represents the least trustworthy integrity
level such that everyone who can write to ∇(c) can read c.
Similarly, the view of i is the most secret confidentiality level
where everyone who can write i can also read ∆(i).

To formalize this intuition, the mappings must satisfy two
properties. First, they must be anti-monotonic. Since c1 vC c2
means anyone who can read c2 can also read c1, any integrity
level where everyone can read c2 also guarantees everyone can
read c1. In other words, ∇(c2) vI ∇(c1). A dual argument
holds for ∆. Second, i vI ∇(c) means that anyone who can
write to data labeled i must be able to read data labeled c.
But c vC ∆(i) means exactly the same thing! We therefore
require i vI ∇(c)⇐⇒ c vC ∆(i). Together, these properties
make (∇,∆) an antitone Galois connection [see e.g., 19].

As in prior work [3, 49], the voice and view combine
to form a reflection operator JJJJ

 : L → L that flips the
confidentiality and integrity of a label: JJJJ

(c, i)

def
= (∆(i),∇(c)).

This simple construction extends the properties of ∇ and ∆
to JJJJ

 , making JJJJ

 an antitone Galois connection between L and
itself: ` v JJJJ

(`′)⇐⇒ `′ v JJJJ

(`).

This reflection operator is critical for enforcing downgrade-
tolerant security conditions. Prior work has shown downgrading
to be secure only when anyone who can influence the data can
also read it—i vI ∇(c) for data labeled (c, i) [3, 12, 49]. We
will see in Section IV that the same holds for downgrading
progress. Since (∇,∆) form an antitone Galois connection,
this requirement is equivalent to the label flowing to its own
reflection. Using the terminology of Zagieboylo et al. [49], we
refer to labels that fail this requirement as compromised.

Definition 1 (Compromised Label [49]). A label ` is compro-
mised if ` 6v JJJJ

(`)—not everyone who can write to it can read
from it. A label is non-compromised if ` v JJJJ

(`).

Further Generality: The results of this paper actually hold for
an even more general structure than the one described above.
The labels L need only form an arbitrary preorder, without
explicit separation of confidentiality and integrity. Every pair
of labels must have some lower bound, but there need not be a
global least element.1 Finally, the reflection operator JJJJ

 simply
needs to be anti-monotonic, not an antitone Galois connection.

This added generality does not complicate the proofs, but it
does complicate intuition. In fact, I have yet to find a reasonable
intuitive interpretation of the security results with a label
model that does not fit the separate confidentiality and integrity
structure above. However, there is no reason to constrain the
technical result by the limits of the author’s imagination, so all
formal definitions and theorems are stated and proven in the
more general model, except where explicitly noted otherwise.

III. PROGRESS-SENSITIVE HYPERPROPERTIES

Progress-(in)sensitive security conditions generalize the
classic notion of termination-(in)sensitive security [37, 46, 47].
They consider traces of effectful programs and properly
account for leakage during execution, even when programs
might not terminate. Existing work on progress-sensitivity
has primarily focused on noninterference and models attacker
knowledge by the set of possible initial memories consistent
with the attacker’s observations [6–9, 27]. Progress-sensitive
noninterference (PSNI) then requires that the set of memories
remain constant as the program executes—and the attacker
observes more. Progress-insensitive noninterference (PINI) is
more permissive, requiring only that an attacker learn no more
from observing an event than from knowing the event exists.
This formulation provides a strong intuition for noninterference.
However, its extensions to robust declassification either treat
confidentiality and integrity asymmetrically [6], making it
unclear if it extends to nonmalleable information flow, or
assume traces identify syntactic downgrades [25], requiring
the language to track leakage for the definition to make sense.

We instead turn to hyperproperties [16], another framework
commonly used for information security conditions, including
noninterference, robust declassification, and nonmalleable
information flow. A hyperproperty is a set of sets of traces,
and various forms of noninterference are classic examples of
hyperproperties [e.g., 2, 10, 16, 42, 44]. For instance, PSNI—an
attacker learning nothing—requires any two traces with public-
equivalent inputs to look the same at every point in execution,
lest the adversary distinguish the inputs, thereby learning a
secret. Notably, while many information-security formalizations
use hyperproperties, most are not progress sensitive. They
either ignore nonterminating programs entirely—resulting in
progress- and termination-insensitive security definitions—or
require termination behaviors to match, but ignore the effects

1If L is finite, pairwise lower bounds are equivalent to a global lower bound,
but if L is infinite, pairwise bounds are weaker.

of nonterminating programs, creating termination-sensitive
definitions unsuitable for effectful programs.

To formalize progress-sensitive security through hyperprop-
erties, we view program behaviors as traces. A trace t must
include the program’s inputs, denoted in(t), and any visible
effects the program produces during execution. A trace may
be either finite—if the execution terminates—or infinite—if it
diverges. We also require an equivalence relation ≈D on both
inputs and finite prefixes of traces, where p1 ≈D p2 means p1
is indistinguishable from p2 to a low observer D.

Many definitions separate “low” from “high” by a single
label L—anything that flows to L is “low” and all other
labels are “high”—we follow a more expressive approach and
define security relative to an arbitrary downward-closed set of
labels D ⊆ L, which need not have a maximal element. Labels
in D are considered “low” while labels not in D are “high.”

These basic building blocks are sufficient to define our
security properties. Section IV-E below shows one way to
instantiate these primitives and enforce security.

A. Noninterference and Leakage-Free Progress

We begin with noninterference, partially to fill a minor
gap in the space of hyperproperty-based noninterference
definitions, but primarily for expository reasons. The definition
of nonmalleable information flow, and thus nonmalleable
progress leakage, builds directly on that of noninterference
while adding significant complexity.

The strongest condition, PSNI, is also the simplest to
define. As described above, PSNI requires two traces with
indistinguishable inputs to produce indistinguishable executions.
To formalize that as a hyperproperty, recall that a hyperproperty
is a set of sets of traces. PsNiD is then the hyperproperty
such that, for any set of traces T ∈ PsNiD and any
pair of traces t1, t2 ∈ T , if those traces have D-equivalent
inputs—in(t1) ≈D in(t2)—then every observation in one trace
must also appear in the other, up to D-equivalence. In other
words, an adversary who can see only data and events with
labels in D learns nothing from a full execution trace beyond
what they could learn from that execution’s input.

As is standard [16], we model observations as finite prefixes
of a trace, resulting in the following definition, where p ≤ t
denotes that p is a finite prefix of t, and T is the set of all
possible traces.

PsNiD
def
= {T ⊆ T | ∀t1, t2 ∈ T. in(t1) ≈D in(t2)

=⇒ ∀p1 ≤ t1.∃p2 ≤ t2. p1 ≈D p2}

Progress-insensitivity, by contrast, allows an attacker to gain
information by learning an event exists, but no additional
information from seeing its contents [7]. The hyperproperty
must therefore allow traces to “stop early” from D’s perspective
due to infinite loops. When this happens, the trace t↑ with an
infinite loop will appear to be a prefix of t↓, the one without.
When considering finite observations, we do not know, a priori,
which trace is which. However, every prefix of t↑ must be
indistinguishable from some prefix of t↓, and any sufficiently
short prefix of t↓ must be indistinguishable from a prefix of t↑.

To make this idea formal, given prefixes p1 and p2 of traces
with D-equivalent inputs, we require one of p1 and p2 to be
D-equivalent to a prefix of the other. Letting p1 ≤D p2 denote
that p1 is indistinguishable from a prefix of p2—there is some
p′2 ≤ p2 such that p1 ≈D p′2—we define PiNiD as follows.

PiNiD
def
= {T ⊆ T | ∀t1, t2 ∈ T. in(t1) ≈D in(t2)

=⇒ ∀p1 ≤ t1, p2 ≤ t2. p1 ≤D p2 ∨ p1 ≥D p2}

Leakage-free progress: The distinction between PSNI and
PINI is whether progress itself can leak information. A program
does not leak information through progress if, after any
sequence of events, the existence of another event reveals
no further information about the program’s secret inputs. More
generally—including both confidentiality and integrity—the
sequence of low (public or trusted) events a program produces
must entirely determine if another low event occurs. We call
this security property leakage-free progress (LFP) and present
the first hyperproperty formalization of it.

To capture the above intuition, begin with the same setup as
in PINI: finite prefixes p1 ≤ t1 and p2 ≤ t2 from traces where
in(t1) ≈D in(t2). If p1 appears to be a strict prefix of p2,
denoted p1 <D p2, that means it is possible for an execution
producing the D-visible events in p1 to visibly progress—
produce another D-visible event. Since LFP demands that
the visible events determine the progress behavior, t1 must
progress, including some D-visible event beyond the end of p1.
We thus define LFP as follows, letting ProgD(p, t) denote that
trace t has another D-visible event beyond the end of prefix p.
Formally, ProgD(p, t)

def
= ∃p′ ≤ t. p <D p′,

LfpD
def
= {T ⊆ T | ∀t1, t2 ∈ T, p1 ≤ t1, p2 ≤ t2.

p1 <D p2 =⇒ ProgD(p1, t1)}

The requirement that in(t1) ≈D in(t2) is implicit here; the
premise p1 <D p2 can only hold with indistinguishable inputs.

Notably, the event t1 progresses with need not match that
of t2; LFP allows leakage through the content of events, just
not their existence. A program that outputs its secret to a public
channel and then terminates satisfies LFP, as progress is not the
leakage vector. On its own, LFP is therefore unlikely to be a
useful security condition, but it precisely defines the distinction
between PINI, which allows leakage only through progress,
and PSNI, which disallows all leakage. Indeed, satisfying PSNI
is the same as satisfying both PINI and LFP.

Theorem 1. For any D ⊆ L, PsNiD = PiNiD ∩ LfpD.

These definitions are parameterized for a single attacker, but
each extends simply to all attackers by taking the intersection
over all downward-closed sets D:

PsNi
def
=

⋂
PsNiD PiNi

def
=

⋂
PiNiD Lfp

def
=

⋂
LfpD

Hypersafety and Hyperliveness: Hyperproperties are often
divided into hypersafety, requiring that bad things don’t happen,
and hyperliveness, requiring that good things do happen.
Noninterference is a classic example of not just a hyperproperty,

but specifically hypersafety [e.g., 2, 10, 42]. Indeed, the more
common progress-insensitive noninterference is hypersafety.

Progress-sensitive noninterference, however, is not. It is
subset-closed, but it both prohibits bad things—attackers cannot
learn from events they see—and requires good things—both
executions make progress or both silently diverge. Every
hyperproperty is the intersection of a hypersafety property and
a hyperlivness property [16], and the decomposition of PsNi
is precisely progress insensitivity and progress leakage: PiNi
is hypersafety, while Lfp is hyperliveness. This decomposition
and a similar note in Section III-B, which are not stated as
theorems, are the only claims in this paper not verified in Rocq.

B. Robust Declassification

Robust declassification (RD) recognizes that many programs
need to declassify information to function, inherently violating
noninterference. Instead, it prohibits an untrusted attacker
from influencing the timing or content of declassifications.
Identifying influence requires multiple program executions:
two runs with different attacks must produce the same
declassifications. This idea seems to suggest a definition
similar to noninterference, where traces with the same trusted
inputs must produce the same declassifications. Unfortunately,
semantically, declassifications are defined as (confidentiality)
violations of noninterference, meaning detecting them requires
two executions with different secrets. Existing formalizations
of RD therefore use four runs [12, 14, 29], comparing two
pairs of inputs where secret inputs differ within a pair and an
attack varies across the pairs.

These definitions model attacks by leaving holes in com-
mands and inserting low-integrity attacker code. To keep our
hyperproperties language-agnostic, we instead vary untrusted
values in the initial input. These formulations produce equiva-
lent guarantees for languages with conditional branches when
enforcement theorems quantify over all programs, as is the
case for our example language in Section IV-E. To model a
hole with either of two attacks, simply hard code the attacks
as branches of an if statement conditioned on part of the low-
integrity input not used elsewhere, and vary only that value.

Defining Attackers: Making these ideas precise requires
dividing confidentiality into “public” and “secret” and integrity
into “trusted” and “untrusted.” Prior approaches that demand
confidentiality and integrity be dual policy lattices require
public labels—the attacker’s ability to read data—and untrusted
labels—the attacker’s ability to write data—to be the same
policy sets [3, 6, 12, 14, 25, 29, 49]. Since our confidentiality
and integrity policies may come from disperate spaces (see
Section II), we require a more general definition. We bound
an attacker’s power by two downward-closed sets of labels,
representing public and trusted policies, respectively, and
require only that the attacker can read any security level they
can write; the view of untrusted integrity must be public.

Definition 2 (Attacker). A pair of label sets A = (P, T) is an
attacker if P = P × I and T = C × T for downward-closed
sets P ⊆ C and T ⊆ I such that ∆(T) ⊆ P .

Note that we could have required the voice of secret
confidentiality be trusted—∇(P) ⊆ T . The definitions are
equivalent since (∇,∆) form an antitone Galois connection.

Recall from Definition 1 that non-compromised labels—those
where ` v JJJJ

(`)—aim to capture labels where anyone who can
influence the data can also read it. That means, for every
attacker, a non-compromised label should be either public—the
attacker can read it—or trusted—the attacker cannot write
it—or both. Indeed, Definition 2 enforces this property.

Proposition 1. For any attacker (P, T) and any label ` ∈ L,
if ` v JJJJ

(`), then ` ∈ P ∪ T .

As with the label model itself (Section II), our theorems
support a more general definition, requiring only that P and T
be downward-closed and satisfy Proposition 1. It is again
unclear, intuitively, what this more general structure represents.
The proofs, however, rely only on Proposition 1, so there is
no reason to restrict the formalism.

Defining Robust Declassification: This notion of an attacker
allows us to formalize the above intuition for RD that an
attacker should have no influence over the timing or content
of declassifications. Prior definitions only reason about the
behavior of terminating traces [12, 14, 29], making them
not only progress-insensitive, but entirely unable to reason
about progress leaks. Their structure, however, provides useful
intuition. They require that, given any set of four traces
t11, t12, t21, t22 with inputs σij = in(tij), if

1) σ11 ≈P σ21 and σ12 ≈P σ22—(σ11, σ21) and (σ12, σ22)
are the pairs of inputs varying secrets,

2) σ11 ≈T σ12 and σ21 ≈T σ22—only the attack varies
across the pairs, and

3) all traces terminate,
then the second attack cannot leak secrets unless the first does
as well. That is, t11 ≈P t21 implies t12 ≈P t22.

This formulation has two major shortcomings. First, it cannot
reason about any divergent programs or constrain progress
leakage. Second, enforcing it requires prohibiting endorsement,
as endorsed data may safely influence future declassifications.

The key to solving both problems lies in explicitly consid-
ering partial executions and only restricting declassification
prior to any (semantic) endorsements. More formally, given
any program point in the first trace p ≤ t11, if no (semantic)
endorsements have occurred by p and the first attack cannot
yet differentiate the secrets then the second attack must not
leak information to that point.

Checking for semantic endorsements is simple: only consider
prefixes in the second attack p12 ≤ t12 when p12 ≈T p. If
an endorsement has already occurred, there will be no such
prefixes and the condition will hold vacuously.

Checking if the first attack leaks nothing up to p is more
complicated for two reasons. First, we must pick an appropriate
definition for “leaks nothing.” One might assume that we should
use whatever notion of leakage we aim to constrain: a PSNI-
like structure for constraining all leakage, a PINI-like structure
to allow progress leakage but nothing else, or an LFP-like

structure to prohibit only progress leakage. Unfortunately, using
this approach for both attacks does not give the desired result.

Consider the following program where a has a public–
untrusted label and y and z have secret labels.

while a = y do skip ;
declassify z to PUBLICTRUSTED

A progress-insensitive definition should ignore the progress
leak in the first line, correctly identify that the attacker cannot
influence the second line, and consider this program (progress-
insensitively) robust. However, an RD definition using a
progress-insensitive notion of leakage for the first attack—
the one used to check if leakage is allowed—would incorrectly
classify the program. Given secrets y1 and y2, the first attack
could set a = y1, sending t11 into an infinite loop and causing
all leakage in the first attack to stem from progress. The result
would satisfy any progress-insensitive notion of “leaks nothing.”
However, a second attack where a differs from both y1 and y2
would cause t12 and t22 to both execute line two, producing
more direct (non-progress) leakage and appear insecure.

Sending the program into an infinite loop causes the attacker
to (voluntarily) learn less than the developer intended, and
should be irrelevant to a progress-insensitive condition. Prior
work rules out such nontermination-based irrelevant attacks by
demanding termination [14, 29]. The corresponding progress
formulation would require the first attack to progress beyond
the current execution point p for both secrets.

Such a condition ensures the first attack does exhibit a
progress leak up to p. When combined with the existing PINI-
style assumption, Theorem 1 tells us the attack cannot leak
anything, regardless of the channel; it must exhibit PSNI up
to p. We therefore require this condition directly and prohibit all
leakage between t11 and t21. The definition of “leaks nothing”
in the second attack, however, determines the version of RD.

The second complication of considering leakage up to some
prefix p ≤ t11 is that p is only meant to limit the impact of
endorsements. It is insufficient to simply require t21, the trace
with the other secret, match p exactly. Consider the following
program with the same labels as above.

(while y do skip) ; a := 5

All leakage in this program is robust, as the attack has no
impact on the behavior. However, using secret values 0 and 1, if
p ≤ t11 happens to not include the assignment to a—though it
exists in t11—t21 could match it, and the requirement suggested
above would demand the second attack leak nothing, which is
clearly false.

To handle this situation correctly, we formalize the intuition
that the first attack satisfies PSNI up to p by requiring it to
hold for every prefix of t11 that is T -equivalent to p. Since a
is untrusted, some p11 ≤ t11 includes the assignment and
satisfies p11 ≈T p, but t21 is stuck in an infinite loop, so it has
no prefix P-equivalent to p11. This more expansive premise
recognizes the leakage in the first attack, thereby allowing the
same leakage to occur in the second.

Taking this structure and using PSNI as the notion of “leaks
nothing” for the second attack gives us a complete definition
of progress-sensitive robust declassification (PSRD).

PsRd(P,T)
def
=

{
T ⊆ T | ∀t11, t12, t21, t22 ∈ T.

nmif -eq-in(P,T)(t11, t12, t21, t22)

=⇒ ∀p ≤ t11.
(
∀p11 ≤ t11. p11 ≈T p

=⇒ ∃p21 ≤ t21. p11 ≈P p21
)

=⇒
(
∀p12 ≤ t12. p12 ≈T p

=⇒ ∃p22 ≤ t22. p12 ≈P p22
)}

Here we use nmif -eq-in(P,T) to indicate that the initial states
of all four traces properly correspond to pairs of attacks and
secrets, defined by the following equivalences.

nmif -eq-in(P,T)(t11, t12, t21, t22)
def
=

in(t11) in(t21)

in(t12) in(t22)

≈P

≈P

≈≈ ≈T≈T

This definition follows exactly the intuition above. Take any
four traces whose inputs match as two pairs, with only secrets
differing within a pair and only untrusted (attacker) inputs
differing between pairs. For every endorsement-alignment prefix
p ≤ t11 of one trace, if the first pair (attack) leaks nothing up
to p, then neither does the second.

Like noninterference, this definition immediately extends to
security against all attacks by taking the intersection over the
set A of all attackers: PsRd

def
=

⋂
A∈A PsRdA.

Defining progress-insensitive robust declassification (PIRD)
requires only changing the definition of “leaks nothing” in
the second attack. Instead of prohibiting leakage through any
channel up to p, PIRD allows leakage be due to progress. We
use the same approach as PiNi and require the trace prefixes
appear as prefixes of each other to a public observer.

PiRd(P,T)
def
=

{
T ⊆ T | ∀t11, t12, t21, t22 ∈ T.

nmif -eq-in(P,T)(t11, t12, t21, t22)

=⇒ ∀p ≤ t11.
(
∀p11 ≤ t11. p11 ≈T p

=⇒ ∃p21 ≤ t21. p11 ≈P p21
)

=⇒
(
∀p12 ≤ t12, p22 ≤ t22. p12 ≈T p

=⇒ p12 ≤P p22 ∨ p12 ≥P p22
)}

By changing the notion of leakage in the second attack
instead to prohibit leakage through progress, but allow leakage
through event contents, we acquire a robust declassification
analogue of LFP we call robust progress leakage (RPL).

Rpl(P,T)
def
=

{
T ⊆ T | ∀t11, t12, t21, t22 ∈ T.

nmif -eq-in(P,T)(t11, t12, t21, t22)

=⇒ ∀p ≤ t11.
(
∀p11 ≤ t11. p11 ≈T p

=⇒ ∃p21 ≤ t21. p11 ≈P p21
)

=⇒
(
∀p12 ≤ t12, p22 ≤ t22. p12 ≈T p

=⇒ p22 <P p12 =⇒ ProgP(p22, t22)
)}

As with noninterference, enforcing PSRD is equivalent to
enforcing both PIRD and RPL.

Theorem 2. For any attacker A, PsRdA = PiRdA ∩RplA.

Hypersafety and Hyperliveness: Much like PsNi, PsRd
is subset-closed, but neither hypersafety nor hyperliveness.
Unlike noninterference, however, the progress insensitivity and
progress leakage split is not a decomposition into hypersafety
and hyperliveness; PiRd is not hypersafety.

Formally, a hyperproperty H is hypersafety if, for any trace
set T violating H (T /∈ H), there is a finite set {pi} of finite
prefixes such that (1) for each pi, there is some ti ∈ T such that
pi ≤ ti, and (2) if T ′ satisfies property 1, then T ′ /∈ H [16].
PiRdA does not satisfy this requirement. Consider a set T ? of
four traces, t11, t12, t21, and t22 where the trace inputs match
as required by PiRdA, t11 and t21 are infinite but contain
no visible events at all, and t12 and t22 have different public-
untrusted events—no traces contain trusted events. Here t11
and t21 leak no information relative to each other, even through
progress, but t12 and t22 do, meaning T ? /∈ PiRdA. However,
any finite prefix of t11 can be extended with some public-
untrusted event, rendering the PSNI-style premise false, creating
a trace set that does satisfy PiRdA. This counterexample is
not verified in Rocq.

We leave decomposing these more complicated hyperprop-
erties into hypersafety and hyperliveness as future work.

C. Nonmalleable Information Flow

While RD constrains declassification based on integrity, re-
call that transparent endorsement (TE) constrains endorsement
based on confidentiality and prohibits endorsement of secret
information. As in the original formulation [12], TE is precisely
dual to RD, switching the roles of the attacks and secrets.

This duality allows for immediate definitions of PsTeA,
PiTeA, and transparent progress control, TpcA, a prohibition
on secrets influencing an attacker’s control over progress.

Tpc(P,T)
def
=

{
T ⊆ T | ∀t11, t12, t21, t22 ∈ T.

nmif -eq-in(P,T)(t11, t12, t21, t22)

=⇒ ∀p ≤ t11.
(
∀p11 ≤ t11. p11 ≈P p

=⇒ ∃p21 ≤ t21. p11 ≈T p21
)

=⇒
(
∀p12 ≤ t12, p22 ≤ t22. p12 ≈P p

=⇒ p22 <T p12 =⇒ ProgT (p22, t22)
)}

Similarly, nonmalleable information flow is the intersection
of RD and TE, immediately giving progress-sensitive and in-
sensitive definitions, and a definition of nonmalleable progress
leakage, NmPlA, the progress-only counterpart to NMIF.

PsNmifA
def
= PsRdA ∩PsTeA

PiNmifA
def
= PiRdA ∩PiTeA

NmPlA
def
= RplA ∩TpcA

IV. A CORE CALCULUS FOR SECURE PROGRESS LEAKAGE

We now describe a core calculus that securely constrains
progress leakage without eliminating it. The calculus is a simple

[E-STOP]

〈skip, σ〉 stp−−→ 〈stop, σ〉

[E-ASSIGN]
〈e, σ〉 ⇓ n x ∈ dom(σ)

〈x := e, σ〉 a(x,n)−−−−→ 〈skip, σ[x 7→ n]〉

[E-SEQSTEP]
〈c1, σ〉

α−−→
〈
c′1, σ

′〉 c′1 6= stop

〈c1 ; c2, σ〉
α−−→

〈
c′1 ; c2, σ

′〉 [E-SEQSKIP]

〈skip ; c, σ〉 •−−→ 〈c, σ〉

[E-PDOWNSTEP]
〈c, σ〉 α−−→

〈
c′, σ′〉 c′ 6= stop

〈pdown` c, σ〉
α−−→

〈
pdown` c

′, σ′〉
[E-PDOWNSKIP]

〈pdown` skip, σ〉
pd(`)−−−→ 〈skip, σ〉

Fig. 2. Selected operational semantic rules

imperative calculus with only numeric values. The syntax below
contains the standard IMP commands plus pdown and stop.

e ::= n | x | e⊗ e

c ::= skip | x := e | c ; c | if e then c else c
| while e do c | pdown` c | stop

The stop command signals whole program termination. It
differs from skip, which indicates only that a given operation
has no more steps. Notably, stop should appear only on its
own, does not appear in the surface language, and can never
be well-typed (see Section IV-B).

The pdown, or progress-downgrade, operation is the main
addition to the language. It downgrades (declassifies and
endorses) control flow, and thus termination behavior. The
command pdown` c means: run c, then explicitly declassify
(or endorse) the termination behavior of c to label `.

To focus on progress leakage, we keep the calculus simple
and omit data declassification and endorsement instructions.
Adding them with typing and semantic rules similar to pdown
would be straightforward and, while it would likely not hamper
security, the proofs would become considerably more involved.

A. Operational Semantics

The semantics of the core calculus is mostly standard. Expres-
sions, which always terminate, use a big-step semantics, and
commands, which may diverge, use a small-step semantics. A
semantic configuration 〈c, σ〉 consists of a pair of a command c
(or expression e) and a memory σ, where σ : V ⇀ N is a partial
function from variable names to values (natural numbers).

Figure 2 presents selected small-step operational semantics.
The complete semantics can be found in Appendix A. Note
that both E-SEQSTEP and E-PDOWNSTEP require that the
inductive step not produce stop, ensuring that stop appears
only for full program termination. Instead, E-SEQSKIP and
E-PDOWNSKIP proceed directly when there is a skip.

Each semantic step also produces an event that will form the
elements of an execution trace. All but three steps produce •,
indicating no effects or information. E-STOP produces stp,
indicating that the program has terminated. E-ASSIGN produces
an assignment event, a(x, n), indicating that variable x has

[SKIP]
Γ; pc ` skip � nt

[ASSIGN]
Γ(x) = ` Γ ` e : `

Γ; ` ` x := e � nt

[IF]
Γ ` e : pc Γ; pc ` c1 � nt Γ; pc ` c2 � nt

Γ; pc ` if e then c1 else c2 � nt

[SEQ]

Γ; pc1 ` c1 � nt1 Γ; pc2 ` c2 � nt2
pc1 v pc2 nt1 v pc2 nt1 v nt2

Γ; pc1 ` c1 ; c2 � nt2

[WHILE]
Γ ` e : pc Γ; pc ` c � pc
Γ; pc ` while e do c � pc

[PDOWN]
Γ; pc ` c � nt

nt v JJJJ

(nt) pc v `

Γ; pc ` pdown` c � `

[VARIANCE]
Γ; pc′ ` c � nt ′

pc v pc′ nt ′ v nt

Γ; pc ` c � nt

Fig. 3. Command typing rules

been assigned value n. Finally, E-PDOWNSKIP produces a
progress downgrade event, pd(`), explicitly making visible to
label ` that the program has reached this point in execution,
and therefore the body of the pdown` statement terminated.

B. Type System

The type system has different judgments for expressions and
commands. Since all values are numeric, the types are simply
information-flow labels. Expression judgments take the form
Γ ` e : `, where Γ is a partial map from variable names to
labels, and ` is a label, and mean that label ` is at least as
restrictive as the security policy of any input to expression e.
That is, it is safe to treat e as having policy `.

Command judgments take the form Γ; pc ` c�nt , where Γ is
as before, and pc and nt are labels used to constrain effects.
The pc, or program counter, label is standard [21, 37], and it
serves as both a lower bound on the visibility of a command’s
effects and a means of controlling implicit information flows.
Flows can be either explicit, when resulting from a direct
assignment like x := y, or implicit when stemming from
control flow. Consider the following program.

if y then x := 0 else x := 1

This program only directly assigns constant values to x, but
the value of y implicitly influences x. The pc label constrains
these flows through two requirements: (1) the effects of an
if statement must be no more public than the condition, and
(2) an assignment is an effect, meaning the pc must flow to the
label of the variable being assigned. Type-checking the above
example then requires Γ(y) v pc and pc v Γ(x), transitivity
ensuring Γ(y) v Γ(x) and preventing information leakage.

The nt , or nontermination, label constraints progress leakage.
It serves as an upper bound on the sensitivity of termination

behavior of c. That is, anyone at or above nt may safely learn
if c terminates without leaking information.

Figure 3 presents the full type system. VARIANCE formalizes
the notion that pc is a lower bound while nt is an upper bound.
If c only produces high effects and its termination behavior
is only influenced by low data, it is safe to treat it as if it
may produce lower effects—pc v pc′—and has termination
influenced by higher data—nt ′ v nt . Including this rule allows
ASSIGN, IF, and WHILE to demand equality of labels, rather
than flows, simplifying the presentation and analysis.

SKIP and ASSIGN leave nt unconstrained, as skip and
assignments always terminate. ASSIGN constrains explicit flows
by requiring Γ ` e : ` where ` is the label of the assigned
variable. Since assignments are effects, it also sets the pc
bound at `. IF requires Γ ` e : pc, meaning the effects of the
branches must be bounded below by the label of the condition,
completing the implicit flow restriction. As if’s termination
behavior is that of its branches, nt remains unchanged.

The other rules more directly constrain termination leakage.
When sequentially composing commands c1 ; c2, if c1 diverges,
then c2 will never execute, meaning visible effects of c2
can leak whether or not c1 terminated. To maintain security,
SEQ therefore requires the effects of c2 to be bounded below
by nt1. To ensure pc1 and nt2 correctly bound the composed
command, pc1 must be a lower bound on the effects of
both c1 and c2—Γ; pc1 ` c1 � nt1 and pc1 v pc2, respectively.
Similarly, nt2 must be an upper bound on their termination
sensitivity—nt1 v nt2 and Γ; pc2 ` c2 � nt2, respectively.

WHILE uses the same label for the condition, the pc, and
nontermination labels for three reasons. First, the premise
Γ ` e : pc ensures that the guard can safely influence effects
in the loop. Second, requiring c to type-check with a nontermi-
nation label of pc ensures that learning if c terminates does not
leak more information than c’s own effects. This requirement
is necessary because the termination behavior of one execution
of c can influence whether or not c executes again. Third,
both the loop condition and the termination behavior of c can
influence if the entire loop terminates. Since both have label pc,
the nontermination label of the entire loop is pc.

Lastly, PDOWN concerns explicit downgrades of progress
information. Recall that E-PDOWNSKIP, when executed,
directly reveals to label ` that the body of the pdown` statement
terminated. As a result, the termination behavior of pdown` c
leaks no additional information to anyone at or above `, so
PDOWN sets the new nontermination label to `.

Since pdown` creates a visible effect at `, the pc must
properly bound it: pc v `. Despite having a variance rule,
this premise is a flow rather than an equality. Downgrading
to pc and varying the nontermination label to ` is semantically
different from downgrading directly to `. The former releases
information to pc, which may be lower than `.

Enforcing NMIF requires restricting influence over both the
content and timing of downgrades. For a pdown instructions,
the old nontermination label nt bounds what information might
be released, so we require it be non-compromised. Restricting
the timing would normally involve similarly checking the pc

to avoid improper influence over the control flow. However, if
Γ; pc ` c � nt , then either pc v nt or Γ; pc ` c � `′ for any `′.
In the first case, the antimonotonicity of JJJJ

 together with nt
being non-compromised ensure pc v JJJJ

(pc), making such a
premise redundant. In the second case, setting `′ = ` shows
that there is no actual leakage to constrain.

Type Soundness: This type system satisfies the basic sound-
ness property that well-typed programs do not get stuck. Since
the type system presumes a mapping Γ of variables names to
labels and the semantics operates over a memory σ, we require
that all names referenced in Γ exist in σ.

Theorem 3 (Type Soundness). If Γ; pc ` c � nt , then for any
memory σ where dom(Γ) ⊆ dom(σ), if 〈c, σ〉 −→∗ 〈c′, σ′〉,
then either c′ = stop or 〈c′, σ′〉 can step.

C. Example Revisited

To see the use of these typing rules, and in particular pdown,
we look at the attraction mapping example from Section I using
simple public/secret and trusted/untrusted policies. We assumed
that lines 1 and 2 could both hang due to signal failures,
revealing precise location. The nontermination label nt loc of
both lines would be secret, but it would remain trusted, as the
attacker cannot influence the user’s location or the control flow
to this point. Line 5 will contact the server—a publicly-visible
effect—requiring the pc label to be public.

With these labels, SEQ rule would identify the potential
progress leakage and require an explicit declassification. Since
nt loc is secret–trusted, it is not compromised, so PDOWN
allows wrapping lines 1 and 2 in pdown to public–trusted.

The code for line 5 comes from an untrusted source. To
prevent it from modifying trusted data, it must type-check with
an untrusted pc. Importantly, if it contains a loop depending
on secrets—opening the attack we aim to prevent—WHILE
requires the nt label to be secret–untrusted—a compromised
label. PDOWN does not allow downgrading this compromised
control flow, so SEQ ensures no later operation can create
public or trusted effects. Embedded in a larger system, this
would inevitably fail to compile, identifying the dangerous
termination channel. Requiring line 5 to type-check with a non-
compromised nt label prevents attacker-controlled termination
leakage, but allows a benign loop over attractions to place
nearby ones on a map, which has a public–untrusted nt label.

D. Program Behavior and Indistinguishability

To prove the security of this calculus, we must first define
traces and low-equivalence in this setting. A trace consists of the
program inputs, which we consider to be the initial memory σ,
and a possibly-infinite stream of events st . Command c
produces a trace (σ, st), denoted c (σ, st), if c outputs
precisely st when run with initial memory σ. That is, if 〈c, σ〉
terminates, then st is the full list of events it produces, ending
with stp. If 〈c, σ〉 diverges, then st is infinite and contains all
events emitted during the execution.

The set of all traces c can produce is its behavior:

Behav(c)
def
= {t | c t}

Recall from Section III that our security hyperproperties
assume an indistinguishability relation ≈D on finite trace
prefixes that is parameterized by a downward-closed label
set D representing low-sensitivity policies. A finite trace prefix
consists of an input—the initial memory—and a finite list of
events, so we need low-equivalence relations for each.

Two memories are D-equivalent if they contain the same
values for locations with labels in D, though they may differ
elsewhere. Formalizing this idea requires labels for memory
locations, so we parameterize the equivalence on both D and
a context Γ mapping locations to labels, as in the type system.
D-equivalence, denoted σ1

∼=Γ
D σ2, then demands only that σ1

and σ2 agree on x when Γ(x) ∈ D. Formally,

σ1
∼=Γ

D σ2
def
= ∀x.Γ(x) ∈ D =⇒ σ1(x) = σ2(x).

Two finite sequences of events are D-equivalent if, at D,
they appear to contain the same events in the same order. We
model a D-observer as being unable to gain information from
internal steps, signified by • events, and both assignments and
progress downgrades at labels not in D. To make this intuition
precise, we define a silent-at-D predicate SilΓD(α) as follows.

SilΓD(•)
Γ(x) /∈ D

SilΓD(a(x, n))

` /∈ D
SilΓD(pd(`))

Note two important design decisions. First, the termination
event stp is always visible, regardless of the label, formalizing
that a progress-sensitive observer can always distinguish
termination from silent infinite loops. Second, all assignments
to low memory locations are visible, providing a strong
security guarantee by modeling a powerful attacker that can
continuously monitor public areas in memory. Modeling explicit
output is possible using distinguished memory addresses and
making more events silent, which cannot leak more information.

Equivalence of finite event sequences s1 and s2, denoted
s1 uΓ

D s2, then simply ignores silent events and requires the
rest to be identical.

ε uΓ
D ε

s1 uΓ
D s2

α · s1 uΓ
D α · s2

s1 uΓ
D s2

SilΓD(α)

α · s1 uΓ
D s2

s1 uΓ
D s2

SilΓD(α)

s1 uΓ
D α · s2

We can now define equivalence of trace prefixes, also
parameterized by Γ and suggestively denoted ≈Γ

D, by requiring
the initial memories and event sequences both be equivalent.
That is, (σ1, s1) ≈Γ

D (σ2, s2)
def
= σ1

∼=Γ
D σ2 and s1 uΓ

D s2.
Using these definitions of traces, prefixes, and equivalences

is sufficient to state and prove the security of our core calculus.
Since our equivalences are all parameterized on Γ, we will write
PsNiΓ, and similarly for other hyperproperties, to indicate
that we are using ≈Γ

− as the equivalence relation.

E. Proving Security

While this calculus and its type system are designed to
enforce progress-sensitive NMIF, which allows for controlled
data leakage that violates noninterference, it remains useful to
confirm that explicit downgrades are the only way to violate
noninterference. The omission of data downgrade operations

means all leakage should be through progress channels. We
verify this by proving that well-typed commands enforce PINI,
which does not consider progress leakage.

Theorem 4 (PINI). If Γ; pc ` c�nt , then Behav(c) ∈ PiNiΓ.

While some progress leakage is allowed, it should only
come through two channels explicit in the type system: pdown
instructions and programs with high nt labels. To eliminate
leakage that the type system tracks and reports in the nt
labels, we can demand the command type-check with a low nt
label. To ensure that all remaining leakage arises from pdown
instructions, we define a notion of downgrade freedom from a
downward-closed set D. Intuitively, a command that does not
downgrade from outside D—a “high” label—to inside D—a
“low” label—should also enforce LFP, and thus PSNI, at D.
We formalize this lack of downgrading as follows.

Definition 3 (D-downgrade Freedom). The proof Γ; pc ` c�nt
is D-downgrade free if, for every subcommand pdown` c

′,
either ` /∈ D or the subproof of Γ; pc ` c′ � nt ′ has nt ′ ∈ D.

D-downgrade freedom and a low nt label are together
sufficient to prevent progress leakage, proving that all leakage
is properly accounted for. Together with Theorem 4, this
guarantees PSNI.

Theorem 5 (D-downgrade-free PSNI). For any downward-
closed label set D, if Γ; pc ` c�nt with nt ∈ D and the typing
proof is D-downgrade free, then Behav(c) ∈ PsNiΓD.

Enforcing Nonmalleable Information Flow: For the same
reason that Theorem 5 requires nt ∈ D, a compromised nt
label—which cannot be safely downgraded—signals potentially
insecure progress leakage. As a result, not every well-typed
command enforces nonmalleable progress leakage against every
attacker. However, if nt ∈ P ∪ T for an attacker A = (P, T),
then secret influence has been safely declassified, attacker
influence has been safely endorsed, or both. In each case,
progress leakage will be robust, guaranteeing security.

Theorem 6 (Low-nt NMPL). Given an attacker A = (P, T),
if Γ; pc ` c � nt with nt ∈ P ∪ T , then Behav(c) ∈ NmPlΓA.

Also recall that non-compromised labels are public, trusted,
or both for every attacker (Proposition 1). Combined with
Theorem 6, this provides the condition necessary to ensure
security against all attackers.

Theorem 7 (Nonmalleable Progress Leakage). If Γ; pc ` c�nt
with nt v JJJJ

(nt), then Behav(c) ∈ NmPlΓ.

Because noninterference (in particular PiNi) is strictly
stronger than the corresponding form of NMIF (PiNmif),
Theorems 2, 4, and 7 combine to show that all well-typed
programs enforce progress-sensitive NMIF.

Corollary 1 (Progress-Sensitive NMIF). If Γ; pc ` c � nt with
nt v JJJJ

(nt), then Behav(c) ∈ PsNmifΓ.

V. INFERRING PROGRESS DOWNGRADES

One major advantage of enforcing security with a static
type system is support for inference procedures. To reduce
programmer burden, they can omit explicit progress downgrades
and instead the compiler can infer their locations if any secure
placement is possible. Downgrades are generally considered
sensitive operations requiring audits, but a constructive infer-
ence procedure can direct the programmer to specific code
points, minimizing manual effort. We now present such an
algorithm that is sound and complete with respect to the type
system, highly efficient, and infers a minimal set of downgrades.

A. Label Structure

The extreme generality of the label model in Section II is
good for expressive power, but its lack of structure makes using
it for computations challenging. To make inference tractable,
we require somewhat more structure on the labels.

First, flows-to (v) must to be antisymmetric in addition to
reflexive and transitive. There must be binary meet (u) and
join (t) functions that compute the greatest lower bound and
least upper bound of two labels, respectively. These changes
make L a lattice. Second, along with the global least label ⊥,
we require a global greatest label > where ` v > for all ` ∈ L.

B. Inference Algorithm

The inference algorithm, pd-inf, consists of three parts. The
first, elab, computes the minimum label of an expression e
or determines that it cannot be typed. The second, pd-place,
does most of the work. It places the progress downgrades, or
determines that no placement will generate well-typed code. It
also records auxiliary information that the third part, pd-lab-set,
uses to set the label on downgrades placed by pd-place.

The goal is to infer a secure placement of pdown instructions,
slightly different than producing any well-typed command. The
type system guarantees progress-sensitive security only when
the nt label is non-compromised (see Section IV-E), so pd-inf
places pdown statements such that the resulting command is
well-typed with a non-compromised nontermination label. Since
pd-inf is complete with respect to the type system (Theorem 9
below), if any such placement exists, it will find one. Otherwise,
the type system cannot prove that all of the program’s leakage
is nonmalleable, and pd-inf will fail, indicating this fact.

Expression Labels: Computing labels of expressions is
straightforward. We parameterize elab on a typing context Γ,
and specify it as a partial function that is defined precisely
when e is well-typed. It produces the most permissive (lowest)
label consistent with the typing context. It is defined as follows.

elabΓ(x) = Γ(x)
elabΓ(n) = ⊥

elabΓ(e1 ⊗ e2) = elabΓ(e1) t elabΓ(e2)

Downgrade Placement: The pd-place algorithm determines
both the placement of pdown instructions and the nontermina-
tion label nt if inference is possible. It is also parameterized
on Γ, and is a partial function from a pc label and a
command c (free from progress downgrades) to a triple: a

pd-placeΓ(pc, c) = match c with
case skip do (skip,>,⊥)
case (x := e) do

`← elabΓ(e) ;
assert pc t ` v Γ(x) ;
(x :̃= e,Γ(x),⊥)

case (if e then c1 else c2) do
`← elabΓ(e) ;
(c̃1, b1,nt1)← pd-placeΓ(pc t `, c1) ;
(c̃2, b2,nt2)← pd-placeΓ(pc t `, c2) ;
if nt1 t nt2 v JJJJ

(nt1 t nt2) then

(if{`} e then c̃1 else c̃2, b1 u b2,nt1 t nt2)
else

(if{`} e then (pdown c̃1) else c̃2, b1 u b2,nt2)

case (c1 ; c2) do
(c̃1, b1,nt1)← pd-placeΓ(pc, c1) ;
(c̃2, b2,nt2)← pd-placeΓ(pc, c2) ;
if nt1 v b2 then

(c̃1 ;{nt1} c̃2, b1 u b2,nt1 t nt2)
else

((pdown c̃1) ;{⊥} c̃2, b1 u b2, pc t nt2)

case (while e do c′) do
`← elabΓ(e) ;
assert pc t ` v JJJJ

(pc t `) ;
(c̃′, b,nt)← pd-placeΓ(pc t `, c′) ;
if nt v b then

(while e do{`tnt} c̃′, b u JJJJ

(pc t `),nt t pc t `)
else

(while e do{`} (pdown c̃′), bu JJJJ

(pc t `), pc t `)

Fig. 4. Procedure for inferring types and pdown placement

partial command c̃, a bound label b, and nt . A partial command
is an intermediate data structure with the same structure as a
command, but without labels on pdown and with auxiliary label
information for control structures—conditionals, sequences, and
loops. We write partial commands in blue and with a tilde.

The bound label b indicates how much the pc can rise before
inference will fail. That is, no pdown placement can allow c to
type-check in context Γ with a non-compromised nt label and a
pc label above pctb. This label is important for efficiency in the
sequence and while cases. Placing a progress downgrade around
the first command or the loop body, respectively, can allow the
second command or loop body to use a more permissive pc.
A naive algorithm would thus make two recursive calls, one
for each value of pc, resulting in exponential run time. The
bound label allows us to replace the second recursive call with
a single flow check, drastically improving efficiency.

Figure 4 presents the full pd-place algorithm. For skip, the
bound label is > and nontermination label of ⊥, since skip
type-checks with any pc and nt . The assignment case is only
slightly more complex. It asserts that pc t ` v Γ(x), as the
command will never type-check if that flow does not hold. If it
does hold, pd-place sets b = Γ(x), as the pc cannot rise above
that level and still produce a valid typing proof, and nt = ⊥,
as the command always terminates.

For conditionals, pd-place first determines the label ` of
the condition, before making recursive calls on both branches,
using pc t ` as the pc label. Inference fails if the condition is

ill-typed or either recursive call fails. If they all succeed, the
only remaining check is whether a downgrade is required.

Without a downgrade, the nontermination label of the
conditional will be nt1tnt2, where nt1 and nt2 are the nonter-
mination labels of the branches. If that join is non-compromised,
no downgrade is needed. If the join is compromised, a
downgrade is required around one branch. Because both nt i
are outputs of pd-place, either nt i = ⊥ or pc t ` v nt i and
both are non-compromised. That means whenever nt1 t nt2 is
compromised, neither label is ⊥, so pct` v nt i. Downgrading
the progress of either branch to pc t ` will therefore result
in the entire if statement having a non-compromised nt label,
so we arbitrarily choose to downgrade the then branch. Some
programs may also need to downgrade the termination behavior
of the full if statement—and thus the else branch. Inserting
pdown into only the then branch preserves the ability to safely
perform such a larger downgrade while optimistically hoping
it will be unnecessary.

For the conditional’s bound label, a higher pc must flow to
both b1 and b2 for inference to succeed, which corresponds
precisely to a bound of their meet b1 u b2.

Sequential composition is where the bound label becomes
important. SEQ requires the pc of c2 to be at least as high both
the pc and nt labels of c1. In the absence of a downgrade,
c2 must therefore type-check with pc t nt1. A naive strategy
would make a recursive call on c1 and then try to infer
downgrades for c2 with pc t nt1. If this inference on c2
fails, however, it may still be possible by downgrading c1’s
progress and infer downgrades on c2 using pc, requiring a
second recursive call.

The bound label allows us to avoid this double recursive call
and the resulting exponential running time. Instead, pd-place
makes one recursive call on each of c1 and c2 using pc for
both. If the nontermination label nt1 of c1 flows to the bound
label b2 of c2, inference will still succeed on c2 when run with
pc t nt1, and no downgrade is needed. If nt1 6v b2, inference
with pc tnt1 would fail and a progress downgrade is required.

Additionally, the partial command for sequence includes an
auxiliary label. This label represents the amount c2’s program
counter must increase beyond pc in the typing proof. Without
a downgrade, this value is nt1. With a downgrade, no increase
is required, so ⊥ suffices.

The while case first computes the label ` of the condition
and asserts that pct` v JJJJ

(pct`). The nontermination label of
the loop cannot be lower than pct`, so this check is needed to
ensure pd-place only outputs non-compromised nontermination
labels. If the check passes, then it makes a recursive call on c
using pc t `. Since while loops can sequence c with itself, we
again need to check if the first command’s nt label flows to the
second’s bound. As both commands are the same, this check
becomes nt v b. As in the sequence case above, a downgrade
is necessary if and only if the flow does not hold.

The bound label for while is the meet of the recursively
computed bound b and JJJJ

(pc t `). The first part captures the
bound for the subcommand c. The second part ensures that
pc t ` will remain non-compromised even when raising the pc.

pd-lab-set(pc, c̃) = match c̃ with
case skip do skip
case (x :̃= e) do x := e
case (if{`} e then c̃1 else c̃2) do

if e then (pd-lab-set(pc t `, c̃1))
else (pd-lab-set(pc t `, c̃2))

case (c̃1 ;{`} c̃2) do
pd-lab-set(pc, c̃1) ; pd-lab-set(pc t `, c̃2)

case (while e do{`} c̃′) do
while e do pd-lab-set(pc t `, c̃′)

case (pdown c̃′) do
pdownpc pd-lab-set(pc, c̃

′)

Fig. 5. Procedure for setting pdown labels

The nontermination label is either nt t pc t ` if there is
no downgrade, as all three impact termination, or pc t ` if a
progress downgrade lowered the inner nontermination label.

Finally, we include an auxiliary label as in the sequence
case. With no downgrade, the pc in the body must rise by
` t nt , and with a downgrade, only `.

Setting Downgrade Labels: For sequential composition,
pd-place cannot determine the pc of c2 until after the recursive
call completes (and similarly for loops). That means it does not
have enough information to set the labels on pdown instructions
as it places them. Instead, it embeds auxiliary label information
in its output, which pd-lab-set (Figure 5) uses on a second pass
to set those labels. For each command, it recursively executes
on each sub-command, increasing the pc by the label specified
in the auxiliary information, and sets the label of each pdown
command to the current pc as it goes.

The full inference algorithm first runs pd-place and then
pd-lab-set on its output.

pd-infΓ(pc, c) = (c̃, b,nt)← pd-placeΓ(pc, c) ;
(pd-lab-set(pc, c̃),nt)

C. Soundness, Completeness, and Correctness

The inference algorithm is sound and complete with respect
to the type system using only non-compromised nontermina-
tion labels. Formally, soundness says that, if the algorithm
succeeds, then the resulting command is well-typed with a
non-compromised nt label.

Theorem 8 (Sound Inference). If pd-infΓ(pc, c) = (c′,nt),
then Γ; pc ` c′ � nt and nt v JJJJ

(nt).

Intuitively, completeness says that, if there is any way to
place pdown instructions such that the resulting command is
well-typed with a non-compromised nt label, then pd-inf will
find one. To formalize this intuition, we use a downgrade-
erasure operation, denoted bcc and defined as follows.

bskipc = skip
bx := ec = x := e
bc1 ; c2c = bc1c ; bc2c

bif e then c1 else c2c = if e then bc1c else bc2c
bwhile e do cc = while e do bcc
bpdown` cc = bcc

The formal definition of completeness is then as follows.

Theorem 9 (Complete Inference). For any command c and
label nt such that Γ; pc ` c � nt and nt v JJJJ

(nt), there is
some c′ and nt ′ such that pd-infΓ(pc, bcc) = (c′,nt ′).

Finally, pd-inf is correct in that it does not modify commands
aside from possibly adding downgrade instructions.

Theorem 10 (Correct Inference). If pd-infΓ(pc, c) = (c′,nt),
then c = bc′c.

D. Efficiency and Minimality

The inference algorithm also aims to be efficient and only
insert downgrades where necessary. Achieving either goals
is simple: inserting downgrades everywhere is efficient but
not minimal, while trying every combination of downgrades
and selecting a minimal well-typed one is minimal but highly
inefficient. The pd-inf algorithm accomplishes both.

To remain efficient, pd-inf consists of two sequential
linear passes: pd-place and pd-lab-set. In each pass, the only
operations that could impact performance are label operations
(join, meet, reflection, and flows-to checks).

For simple label models, like small finite lattices, these
operations are constant time, producing linear efficiency. More
complicated label models may result in more overhead, but the
structure of the algorithm mitigates some concern. All flows-to
checks query if a nontermination label—always the join of (at
most) linearly many labels—flows to a bound label—always
the meet of (at most) linearly many labels. Common security
lattices, including subset lattices of permissions [52], and free
distributive lattices over a set of principals [5, 28, 43] can run
these checks very efficiently.

Minimality: Even nonmalleable downgrades represent possible
points of data leakage or corruption, so pd-inf aims to insert
a minimal set. However, there are many ways to define
“minimal.” Semantic minimality—executing as few downgrades
as possible—is appealing, but the semantically-minimal set of
downgrades for a program might not be statically well-defined,
as it could depend on the inputs.

Instead, we achieve a local syntactic notion of minimality:
removing any downgrade inserted by pd-inf (without adding
another elsewhere) will always be ill-typed. We formalize
the idea of “removing a downgrade” using a relation 4PD to
denote that two commands have the same structure, but one
may have more syntactic downgrade instructions than the other
and the pdown labels may not match. We define 4PD as the
smallest structurally compatible preorder on commands—it is
reflexive, transitive, and admits structurally recursive rules like
c′1 4PD c1 c′2 4PD c2

c′1 ;c
′
2 4PD c1 ;c2

—admitting the following rules.

c′ 4PD c

c′ 4PD pdown` c

c′ 4PD c

pdown`′ c
′ 4PD pdown` c

Letting c ≡PD c′ denote commands with identical structure—
they are the same except for the labels on pdown instructions—
this relation allows us to formalize syntactic minimality.

Theorem 11 (Minimal Inference). If pd-infΓ(pc, cin) = (c,nt),
then for any command c′ where c′ 4PD c, if Γ; pc ` c′ � nt ′
with nt ′ v JJJJ

(nt ′), then c′ ≡PD c.

VI. PROOF APPROACH AND ROCQ DETAILS

All theorems in this paper are mechanically verified in
The Rocq Prover [34] and are available online [11]. We
encode expressions and commands with a deep embedding
as inductive types and use option types to encode partial
functions, including typing contexts, memories, and pd-inf. We
assume decidable equality for variable names, decidable set
inclusion for label sets and attackers in the security theorems,
and decidable flows-to in the inference algorithm.

The proofs use the most general label model presented, but
we verify that the less-general model that explicitly separates
confidentiality and integrity is actually a special case (see
Section II). There are also minor differences in the definitions
of D-equivalence of events and stores to make proofs simpler,
so we include definition equivalence proofs for each.

A. Proving Security

The proofs of noninterference (Theorems 4 and 5) and NMPL
(Theorem 7) use the bridge-step relation introduced by Bay and
Askarov [9], which defines a configuration emitting a D-visible
event. That is, 〈c, σ〉 takes one or more steps, where only the
last one produces something visible to D. Formally, bridge
steps are defined by the following inductive relation.

〈c, σ〉 α−−→
〈
c′, σ′〉

¬SilΓD(α)

〈c, σ〉yD
α

〈
c′, σ′〉

〈c, σ〉 α′
−−→

〈
c′, σ′〉 SilΓD(α′)〈

c′, σ′〉 yD
α

〈
c′′, σ′′〉

〈c, σ〉yD
α

〈
c′′, σ′′〉

A critical lemma shows that running one command with two
D-equivalent memories produces the same bridge step unless
one configuration silently diverges, in which case we can bound
the visible events and nontermination label.

Lemma 1 (Matching Bridge Step). For any command c where
Γ; pc ` c � nt and memories σ1 and σ2 where σ1

∼=Γ
D σ2, if

〈c, σ1〉yD
α 〈c′, σ′

1〉, then either
• 〈c, σ2〉yD

α 〈c′, σ′
2〉 with σ′

1
∼=Γ

D σ′
2, or

• 〈c, σ2〉 silently diverges—diverges without ever producing a
D-visible event—and either α = pd(`) or both α = stop
and nt /∈ D.

This lemma relies on a standard containment lemma.

Lemma 2 (Containment). For a downward-closed set D, if
Γ; pc ` c � nt with pc /∈ D and 〈c, σ〉 α−−→ 〈c′, σ′〉, then
σ ∼=Γ

D σ′ and either SilΓD(α) or α = stop.

Nontermination: Since our theorems focus on distinguishing
terminating executions from nonterminating ones, their proofs
rely on a similar differentiation. The proof of progress-sensitive
NMPL (Theorem 7) uses the following lemma.

Lemma 3 (While Trilemma). If a while loop is never stuck,
then either (i) it terminates, or (ii) after some finite number
of iterations, the body diverges, or (iii) the body converges on
every iteration, but the loop executes infinitely many times.

This lemma is not provable in a constructive logic like
Rocq; deciding which branch holds requires solving the halting
problem. Instead, we verify that it holds classically—ensuring
logical consistency—and take it as an axiom for the theorems.

A note on computability theory: Lemma 3 is not just
undecidable, no recursive enumeration procedure can determine
the cause of nontermination and separate cases (ii) and (iii). One
can, however, recursively enumerate the loops satisfying (ii)
using a halting oracle. Deciding the while trilemma is thus
under 0′′ [for background, see, e.g., 40]. Indeed, the Rocq
proof of Lemma 3 uses the classical assumption exactly twice:
once to separate terminating loops from divergent ones, and a
second time to differentiate the cause of nontermination.

B. Inference Properties

Recall from Section V-B that, pd-place returns a bound
label b in addition to a command and nontermination label.
The soundness and minimality of pd-inf rely on b properly
bounding how much the pc can rise before inference fails. The
following lemma formalizes this requirement.

Lemma 4 (Bound Validity). If pd-placeΓ(pc, c) = (c′, b,nt),
then for any non-compromised label `, ` v b if and only if
pd-placeΓ(pc t `, c) is defined.

Minimality also requires that the inferred nontermination
label nt be the smallest possible label.

Lemma 5 (Least nt). If pd-infΓ(pc, cin) = (c,nt), then for
any c′ and nt ′ if c′ ≡PD c and Γ; pc ` c′ � nt ′, then nt v nt ′.

VII. RELATED WORK

We now discuss prior work on progress-sensitive security,
secure downgrading, and information-security hyperproperties.

Progress-Sensitive Security: Early type-based enforcement of
termination-sensitive noninterference either limit loops to only
execute in fully public environments (pc = ⊥) and have fully
public conditions [31, 46] or operate in a pure λ-calculus with
call-by-name semantics [1]. These constraints led most work to
target progress-insensitive security. However, Askarov et al. [8]
show how progress channels can leak arbitrary data in effectful
languages, identifying a major risk of using progress-insensitive
security with active attackers.

Moore et al. [27] provide a more precise type system similar
to the one in Section IV-B. To further relax the type system’s
restrictions, they include a progress downgrade operation they
call cast . Notably, the type system does not restrict cast .
Instead, there is one semantics that appeals to a halting oracle
and gets stuck if cast could leak anything, and a second that
tracks a quantitative leakage budget.

Bay and Askarov [9] show how to define progress leakage
as declassification in a progress-sensitive context and introduce
tini blocks much like our pdown. They consider only confi-
dentiality and bound declassifications by a separate notion of
declassifier authority, with no ability to ensure robustness.

Secure Downgrading: Prior work on secure downgrades
in IFC systems is extensive. Some allow labels to specify
what downgrades directly [15, 23, 33]. Delimited release
allows declassifications based on syntactic code structure [38].
Intransitive information flow restricts flows based on policies
that may not be transitive [24, 32, 35, 45]. None of these ideas
use confidentiality and integrity to constrain each other, and
so cannot consider nonmalleability concerns.

The original formulation of robust declassification (RD)
appears progress-sensitive, but gives no suggestions for en-
forcement [50]. The first enforcement mechanisms limit de-
classifications based on integrity levels, but both enforce only
progress-insensitive definitions of RD [14, 29]. Askarov and
Myers [6] use knowledge-based formulations to define both
progress-sensitive and progress-insensitive forms of RD, but
the definitions and enforcement are tailored to a four-point
lattice and the only suggestion for enforcing progress-sensitive
RD is to eliminate progress leakage entirely. McCall et al. [25]
provide a knowledge-based definition of RD for use in the
challenging setting of reactive web applications. Their definition
is progress-insensitive and relies on trace events that track
syntactic downgrades, making it intensional and hard to
generalize to languges that do not directly track leakage.

Cecchetti et al. [12] define transparent endorsement as the
dual of RD, combine the two into nonmalleable information
flow, and present all three as hyperproperties. Their definition
relies on traces having matching public-trusted events, making
it inherently progress-insensitive, and they only enforce it in
a fully terminating language. Soloviev et al. [41] reformulate
RD and NMIF in modal logic using Kripke frames, including
both progress-sensitive and progress-insensitive formulations,
but like the progress-sensitive RD definitions, there is no
enforcement mechanism.

Information-Security Hyperproperties: Information-security
conditions have been key examples of hyperproperties since
their introduction. Clarkson and Schneider [16] show how to
express multiple versions of noninterference as hyperproperties.
One such notion is observational determinism (OD) [26, 36],
which Zdancewic and Myers [51] formulate similarly to
noninterference, with explicit consideration of trace prefixes.
Clarkson and Schneider present OD as a hyperproperty similar
to our definition of PiNiD in Section III-A.

A variety of tools aim to specify or verify security-oriented
hyperproperties. Relational Hoare Type Theory (RHTT) [30]
allows for precise specification of 2-hypersafety properties like
noninterference. Cartesian Hoare Logic (CHL) [42] generalizes
RHTT to arbitrary k-hypersafety properties for relational
traces (input/output pairs). As our main hyperproperties require
considering intermediate trace prefixes of four traces, neither
RHTT nor CHL can represent them.

Other tools and techniques aim to verify various forms of
hyperproperties [10, 17, 18, 22, 44], with entirely different
goals from this work. They aim to verify application-specific
hyperproperties (within a certain class), sometimes at great
computational expense. This work identifies highly-general

security hyperproperties and enforces them through inexpensive
type checking. I hope the active research into verification will
complement the results in this paper.

VIII. CONCLUSION

Information-flow control systems have long faced a tension
between providing strong whole-program security guarantees
and supporting necessary programming constructs, like de-
classification and loops. Noninterference is too restrictive, but
uncontrolled downgrading complicates stating and proving
security. Similarly, progress-insensitive security can leak arbi-
trary data to attackers who can influence nontermination, but
requiring loops to condition only on public data makes many
programs difficult to write.

To resolve this tension, we distilled the separation between
progress-sensitivity and progress-insensitivity into a new hy-
perproperty called leakage-free progress, and generalized it
as nonmalleable progress leakage (NMPL), an adaptation of
the intuitions of nonmalleable information flow (NMIF) to
secure progress channels. We explored how to enforce NMPL
with a simple information-flow type system, and finally we
showed how to efficiently infer the locations of necessary
progress downgrade operations to aid developers or verify
NMPL without explicit annotations.

We hope these foundations will support more expressive and
powerful security-typed languages in the future. This work used
an imperative core calculus without data downgrades to better
focus on the core contribution and simplify formalisms and
proofs. Extending these ideas to more practical languages would
be valuable future work, with higher-order stateful languages
posing a particularly interesting challenge.

ACKNOWLEDGMENTS

This paper has only one author, but many people helped make
it possible. Mike Hicks provided direction about which ques-
tions would be most impactful. Leo Lampropoulos suggested
a suitable notion for minimality of the downgrade inference
algorithm. Andrew K. Hirsch provided valuable comments
on the text and, along with Tej Chajed, helped work through
multiple challenges in the Rocq code. Additional thanks to
Andrew C. Myers and Ashley Samuelson for help editing.
Finally, the shepherd and other anonymous reviewers provided
valuable feedback and suggestions for improving presentation.

REFERENCES

[1] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke, “A
core calculus of dependency,” in 26th ACM SIGPLAN
Symposium on Principles of Programming Languages
(POPL ’99), Jan. 1999.

[2] C. Abate, R. Blanco, D. Garg, C. Hriţcu, M. Patrignani,
and J. Thibault, “Journey beyond full abstraction: Explor-
ing robust property preservation for secure compilation,”
in 32nd IEEE Computer Security Foundations Symposium
(CSF ’19), Jun. 2019.

[3] C. Acay, R. Recto, J. Gancher, A. C. Myers, and E. Shi,
“Viaduct: An extensible, optimizing compiler for secure

distributed programs,” in 42nd ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI ’21), Jun. 2021.

[4] O. Arden, M. D. George, J. Liu, K. Vikram, A. Askarov,
and A. C. Myers, “Sharing mobile code securely with
information flow control,” in 33rd IEEE Symposium on
Security and Privacy (S&P ’12), May 2012.

[5] O. Arden, J. Liu, and A. C. Myers, “Flow-limited autho-
rization,” in 28th IEEE Computer Security Foundations
Symposium (CSF ’15), Jul. 2015.

[6] A. Askarov and A. C. Myers, “Attacker control and
impact for confidentiality and integrity,” Logical Methods
in Computer Science (LMCS), vol. 7, no. 3, Sep. 2011.

[7] A. Askarov and A. Sabelfeld, “Gradual release: Unifying
declassification, encryption and key release policies,” in
28th IEEE Symposium on Security and Privacy (S&P ’07),
May 2007.

[8] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands,
“Termination-insensitive noninterference leaks more than
just a bit,” in 13th European Symposium on Research in
Computer Security (ESORICS ’08), Oct. 2008.

[9] J. Bay and A. Askarov, “Reconciling progress-insensitive
noninterference and declassification,” in 33rd IEEE Com-
puter Security Foundations Symposium (CSF ’20), Jun.
2020.

[10] R. Beutner and B. Finkbeiner, “Software verification of
hyperproperties beyond k-safety,” in 34th International
Conference on Computer Aided Verification (CAV ’22),
Aug. 2022.

[11] E. Cecchetti, “Nonmalleable progress leakage rocq
proofs,” https://zenodo.org/records/15384760.

[12] E. Cecchetti, A. C. Myers, and O. Arden, “Nonmalleable
information flow control,” in 24th ACM Conference on
Computer and Communication Security (CCS ’17), Oct.
2017.

[13] E. Cecchetti, S. Yao, H. Ni, and A. C. Myers, “Composi-
tional security for reentrant applications,” in 42nd IEEE
Symposium on Security and Privacy (S&P ’21), May
2021.

[14] S. Chong and A. C. Myers, “Decentralized robustness,”
in 19th IEEE Computer Security Foundations Workshop
(CSFW ’06), Jul. 2006.

[15] ——, “End-to-end enforcement of erasure and declassi-
fication,” in 21st IEEE Computer Security Foundations
Symposium (CSF ’08), Jun. 2008.

[16] M. R. Clarkson and F. B. Schneider, “Hyperproperties,”
Journal of Computer Security (JCS), vol. 18, no. 6, pp.
1157–1210, 2010.

[17] N. Coenen, B. Finkbeiner, C. Sánchez, and L. Tentrup,
“Verifying hyperliveness,” in 31st International Conference
on Computer Aided Verification (CAV ’19), Jul. 2019.

[18] A. Farzan and A. Vandikas, “Automated hypersafety ver-
ification,” in 31st International Conference on Computer
Aided Verification (CAV ’19), Jul. 2019.

[19] N. Galatos, Residuated Lattices: An Algebraic Glimpse
at Substructural Logics, ser. Studies in Logic and the

Foundations of Mathematics. Elsevier Sience, 2007.
[20] J. A. Goguen and J. Meseguer, “Security policies and

security models,” in 3rd IEEE Symposium on Security and
Privacy (S&P ’82), Apr. 1982.

[21] A. K. Hirsch and E. Cecchetti, “Giving semantics to
program-counter labels via secure effects,” Proceedings
of the ACM on Programming Languages, vol. 5, no. POPL,
Jan. 2021.

[22] L. Lamport and F. B. Schneider, “Verifying hyperprop-
erties with TLA,” in 34th IEEE Computer Security
Foundations Symposium (CSF ’21), Jun. 2021.

[23] P. Li and S. Zdancewic, “Downgrading policies and
relaxed noninterference,” in 32nd ACM SIGPLAN Sym-
posium on Principles of Programming Languages
(POPL ’05), Jan. 2005.

[24] H. Mantel and D. Sands, “Controlled declassification
based on intransitive noninterference,” in 2nd Asian
Symposium on Programming Languages and Systems
(APLAS ’04), Nov. 2004.

[25] M. McCall, A. Bichhawat, and L. Jia, “Tainted secure
multi-execution to restrict attacker influence,” in 30th ACM
Conference on Computer and Communication Security
(CCS ’23), Nov. 2023.

[26] J. McLean, “Proving noninterference and functional
correctness using traces,” Journal of Computer Security
(JCS), vol. 1, no. 1, pp. 37–57, Jan. 1992.

[27] S. Moore, A. Askarov, and S. Chong, “Precise en-
forcement of progress-sensitive security,” in 19th ACM
Conference on Computer and Communication Security
(CCS ’12), Oct. 2012.

[28] A. C. Myers and B. Liskov, “Complete, safe information
flow with decentralized labels,” in 19th IEEE Symposium
on Security and Privacy (S&P ’98), May 1998.

[29] A. C. Myers, A. Sabelfeld, and S. Zdancewic, “Enforcing
robust declassification and qualified robustness,” Journal
of Computer Security (JCS), vol. 14, no. 2, pp. 157–196,
2006.

[30] A. Nanevski, A. Banerjee, and D. Garg, “Verification
of information flow and access control policies with
dependent types,” in 32nd IEEE Symposium on Security
and Privacy (S&P ’11), May 2011.

[31] K. R. O’Neill, M. R. Clarkson, and S. Chong,
“Information-flow security for interactive programs,” in
19th IEEE Computer Security Foundations Workshop
(CSFW ’06), Jul. 2006.

[32] S. Pinsky, “Absorbing covers and intransitive non-
interference,” in 16th IEEE Symposium on Security and
Privacy (S&P ’95), May 1995.

[33] N. Polikarpova, D. Stefan, J. Yang, S. Itzhaky, T. Hance,
and A. Solar-Lezama, “Liquid information flow control,”
Proceedings of the ACM on Programming Languages,
vol. 4, no. ICFP, Aug. 2020.

[34] Rocq development team, The Rocq Prover, 2025, version
8.20.1. [Online]. Available: https://rocq-prover.org/

[35] A. W. Roscoe and M. H. Goldsmith, “What is intransi-
tive noninterference?” in 12th IEEE Computer Security

Foundations Workshop (CSFW ’99), Jun. 1999.
[36] A. Roscoe, “CSP and determinism in security mod-

elling,” in 16th IEEE Symposium on Security and Privacy
(S&P ’95), May 1995.

[37] A. Sabelfeld and A. C. Myers, “Language-based
information-flow security,” IEEE Journal on Selected
Areas in Communications, vol. 21, no. 1, pp. 5–19, Jan.
2003.

[38] ——, “A model for delimited information release,” in
International Symposium on Software Security, Nov. 2003.

[39] A. Sabelfeld and D. Sands, “Dimensions and principles
of declassification,” in 18th IEEE Computer Security
Foundations Workshop (CSFW ’05), Jun. 2005.

[40] R. I. Soare, Turing Computability: Theory and Applica-
tions. Springer, 2016.

[41] M. Soloviev, M. Balliu, and R. Guanciale, “Security
properties through the lens of modal logic,” in 37th IEEE
Computer Security Foundations Symposium (CSF ’24),
Jul. 2024, to Appear.

[42] M. Sousa and I. Dillig, “Cartesian hoare logic for
verifying k-safety properties,” in 37th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI ’16), Jun. 2016.

[43] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières,
“Flexible dynamic information flow control in Haskell,” in
4th ACM SIGPLAN Haskell Symposium (HASKELL ’11),
Sep. 2011.

[44] H. Unno, T. Terauchi, and E. Koskinen, “Constraint-based
relational verification,” in 33rd International Conference
on Computer Aided Verification (CAV ’21), Jul. 2021.

[45] R. van der Meyden, “What, indeed, is intransitive non-
interference?” in 12th European Symposium on Research
in Computer Security (ESORICS ’07), Sep. 2007.

[46] D. Volpano and G. Smith, “Eliminating covert flows
with minimum typings,” in 10th IEEE Computer Security
Foundations Workshop (CSFW ’97), Jun. 1997.

[47] D. Volpano, G. Smith, and C. Irvine, “A sound type
system for secure flow analysis,” Journal of Computer
Security (JCS), vol. 4, no. 2–3, pp. 167–187, 1996.

[48] L. Waye, P. Buiras, D. King, S. Chong, and A. Russo,
“It’s my privilege: Controlling downgrading in DC-labels,”
in 11th International Workshop on Security and Trust
Management (STM ’15), Sep. 2015.

[49] D. Zagieboylo, G. E. Suh, and A. C. Myers, “Using
information flow to design an ISA that controls timing
channels,” in 32nd IEEE Computer Security Foundations
Symposium (CSF ’19), Jun. 2019.

[50] S. Zdancewic and A. C. Myers, “Robust declassification,”
in 14th IEEE Computer Security Foundations Workshop
(CSFW ’01), Jun. 2001.

[51] ——, “Observational determinism for concurrent program
security,” Jun. 2003.

[52] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières, “Making information flow explicit in HiStar,”
Communications of the ACM, vol. 54, no. 11, pp. 93–101,
Nov. 2011.

https://rocq-prover.org/

APPENDIX A
FULL CALCULUS RULES

We now present the full semantic and typing rules of the
core calculus from Section IV. The big-step semantic rules
for expression are in Figure 6 and the small-step rules for all
commands are in Figure 7. The typing rules for expressions
are in Figure 8. Figure 3 in Section IV-B contains all typing
rules for commands.

〈e, σ〉 ⇓ n

〈x, σ〉 ⇓ σ(x) 〈n, σ〉 ⇓ n

〈e1, σ〉 ⇓ n1 〈e2, σ〉 ⇓ n2

〈e1 ⊗ e2, σ〉 ⇓ (n1 ⊗ n2)

Fig. 6. Big-step operational semantics for expressions.

〈e, σ〉 α−−→ 〈e′, σ′〉

[E-STOP]

〈skip, σ〉 stp−−→ 〈stop, σ〉

[E-ASSIGN]
〈e, σ〉 ⇓ n x ∈ dom(σ)

〈x := e, σ〉 a(x,n)−−−−→ 〈skip, σ[x 7→ n]〉

[E-SEQSTEP]
〈c1, σ〉

α−−→
〈
c′1, σ

′〉 c′1 6= stop

〈c1 ; c2, σ〉
α−−→

〈
c′1 ; c2, σ

′〉 [E-SEQSKIP]

〈skip ; c, σ〉 •−−→ 〈c, σ〉

[E-IFN]
〈e, σ〉 ⇓ n n 6= 0

〈if e then c1 else c2, σ〉
•−−→ 〈c1, σ〉

[E-IF0]
〈e, σ〉 ⇓ 0

〈if e then c1 else c2, σ〉
•−−→ 〈c2, σ〉

[E-WHILE]

〈while e do c, σ〉 •−−→ 〈if e then (c ; while e do c) else skip, σ〉

[E-PDOWNSTEP]
〈c, σ〉 α−−→

〈
c′, σ′〉 c′ 6= stop

〈pdown` c, σ〉
α−−→

〈
pdown` c

′, σ′〉
[E-PDOWNSKIP]

〈pdown` skip, σ〉
pd(`)−−−→ 〈skip, σ〉

Fig. 7. Full small-step operational semantics for commands.

Γ ` e : `

Γ(x) = `

Γ ` x : ` Γ ` n : `

Γ ` e1 : `
Γ ` e2 : `

Γ ` e1 ⊗ e2 : `

Γ ` e : `′

`′ v `

Γ ` e : `

Fig. 8. Typing rules for expressions.

	Introduction
	Label Model
	Progress-Sensitive Hyperproperties
	Noninterference and Leakage-Free Progress
	Robust Declassification
	Nonmalleable Information Flow

	A Core Calculus for Secure Progress Leakage
	Operational Semantics
	Type System
	Example Revisited
	Program Behavior and Indistinguishability
	Proving Security

	Inferring Progress Downgrades
	Label Structure
	Inference Algorithm
	Soundness, Completeness, and Correctness
	Efficiency and Minimality

	Proof Approach and Rocq Details
	Proving Security
	Inference Properties

	Related Work
	Conclusion
	Appendix A: Full Calculus Rules

